Macroinvertebrate Assemblages along the Longitudinal Gradient of an Urban Palmiet River in Durban, South Africa
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Analysis
2.3. Habitat Assessment
2.4. Macroinvertebrate Sampling
2.5. Data Analysis
3. Results
3.1. Water Quality
Variables | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | TWQR |
---|---|---|---|---|---|---|---|
pH | 7.95–8.32 | 7.29–8.21 | 7.86–8.32 | 8.43–8.91 | 8.78–9.11 | 7.57–8.20 | 6.5–9.0 (CCME 2012) |
Temperature | 26.64 ± 0.46 | 19.43 ± 0.81 | 25.04 ± 0.28 | 19.31 ± 1.08 | 18.65 ± 1.24 | 16.46 ± 1.75 | - |
DO | 89.30 ± 4.45 | 91.53 ± 3.80 | 93.23 ± 4.15 | 88.21 ± 7.06 | 89.02 ± 3.05 | 89.43 ± 5.23 | - |
TDS | 345.02 ± 36.70 | 213.99 ± 16.66 | 275.58 ± 26.49 | 336.32 ± 33.31 | 372.18 ± 22.43 | 119.21 ± 14.60 | - |
Salinity | 0.20 ± 0.01 | 0.21 ± 0.01 | 0.19 ± 0.01 | 0.24 ± 0.01 | 0.27 ± 0.04 | 0.18 ± 0.02 | - |
NO2 | <0.10 | <0.10 | <0.10 | <0.10 | 0.52 ± 0.00 | <0.10 | 0.06 (CCME 2012) |
NO3 | 2.73 ± 0.77 | 2.42 ± 0.37 | 2.68 ± 0.88 | 2.77 ± 0.68 | 3.10 ± 0.64 | 0.42 ± 0.17 | 13 (CCME 2012) |
NH3 | 0.22 ± 0.01 | <0.10 | <0.10 | 0.84 ± 0.02 | 11.5 ± 0.00 | <0.10 | 0.007 (DWAF 1996) |
N | 2.95 | 2.42 | 2.68 | 2.77 | 15.12 | 0.42 | - |
SO4 | 31.35 ± 7.36 | 30.04 ± 7.05 | 21.32 ± 0.68 | 29.50 ± 4.46 | 39.40 ± 15.60 | 10.51 ± 1.90 | - |
Phosphate | 0.11 ± 0.03 | 0.09 ± 0.02 | 0.17 ± 0.19 | 0.20 ± 0.07 | 0.23 ± 0.07 | 0.06 ± 0.02 | 0.1 (USEPA 1986) |
3.2. Macroinvertebrates Habitat
3.3. Macroinvertebrates
3.4. Average Score Per Taxon
4. Discussion
4.1. Water Quality
4.2. Habitat Quality
4.3. Spatial and Temporal Variation of Macroinvertebrates
4.4. Average Score Per Taxon
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Integrated Habitat Assessment System (IHAS) | ||||||
---|---|---|---|---|---|---|
River Name: | ||||||
Site Name: | Date: | |||||
SAMPLING HABITAT | 0 | 1 | 2 | 3 | 4 | 5 |
Stones in current (SIC) | ||||||
Total length (m) of broken water (riffles/rapids) | none | 0–1 | >1–2 | >2–3 | >3–5 | >5 |
Total length (m) of submerged stones in current (run) | none | 0–2 | >2–5 | >5–10 | >10 | |
Number of separate SIC areas kicked | 0 | 1 | 2–3 | 4–5 | 6+ | |
Average size (cm) of stones kicked (gravel < 2; bedrock > 20) | none | <2, >20 | 2–10 | 11–20 | 2–20 | |
Amount of stone surface clear (of algae, sediment, silt, etc.) (%) | n/a | 0–25 | 26–50 | 51–75 | >75 | |
Protocol: Time (mins) spent kicking SIC (gravel/bedrock = 0) | 0 | <1 | >1–2 | 2 | >2–3 | >3 |
SIC Scores: (A = SIC boxes total; B = adjustment to equal 20; C = final total) | actual | A | adj. | B | max. 20 | C |
Vegetation | ||||||
Length (m) of fringing vegetation sampled (banks) | none | 0–½ | >½–1 | >1–2 | 2 | >2 |
Amount (m2) of aquatic vegetation/algae sampled | none | 0–½ | >½–1 | >1 | ||
Fringing vegetation sampled in: | none | run | pool | mix | ||
Type of veg. (% leafy veg. vs. stems/shoots) (aq. veg. only = 49) | none | 0 | 1–25 | 26–50 | 51–75 | >75 |
Veg Scores: (D = Veg boxes total; E = adjustment to equal 15; F = final total) | actual | D | adj. | E | max. 15 | F |
Other habitats | ||||||
Stones Out Of Current (SOOC) sampled (m2) (protocol = 1 m2) | none | 0–½ | >½–1 | 1 | >1 | |
Sand sampled (mins) (protocol = 1 min) (under = present below stones) | none | under | 0–½ | >½–1 | 1 | >1 |
Mud sampled (mins) (protocol = ½ min) (under = present below stones) | none | under | 0–½ | ½ | >½ | |
Gravel sampled (mins) (protocol = ½ min) (if all, SIC stone size ≤ 2) * | none | 0–½ | ½ | >½ * | ||
Bedrock sampled (all = no SIC/sand/gravel) (if all, SIC stone size ≥ 20) * | none | some | all * | |||
Algal presence (1–2 m2 = algal bed; rocks = on rocks; isol. = isolated clumps) | >2 m2 | rocks | 1–2 m2 | <1 m2 | isol. | none |
Tray identification (using time as per protocol) | under | correct | over | |||
(* Note: SIC must still be filled) | ||||||
Other Habitat Scores: | actual | G | adj. | H | max. 20 | I |
(G = Other Habitat boxes total; H = adjustment to equal 20; I = final total) | ||||||
HABITAT TOTALS: | adj. | J | max. 55 | K | ||
(J = total adjustment [B + E + H]; K = Habitat Total [C + F + I]) | ||||||
Stream condition | ||||||
Physical | ||||||
River make-up (2/3 mix = 2/3 types) | pool | run | rapid | 2 mix | 3 mix | |
Average stream width (m) | >10 | >5–10 | <1 | 02-Jan | >2–5 | |
Average stream depth (m) | >2 | >1–2 | 1 | >½–1 | ½ | <½ |
Approximate stream velocity (slow ≤ ½ m/s; fast ≥ 1 m/s) | still | slow | fast | med. | mix | |
Water color (discol. = discolored but still fairly clear) | silty | opaque | discol. | clear | ||
Recent disturbances due to: (constr. = construction) | flood | fire | constr. | other | none | |
Bank/riparian vegetation is: (grass = incl. reeds; shrubs = incl. trees) | none | grass | shrubs | mix | ||
Surrounding impacts (erosn. = erosion/shear banks; farm = farmland) | erosn. | farm | trees | other | open | |
Anthropogenic litter | absent | similar | mix | |||
Anthropogenic litter effect | severe | none | ||||
Left bank cover (%) (rocks and vegetation) | 0–50 | 51–80 | 81–95 | >95 | ||
Right bank cover (%) (rocks and vegetation) | 0–50 | 51–80 | 81–95 | >95 | ||
Stream Condition Total: | max. 45 | L | ||||
Total IHAS Score: (K + L) | % |
References
- Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 2019, 29, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Spurgeon, J.; Pegg, M.; Parasiewicz, P.; Rogers, J. Diversity of river fishes influenced by habitat heterogeneity across hydrogeomorphic divisions. River Res. Appl. 2018, 34, 797–806. [Google Scholar] [CrossRef]
- Vorosmarty, C.; McIntyre, P.; Gessner, M.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.; Sullivan, C.; Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, A.J.; Rosi, E.J.; Bechtold, H.A.; Doody, T.R.; Kaushal, S.S.; Groffman, P.M. Recovery and resilience of urban stream metabolism following Superstorm Sandy and other floods. Ecosphere 2017, 8, e01776. [Google Scholar] [CrossRef]
- Konrad, C.P. Effects of Urban Development on Floods; Report No. 076-03; US Geological Survey: Tacoma, WA, USA. Available online: https://pubs.usgs.gov/fs/fs07603/ (accessed on 22 November 2020).
- Blauch, G.A.; Jefferson, A.J. If a tree falls in an urban stream, does it stick around? Mobility, characteristics, and geomorphic influence of large wood in urban streams in northeastern Ohio, USA. Geomorphology 2019, 337, 1–14. [Google Scholar] [CrossRef]
- Kim, D.G.; Yoon, T.J.; Baek, M.J.; Bae, Y.J. Impact of rainfall intensity on benthic macroinvertebrate communities in a mountain stream under the East Asian monsoon climate. J. Freshw. Ecol. 2018, 33, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.L.; Brown, L.E.; Klaar, M.J.; Milner, A.M. Stream ecosystem responses to an extreme rainfall event across multiple catchments in southeast A laska. Freshw. Biol. 2015, 60, 2523–2534. [Google Scholar] [CrossRef]
- Smith, A.J.; Baldigo, B.P.; Duffy, B.T.; George, S.D.; Dresser, B. Resilience of benthic macroinvertebrates to extreme floods in a Catskill Mountain river, New York, USA: Implications for water quality monitoring and assessment. Ecol. Indic. 2019, 104, 107–115. [Google Scholar] [CrossRef]
- Wilson, H.L.; Johnson, M.F.; Wood, P.J.; Thorne, C.R.; Eichhorn, M.P. Anthropogenic litter is a novel habitat for aquatic macroinvertebrates in urban rivers. Freshw. Biol. 2021, 66, 524–534. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Oglęcki, P.; Keller, A.; Kardel, I.; Mirosław-Świątek, D.; Piniewski, M. Effect of a Summer Flood on Benthic Macroinvertebrates in a Medium-Sized, Temperate, Lowland River. Water 2021, 13, 885. [Google Scholar] [CrossRef]
- Findlay, S.J.; Taylor, M.P.J.A. Why rehabilitate urban river systems? Area 2006, 38, 312–325. [Google Scholar] [CrossRef]
- Moodley, K.; Pillay, S.; Pather, K.; Ballabh, H. Heavy Metal Contamination of the Palmiet River: KwaZulu Natal South Africa. Int. J. Sci. Res. Environ. Sci. 2014, 2, 397–409. [Google Scholar] [CrossRef]
- Yaacovi, Y.; Gasith, A.; Becker, N. How much is an urban stream worth? Using land senses and economic assessment of an urban stream restoration. Int. J. Sustain. Dev. World Ecol. 2021, 1–10. [Google Scholar] [CrossRef]
- Stepniewska, M.; Sobczak, U. Assessing the synergies and trade-offs between ecosystem services provided by urban floodplains: The case of the Warta River Valley in Poznań, Poland. Land Use Policy 2017, 69, 238–246. [Google Scholar] [CrossRef]
- Schneider, I.E. Urban water recreation: Experiences, place meanings, and future issues. In The Water Environment of Cities; Baker, L., Ed.; Springer: Berlin, Germany, 2009; pp. 125–140. [Google Scholar]
- Vogel, C.; Scott, D.; Culwick, C.; Sutherland, C. Environmental problem-solving in South Africa: Harnessing creative imaginaries to address ‘wicked’ challenges and opportunities. S. Afr. Geogr. J. 2016, 98, 515–530. [Google Scholar] [CrossRef]
- Czarnecka, M.; Poznańska, M.; Kobak, J.; Wolnomiejski, N. The role of solid waste materials as habitats for macroinvertebrates in a lowland dam reservoir. Hydrobiologia 2009, 635, 125–135. [Google Scholar] [CrossRef]
- Chetty, S.; Pillay, L. Assessing the influence of human activities on river health: A case for two South African rivers with differing pollutant sources. Environ. Monit. Assess. 2019, 191, 168. [Google Scholar] [CrossRef]
- Department of Water Affairs and Forestry (DWAF). South African Water Quality Guideline, 2nd ed.; Resource Quality Information Services Directorate: Pretoria, South Africa, 1996; Volume 7.
- World Health Organisation (WHO). Guidelines for Drinking-Water Quality, 3rd ed.; WHO Press: Geneva, Switzerland, 2006; Volume 1. [Google Scholar]
- United States Environmental Protection Agency (US-EPA). Quality Criteria for Water; Report No. EPA 440/5-86-001; Office of Water Regulations and Standards 20460: Washington, DC, USA, 1986.
- McMillan, P. An Integrated Habitat Assessment System (IHAS v2), for the Rapid Biological Assessment of Rivers and Streams; Report No. ENV-P-I 98132; CSIR: Pretoria, South Africa, 1998. [Google Scholar]
- Khumalo, N.; Mdluli, S.; Lebepe, J. Short-term recovery of macroinvertebrate communities following a flash flood in an urban river: A case study of the Palmiet River in Durban, South Africa. Afr. J. Aquat. Sci. 2021, 370–376. [Google Scholar] [CrossRef]
- Dickens, C.W.; Graham, P. The South African Scoring System (SASS) version 5 rapid bioassessment method for rivers. Afr. J. Aquat. Sci. 2002, 27, 1–10. [Google Scholar] [CrossRef]
- Gerber, A.; Gabriel, M. Aquatic Invertebrates of South African Rivers: Illustrations; Institute for Water Quality Studies Department of Water Affairs and Forestry: Pretoria, South Africa, 2002.
- Gerber, A.; Gabriel, M. Aquatic Invertebrates of South African Rivers Field Guide; Institute for Water Quality Studies, Department of Water Affairs and Forestry: Pretoria, South Africa, 2002.
- Wickham, H.; Chang, W.; Henry, L. Package “ggplot2”. Computer Software. Available online: http://ggplot2 (accessed on 2 September 2021).
- Canadian Council of Ministers of the Environment (CCME). Canadian Water Quality Guidelines for the Protection of Aquatic Life. Introduction. Canadian Environmental Quality Guidelines, Canada. Available online: http://st-ts.ccme.ca/en/index.html2012 (accessed on 9 September 2019).
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Rodrigues, V.; Estrany, J.; Ranzini, M.; de Cicco, V.; Martín-Benito, J.M.T.; Hedo, J.; Lucas-Borja, M.E. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil). Sci. Total Environ. 2018, 622–623, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Li, P.; Lu, K.; Tantai, Z.; Zhang, J.; Ren, Z.; Wang, X.; Yu, K.; Shi, P.; Cheng, Y. Seasonal changes in water quality and its main influencing factors in the Dan River basin. Catena 2019, 173, 131–140. [Google Scholar] [CrossRef]
- Tian, S.; Wang, Z.; Shang, H. Study on the Self-purification of Juma River. Procedia Environ. Sci. 2011, 11, 1328–1333. [Google Scholar] [CrossRef] [Green Version]
- Šaulys, V.; Survilė, O.; Stankevičienė, R. An assessment of self-purification in streams. Water 2020, 12, 87. [Google Scholar] [CrossRef] [Green Version]
- Rügner, H.; Schwientek, M.; Milačič, R.; Zuliani, T.; Vidmar, J.; Paunović, M.; Laschou, S.; Kalogianni, E.; Skoulikidis, N.T.; Diamantini, E.; et al. Particle bound pollutants in rivers: Results from suspended sediment sampling in Globaqua River Basins. Sci. Total Environ. 2019, 647, 645–652. [Google Scholar] [CrossRef]
- Geng, N.; Wu, Y.; Zhang, M.; Tsang, D.C.W.; Rinklebe, J.; Xia, Y.; Lu, D.; Zhu, L.; Palansooriya, K.N.; Kim, K.-H.; et al. Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. Environ. Int. 2019, 131, 105015. [Google Scholar] [CrossRef]
- Glińska-Lewczuk, K.; Gołaś, I.; Koc, J.; Gotkowska-Płachta, A.; Harnisz, M.; Rochwerger, A. The impact of urban areas on the water quality gradient along a lowland river. Environ. Monit. Assess. 2016, 188, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mbuligwe, S.E.; Kaseva, M.E. Pollution and self-cleansing of an urban river in a developing country: A case study in Dar es Salaam, Tanzania. Environ. Manag. 2005, 36, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Booth, D.B.; Roy, A.H.; Smith, B.; Capps, K.A. Global perspectives on the urban stream syndrome. Freshw. Sci. 2016, 35, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Wolff, L.L.; Hahn, N.S.J. Fish habitat associations along a longitudinal gradient in a preserved coastal Atlantic stream, Brazil. Zoologia 2018, 34, e12975. [Google Scholar]
- Francis, R.A. Urban rivers: Novel ecosystems, new challenges. Wiley Interdiscip. Rev. Water 2014, 1, 19–29. [Google Scholar] [CrossRef]
- Jørgensen, D. Local government responses to urban river pollution in late medieval England. Water Hist. 2010, 2, 35–52. [Google Scholar] [CrossRef]
- Calderon, M.R.; Baldigo, B.P.; Smith, A.J.; Endreny, T.A. Effects of extreme floods on macroinvertebrate assemblages in tributaries to the Mohawk River, New York, USA. River Res. Appl. 2017, 33, 1060–1070. [Google Scholar] [CrossRef]
- Rasifudi, L.; Addo-Bediako, A.; Bal, K.; Swemmer, T. Distribution of benthic macroinvertebrates in the Selati River of the Olifants River system, South Africa. Afr. Entomol. 2018, 26, 398–406. [Google Scholar] [CrossRef]
- Medupin, C. Spatial and temporal variation of benthic macroinvertebrate communities along an urban river in Greater Manchester, UK. Environ. Monit. Assess. 2020, 192, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odume, O.N.; Mgaba, N. Statistical analysis of macroinvertebrate assemblage structure in relation to river-health assessment of an urban river, Eastern Cape, South Africa. Aquat. Ecosyst. Health Manag. 2016, 19, 420–430. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Z.; Duan, X.; Pan, B. Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia 2014, 729, 247–259. [Google Scholar] [CrossRef]
- Moreyra, A.K.; Padovesi-Fonseca, C. Environmental effects and urban impacts on aquatic macroinvertebrates in a stream of central Brazilian Cerrado. Sustain. Water Resour. Manag. 2015, 1, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Khudhair, N.; Yan, C.; Liu, M.; Yu, H. Effects of Habitat Types on Macroinvertebrates Assemblages Structure: Case Study of Sun Island Bund Wetland. BioMed Res. Int. 2019, 2019, 2650678. [Google Scholar] [CrossRef]
- Hilsenhoff, W.L. Diversity and classification of insects and collembola. In Ecology and Classification of North American Freshwater Invertebrates, 2nd ed.; Thorp, J.H., Covich, A.P., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 661–731. [Google Scholar]
- Suvarnaraksha, A.; Lek, S.; Lek-Ang, S.; Jutagate, T. Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand). Hydrobiologia 2012, 694, 153–169. [Google Scholar] [CrossRef]
- Patang, F.; Soegianto, A.; Hariyanto, S. Benthic macroinvertebrates diversity as bioindicator of water quality of some rivers in East Kalimantan, Indonesia. Int. J. Ecol. 2018, 2018, 5129421. [Google Scholar] [CrossRef]
- Tamiru, S.M. Macroinvertebrates as indicators of the water quality of River Shinta, Gondar, Ethiopia. Sustain. Water Resour. Manag. 2019, 5, 1227–1241. [Google Scholar] [CrossRef]
- Clarke, A.; Mac Nally, R.; Bond, N.; Lake, P.S. Macroinvertebrate diversity in headwater streams: A review. Freshw. Biol. 2008, 53, 1707–1721. [Google Scholar] [CrossRef]
- Mwedzi, T.; Siziba, N.; Odume, O.N.; Nyamazana, E.; Mabika, I. Responses of macroinvertebrate community metrics to urban pollution in semi-arid catchments around the city of Bulawayo, Zimbabwe. Water SA 2020, 46, 583–592. [Google Scholar]
- Farrell, K.; van Vuren, J.; Ferreira, M. Do aquatic macroinvertebrate communities respond to land-use effects in the Wilge River, Mpumalanga, South Africa? Afr. J. Aquat. Sci. 2015, 40, 165–173. [Google Scholar] [CrossRef]
IHAS Score | Description | Ecological Category |
---|---|---|
>75 | Excellent/Natural—Unmodified or almost natural conditions; natural biotic template will not be modified. Minimal risk or reduction in habitat availability. | A |
65–75 | Good—Largely natural with few modifications; only a small risk of modifying the natural biotic template. Risk to the availability of habitat moderate, availability of unique habitats at risk | B |
55–64 | Adequate/Fair—Modified state; moderate risk of modifying the biotic template occurs. Habitat unavailable to certain aquatic invertebrates. | C |
<55 | Poor—Largely modified unnatural state; large risk of modifying the biotic template. Natural required habitat generally unavailable to most aquatic invertebrates. | D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebepe, J.; Khumalo, N.; Mnguni, A.; Pillay, S.; Mdluli, S. Macroinvertebrate Assemblages along the Longitudinal Gradient of an Urban Palmiet River in Durban, South Africa. Biology 2022, 11, 705. https://doi.org/10.3390/biology11050705
Lebepe J, Khumalo N, Mnguni A, Pillay S, Mdluli S. Macroinvertebrate Assemblages along the Longitudinal Gradient of an Urban Palmiet River in Durban, South Africa. Biology. 2022; 11(5):705. https://doi.org/10.3390/biology11050705
Chicago/Turabian StyleLebepe, Jeffrey, Ntombifuthi Khumalo, Anele Mnguni, Sashin Pillay, and Sphosakhe Mdluli. 2022. "Macroinvertebrate Assemblages along the Longitudinal Gradient of an Urban Palmiet River in Durban, South Africa" Biology 11, no. 5: 705. https://doi.org/10.3390/biology11050705
APA StyleLebepe, J., Khumalo, N., Mnguni, A., Pillay, S., & Mdluli, S. (2022). Macroinvertebrate Assemblages along the Longitudinal Gradient of an Urban Palmiet River in Durban, South Africa. Biology, 11(5), 705. https://doi.org/10.3390/biology11050705