Commercial Yeast Strains Expressing Polygalacturonase and Glucanase Unravel the Cell Walls of Chardonnay Grape Pomace
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Microbial Strains and Culture Conditions
2.2. DNA Manipulations and Plasmid Construction
2.3. Construction of Integration Cassette POF1-TEF2P-kanr-TEF2T-POF1 (POF1-KMX)
2.4. Construction of Integration Cassette MPOF1-ADC1P-MFα1s-END1-TRP5T-MPOF1 (MPOF END1)
2.5. Yeast Transformation
2.6. Verifying the Yeast Transformants and the Position of Integration
2.7. Enzyme Activity
2.8. Curing of the pUT332 Plasmid and Stability of Yeast Transformants
2.9. Fermentation on Pomace
2.10. Analysis of the Supernatants of the Pomace Fermentation
2.11. Isolation of Cell Walls or Alcohol Insoluble Residue (AIR) from Pomace Solids
2.12. Monosaccharide Analysis of Cell Wall Samples
2.13. Comprehensive Microarray Polymer Profiling (CoMPP) Analysis of Cell Wall Fractions
2.14. Multivariate and Univariate Statistics
3. Results
3.1. Construction of Genetically Modified Yeast
3.2. Activity of the Recombinant and Native Yeast Enzymes and Stability of the Integration
3.3. Fermentation on Chardonnay Pomace
3.4. Analysis of the Pomace Fermentation Residue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciani, M.; Comitini, F. Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann. Microbiol. 2010, 61, 25–32. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Sieiro, C.; García-Fraga, B.; López-Seijas, J.; Da Silva, A.F.; Villa, T.G. Microbial pectic enzymes in the food and wine industry. In Food Industrial Processes—Methods and Equipment; Valdez, B., Ed.; InTech: Rijeka, Croatia, 2010; pp. 201–218. [Google Scholar]
- Cordente, A.G.; Curtin, C.D.; Varela, C.; Pretorius, I.S. Flavour-active wine yeasts. Appl. Microbiol. Biotechnol. 2012, 96, 601–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barata, A.; Malfeito-Ferreira, M.; Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 2012, 153, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Karpe, A.V.; Beale, D.J.; Harding, I.H.; Palombo, E.A. Optimization of degradation of winery-derived biomass waste by Ascomycetes. J. Chem. Technol. Biotechnol. 2015, 90, 1793–1801. [Google Scholar] [CrossRef]
- Jin, B.; Kelly, J.M. Wine Industry Residues. In Biotechnology for Agro-Industrial Residues Utilisation; Springer: Heidelberg, Germany, 2009; pp. 293–311. ISBN 9781402099427. [Google Scholar]
- Wischmann, B.; Toft, M.; Malten, M.; McFarland, K.C. Biomass conversion determined via fluorescent cellulose decay assay. Methods Enzymol. 2012, 510, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Zietsman, A.J.J.; Moore, J.P.; Fangel, J.U.; Willats, W.G.T.; Vivier, M.A. Combining hydrothermal pretreatment with enzymes de-pectinates and exposes the innermost xyloglucan-rich hemicellulose layers of wine grape pomace. Food Chem. 2017, 232, 340–350. [Google Scholar] [CrossRef]
- Moller, I.; Sørensen, I.; Bernal, A.J.; Blaukopf, C.; Lee, K.; Øbro, J.; Pettolino, F.; Roberts, A.; Mikkelsen, J.D.; Knox, J.P.; et al. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J. 2007, 50, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.; Fangel, J.U.; Willats, W.G.T.; Vivier, M.A. Pectic-β(1,4)-galactan, extensin and arabinogalactan-protein epitopes differentiate ripening stages in wine and table grape cell walls. Ann. Bot. 2014, 114, 1279–1294. [Google Scholar] [CrossRef] [Green Version]
- Nunan, K.J.; Sims, I.M.; Bacic, A.; Robinson, S.P.; Fincher, G.B. Isolation and characterization of cell walls from the mesocarp of mature grape berries (Vitis vinifera). Planta 1997, 203, 93–100. [Google Scholar]
- Vidal, S.; Williams, P.; Neill, M.A.O.; Pellerin, P. Polysaccharides from grape berry cell walls. Part I: Tissue distribution and structural characterization of the pectic polysaccharides. Carbohydr. Polym. 2001, 45, 315–323. [Google Scholar] [CrossRef]
- Zietsman, A.J.J.; Moore, J.P.; Fangel, J.U.; Willats, W.G.T.; Trygg, J.; Vivier, M.A. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes. J. Agric. Food Chem. 2015, 63, 2798–2810. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbour Laboratories: New York, NY, USA, 1989. [Google Scholar]
- Volschenk, H.; Viljoen-Bloom, M.; Van Staden, J.; Husnik, J.; Van Vuuren, H.J.J. Genetic engineering of an industrial strain of Saccharomyces cerevisiae for L-malic acid degradation via an efficient malo-ethanolic pathway. S. Afr. J. Enol. Vitic. 2004, 25, 63–73. [Google Scholar] [CrossRef]
- Hoffman, C.S.; Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for trausformation of Escherichia coli. Gene 1987, 51, 267–272. [Google Scholar] [CrossRef]
- Louw, C.; Young, P.R.; van Rensburg, P.; Divol, B. Epigenetic regulation of PGU1 transcription in Saccharomyces cerevisiae. FEMS Yeast Res. 2010, 10, 158–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Ros-García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Gómez-Plaza, E. Differences in morphology and composition of skin and pulp cell walls from grapes (Vitis vinifera L.): Technological implications. Eur. Food Res. Technol. 2008, 227, 223–231. [Google Scholar] [CrossRef]
- York, W.S.; Darvill, A.G.; McNeil, M.; Stevenson, T.T.; Albersheim, P. Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol. 1985, 2, 3–40. [Google Scholar]
- Nguema-Ona, E.; Moore, J.P.; Fagerström, A.; Fangel, J.U.; Willats, W.G.T.; Hugo, A.; Vivier, M.A. Profiling the main cell wall polysaccharides of tobacco leaves using high-throughput and fractionation techniques. Carbohydr. Polym. 2012, 88, 939–949. [Google Scholar] [CrossRef]
- Jackson, J.E. A User’s Guide to Principal Components; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991; ISBN 9780471725336. [Google Scholar]
- Redzepovic, S.; Orlic, S.; Majdak, A.; Kozina, B.; Volschenk, H.; Viljoen-Bloom, M. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int. J. Food Microbiol. 2003, 83, 49–61. [Google Scholar] [CrossRef]
- Mocke, B. The Breeding of Yeast Strains for Novel Oenological Outcomes. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2005. [Google Scholar]
- Eschstruth, A.; Divol, B. Comparative characterization of endo-polygalacturonase (Pgu1) from Saccharomyces cerevisiae and Saccharomyces paradoxus under winemaking conditions. Appl. Microbiol. Biotechnol. 2011, 91, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.; Jones, W.; Jones, D.; Woods, D. Cloning and sequencing of an endoglucanase (end1) gene from Butyrivibrio fibrisolvens H17c. Mol. Gen. Genet. 1989, 219, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Scheirlinck, T.; De Meutter, J.; Arnaut, G.; Joos, H.; Claeyssens, M.; Michiels, F. Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 1990, 33, 534–541. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine science: Principles and Applications, 3rd ed.; Academic Press, Inc.: San Diego, CA, USA, 2008. [Google Scholar]
- Parisutham, V.; Kim, T.H.; Lee, S.K. Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production. Bioresour. Technol. 2014, 161, 431–440. [Google Scholar] [CrossRef]
- Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239–256. [Google Scholar] [CrossRef]
- Van Rensburg, P.; Van Zyl, W.H.; Pretorius, I.S. Engineering yeast for efficient cellulose degradation. Yeast 1998, 14, 67–76. [Google Scholar] [CrossRef]
- Williams, D.L.; Schückel, J.; Vivier, M.A.; Buffetto, F.; Zietsman, A.J.J. Grape pomace fermentation and cell wall degradation by Kluyveromyces marxianus Y885. Biochem. Eng. J. 2019, 150, 107282. [Google Scholar] [CrossRef]
- Zietsman, A.J.J.; Moore, J.P.; Fangel, J.U.; Willats, W.G.T.; Vivier, M.A. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes. J. Agric. Food Chem. 2015, 63, 8267–8274. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Non-covalent interaction between procyanidins and apple cell wall material: Part I. Effect of some environmental parameters. Biochim. Biophys. Acta 2004, 1672, 192–202. [Google Scholar] [CrossRef]
- Ruiz-Garcia, Y.; Smith, P.A.; Bindon, K.A. Selective extraction of polysaccharide affects the adsorption of proanthocyanidin by grape cell walls. Carbohydr. Polym. 2014, 114, 102–114. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Interactions between apple (Malus x domestica Borkh.) polyphenols and cell walls modulate the extractability of polysaccharides. Carbohydr. Polym. 2009, 75, 251–261. [Google Scholar] [CrossRef]
- Gatignol, A.; Dassain, M.; Tiraby, G. Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene 1990, 91, 35–41. [Google Scholar] [CrossRef]
- Güldener, U.; Heck, S.; Fielder, T.; Beinhauer, J.; Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996, 24, 2519–2524. [Google Scholar] [CrossRef] [Green Version]
- Van Rensburg, P.; Van Zyl, W.H.; Pretorius, I.S. Expression of the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene together with the Erwinia pectate lyase and polygalacturonase genes in Saccharomyces cerevisiae. Curr. Genet. 1994, 27, 17–22. [Google Scholar] [CrossRef]
- Verhertbruggen, Y.; Marcus, S.E.; Haeger, A.; Ordaz-Ortiz, J.J.; Knox, J.P. An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr. Res. 2009, 344, 1858–1862. [Google Scholar] [CrossRef]
- Willats, W.G.T.; Gilmartin, P.M.; Mikkelsen, J.D.; Knox, J.P. Cell wall antibodies without immunization: Generation and use of de-esterified homogalacturonan block-specific antibodies from a naive phage display library. Plant J. 1999, 18, 57–65. [Google Scholar] [CrossRef]
- Liners, F.; Letesson, J.-J.; Didembourg, C.; Van Cutsem, P. Monoclonal antibodies against pectin: Recognition of a conformation induced by Calcium. Plant Physiol. 1989, 91, 1419–1424. [Google Scholar] [CrossRef]
- Ralet, M.-C.; Tranquet, O.; Poulain, D.; Moïse, A.; Guillon, F. Monoclonal antibodies to rhamnogalacturonan I backbone. Planta 2010, 231, 1373–1383. [Google Scholar] [CrossRef]
- Jones, L.; Seymour, B.; Knox, J.P. Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to 1,4-B-D-Galactan. Plant Physiol. 1997, 113, 1405–1412. [Google Scholar] [CrossRef] [Green Version]
- Willats, W.G.T.; Marcus, S.E.; Knox, J.P. Generation of a monoclonal antibody specific to 1,5-a-L-arabinan. Carbohydr. Res. 1998, 308, 149–152. [Google Scholar] [CrossRef]
- Moller, I.; Marcus, S.E.; Haeger, A.; Verhertbruggen, Y.; Verhoef, R.; Schols, H.; Ulvskov, P.; Mikkelsen, J.D.; Knox, J.P.; Willats, W. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J. 2008, 25, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, S.E.; Blake, A.W.; Benians, T.A.S.; Lee, K.J.D.; Poyser, C.; Donaldson, L.; Leroux, O.; Rogowski, A.; Petersen, H.L.; Boraston, A.; et al. Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J. 2010, 64, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, H.L.; Fangel, J.U.; McCleary, B.; Ruzanski, C.; Rydahl, M.G.; Ralet, M.-C.; Farkas, V.; von Schantz, L.; Marcus, S.E.; Andersen, M.C.F.; et al. Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. J. Biol. Chem. 2012, 287, 39429–39438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCartney, L.; Marcus, S.E.; Knox, J.P. Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J. Histochem. Cytochem. 2005, 53, 543–546. [Google Scholar] [CrossRef]
- Blake, A.W.; McCartney, L.; Flint, J.E.; Bolam, D.N.; Boraston, A.B.; Gilbert, H.J.; Knox, J.P. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 2006, 281, 29321–29329. [Google Scholar] [CrossRef] [Green Version]
- Neumetzler, L.; Humphrey, T.; Lumba, S.; Snyder, S.; Yeats, T.H.; Usadel, B.; Vasilevski, A.; Patel, J.; Rose, J.K.C.; Persson, S.; et al. The FRIABLE1 gene product affects cell adhesion in Arabidopsis. PLoS ONE 2012, 7, e42914. [Google Scholar] [CrossRef] [Green Version]
- Smallwood, M.; Beven, A.; Donovan, N.; Neill, S.J.; Peart, J.; Roberts, K.; Knox, J.P. Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant J. 1994, 5, 237–246. [Google Scholar] [CrossRef]
- Pennell, R.; Janniche, L.; Kjellbom, P.; Scofield, G.N.; Peart, J.M. Developmental regulation of a plasma membrane arabino-galactan protein epitope in oilseed rape. Plant Cell 1991, 3, 1317–1326. [Google Scholar] [CrossRef]
- Yates, E.A.; Valdor, J.F.; Haslam, S.M.; Morris, H.R.; Dell, A.; Mackie, W.; Knox, J.P. Characterization of carbohydrate struc-tural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 1996, 6, 131–139. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zietsman, A.J.J.; Moore, J.P.; Fangel, J.U.; Willats, W.G.T.; Vivier, M.A. Commercial Yeast Strains Expressing Polygalacturonase and Glucanase Unravel the Cell Walls of Chardonnay Grape Pomace. Biology 2022, 11, 664. https://doi.org/10.3390/biology11050664
Zietsman AJJ, Moore JP, Fangel JU, Willats WGT, Vivier MA. Commercial Yeast Strains Expressing Polygalacturonase and Glucanase Unravel the Cell Walls of Chardonnay Grape Pomace. Biology. 2022; 11(5):664. https://doi.org/10.3390/biology11050664
Chicago/Turabian StyleZietsman, Anscha J. J., John P. Moore, Jonatan U. Fangel, William G. T. Willats, and Melané A. Vivier. 2022. "Commercial Yeast Strains Expressing Polygalacturonase and Glucanase Unravel the Cell Walls of Chardonnay Grape Pomace" Biology 11, no. 5: 664. https://doi.org/10.3390/biology11050664
APA StyleZietsman, A. J. J., Moore, J. P., Fangel, J. U., Willats, W. G. T., & Vivier, M. A. (2022). Commercial Yeast Strains Expressing Polygalacturonase and Glucanase Unravel the Cell Walls of Chardonnay Grape Pomace. Biology, 11(5), 664. https://doi.org/10.3390/biology11050664