Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Factors Influencing the Formation of Harmful Algal Blooms (HABs)
2.1. Interaction between Climatic Changes and Other Stressors
2.2. Nutrient Flooding and Eutrophication
Factors | Stressor | HABs Species | Strain | Toxic Mechanism | Test Organism | Effects or Observations | Reference |
---|---|---|---|---|---|---|---|
Climate changes | Thermal stress | Microcystis aeruginosa | UV-006 | Microcystin | Mus musculus (Mouse) | Diminished toxicity at warmer temperatures | [94] |
Climate changes | Thermal stress | Microcystis aeruginosa | M228 | Microcystin | Mus musculus (Mouse) | Higher LD50 at a warmer temperature | [95] |
Climate changes | Thermal stress | Cochlodinium polykrikoides | CP1 | Reactive oxygen species (ROS) | Argopecten irradians (bay scallop) | Increased toxicity (i.e., inhibited swimming by larval scallops) at cold temperature | [96] |
Climate changes | Thermal stress | Cochlodinium polykrikoides | CP1 | Reactive oxygen species (ROS) | Mercenaria mercenaria (hard clam, northern quahog) | Increased lethality at cold temperature | [96] |
Climate changes | Thermal stress | Cochlodinium polykrikoides | CP1, field samples | Reactive oxygen species (ROS) | Menidia berrylina (inland silverside) | Increased lethality at cold temperature | [96] |
Climate changes | Thermal stress | Microcystis aeruginosa | CP1, CPSB-1 G | Microcystin | Cyprinodon variegatus (sheephead minnow) | Increased lethality at cold temperature | [96] |
Climate changes | Thermal stress | Microcystis aeruginosa | Purified toxins-MCLR | Microcystin | Danio rerio (zebrafish) | Increased toxicity at warmer temperatures | [97] |
Climate changes | Thermal stress | Heterosigma akashiwo | Purified toxins-MCLR | NA | Moina macrocopa (freshwater daphnids) | Increased toxicity at warmer temperatures | [98] |
Eutrophication | Acidification | Aureococcus anophagefferens | CCMP 2393 | Unidentified toxins | NA | Increased swimming speed and net-down movement of algal cells in high pCO2 environments | [99] |
Eutrophication | Acidification | Aureococcus anophagefferens | CCMP 1984 | Unidentified toxins | Argopecten irradians | Increased lethality in low pH treatments | [100] |
Eutrophication | Acidification | Cochlodinium polykrikoides | CCMP 1984 | Unidentified toxins | Crassostrea virginica (eastern oyster) | Increased lethality in low pH treatments | [100] |
Eutrophication | Acidification | Cochlodinium polykrikoides | CP1 | Reactive oxygen species (ROS) | Mercenaria mercenaria | Increased mortality by larvae in acidification treatments | [101] |
Eutrophication | Acidification | Microcystis aeruginosa | CP1 | Reactive oxygen species (ROS) | Argopecten irradians | Increased mortality by larvae in acidification treatments | [96] |
Upwelling | Hypoxia | Microcystis aeruginosa | FACHB-905 | Microcystin | Hyriopsis cumingii (sail mussel) | Reduced scope for growth among mussels within hypoxic treatments | [102] |
Upwelling | Hypoxia | Microcystis aeruginosa | FACHB-905 | Microcystin | Hyriopsis cumingii (sail mussel) | Diminished immune response among mussels within hypoxic treatments | [103] |
Upwelling | Hypoxia | Microcystis aeruginosa | FACHB-905 | Microcystin | Hyriopsis cumingii (sail mussel) | Increase cellular damage among mussels within hypoxic treatments | [104] |
Upwelling | Hypoxia | Stephanopyxis palmeriana | NA | Unidentified toxins | NA | Increased seasonal toxicity | [105] |
2.3. Events of Upwelling
2.4. Wind Pressure/Strength and Dust Storms
2.5. Discharge of Ships/Ballast Waters
2.6. Other Factors Involved
3. Impacts of Harmful Algal Blooms (HABs)
3.1. Shellfish Poisoning
3.2. Human Health Impacts and Toxin Production by HABs
3.3. Ecological and Economic Impacts of HABs
3.4. Other Negative Impacts of HABs
3.4.1. Effects on Aquaculture Food Production and Water Supply
3.4.2. Effects on Other Organisms
3.5. Grazing Defense by HABs
3.5.1. Defense of Phytoplankton against Grazers
3.5.2. Threshold Effects of HABs on Grazers
Biological Category | Types | Toxicity Mechanism | Diagnosis | Symptoms | Reference |
---|---|---|---|---|---|
Hapatotoxins | Microcystin MCs | Carcinogenesis, genotoxicity, inhibition of protein phosphatases, repeated low-level exposure | Exposure; drinking water, contaminated dialysis fluid, soft water recreational environments | Liver hemorrhage, diarrhea, abdominal pain, vomiting, shock, jaundice, dyspnea, weakness, multiple organ failure, respiratory distress | [173] |
Nodularin | Inhibition of protein phosphatases | Drinking water, recreation | Goose bumps, diarrhea, liver hemorrhage, vomiting, weakness | [123] | |
Cylindrospermopsin | Glutathione and protein synthesis as well as cytochrome P450. Repeated low level exposure; carcinogenesis, genotoxicity | Chronic exposure linked to cancer | Gastroenteritis abdominal pain, bloody diarrhea, vomiting, acute liver inflammation. Liver and kidney failure, asthma, hay fever | [123] | |
Neurotoxins | Anatoxin-a/Homoanatoxin-a | Nicotinic receptors: irreversible link to the nicotinic receiver S of acetylcholine in neuromuscular junction | Could be lethal | Muscle twitching, staggering, cramping, convulsions, paralysis, respiratory failure, gasping, death by suffocation | [116] |
Anatoxin-a (S) | Irreversible inhibitor acetylcholinesterase | Muscle twitching, salivation, paralysis, cramping | [174] | ||
Saxitoxins | Neurotoxic, target the peripheral nervous system. Selective high affinity block sodium conductance in voltage-gated sodium channels | Death can occur within 2–12 h after exposure. Good prognosis after 24 h, requiring good medical support system | Nausea, perioral burning ataxia, vomiting, drowsiness, muscular paralysis, paraesthesia, tachycardia, fever, respiratory failure, death | [175] | |
beta-Methylamino L-alanine (BMAA) | Experimentally acts predominantly on motor neuron-excitotoxic through glutamate receptors | Chronic exposure linked to chronic neurodegenerative conditions: Amyotrophic Lateral Sclerosis | Not fully elucidated. Implicated in chronic neurodegenerative diseases | [40] | |
Dermatoxins | Aplysiatoxins | Potent tumor promoters Potentiation of protein kinase C | Asthma-like symptoms, skin irritation | [176] | |
Lyngbyatoxin | Potent tumor promoters Potentiation of protein kinase C | Skin irritation, contraction in smooth muscles | [177] | ||
Biotoxins [Amnesic] | Domoic acid and isomers | Production of excessive gastric juice increased the acidity | Consumption of shellfish (possibly, fish) | Diarrhoea, nausea, vomiting, dizziness, headache, confusion, short-term memory deficits, motor weakness, disorientation. Severe cases result in cardiac arrhythmia, seizures, coma, respiratory distress, and possibly death | [178,179] |
Domoic acid | Gastroentritis and neurotoxic | Consumption of infected clams oysters, crabs, anchovies, and sardines | Gastroenteritis, nausea, diarrhoea, vomiting, abdominal cramps within 24 h. Neurological symptoms such as headache, dizziness, respiratory problems, seizures, short-term memory loss and coma usually appear within 48 h | [10,180] | |
[Azaspiracid] | Azaspiracid and its derivatives | NA | Consumption of shellfish | Diarrhoea, nausea, vomiting, severe abdominal cramps; effects on mice include severe damage to the intestine, spleen, and liver tissues in animal tests | [181,182,183] |
[Ciguatera] | Ciguatoxin | Gastrointestinal acidification | Consumption of coral reef fish | Nausea, diarrhoea, vomiting, numbness of mouth and extremities. Neurological symptoms may persist for several months | [184,185] |
Ciguatoxins/maitotoxin | NA | Consumption of small-algae eating fish | Paresthesias, pain in urination, pain in the teeth, temperature reversal, blurred vision, gastrointestinal effects; diarrhoea, vomiting, abdominal cramps. Cardio-vascular symptoms; arrhythmias and heart block | [10,180] | |
[Diarrhetic] | Dinophysistoxins | NA | Consumption of shellfish | Abdominal cramps, nausea, severe diarrhoea, vomiting, respiratory distress | [186] |
Okaidic acid | NA | Transferable through mussels, scallops, clam | Nausea, diarrhoea, abdominal cramps, vomiting, and chills within 30 min to 12 h of ingestion | [1] | |
[Neurotoxic] | Brevetoxins | Suppress the functioning of the nervous system slowly | Consumption of shellfish (and fish at least for marine mammals); inhalation of marine aerosols during active blooms | Temperature sensation, nausea, muscle weakness, reversals, and vertigo. Exposure to aerosols related to respiratory and eye irritation, particularly for asthmatics | [187,188] |
[Palytoxicosis] | Palytoxin, Ostreocin, Ovatotoxin | NA | Cosumption of seafood; inhalation of marine aerosols; direct contact with water | Nausea, abdominal cramps, vomiting, severe diarrhoea, lethargy, tingling of the lips, mouth, face and neck, lowered heart rate, skeletal muscle breakdown, muscle spasms and pain, lack of sensation, myalgia and weakness, hypersalivation, and difficulty breathing. Exposure to aerosols; eye and nose irritation, rhinorrhoea, general malaise, fever. Cutaneous irritations in beach swimmers | [189,190] |
[Paralytic] | Saxitoxin and derivatives | NA | Consumption of shellfish, crustaceans, fish | Diarrhoea, vomiting, nausea, numbness and tingling of the lips, mouth, face and neck. Severe cases can result in paralysis of the muscles of the chest and abdomen leading to death | [191] |
4. Management of Harmful Algal Blooms (HABs)
4.1. Current Trends
4.2. Management Issues of HABs
4.3. Mitigation of HABs
4.4. Prevention of HABs
4.5. Control of HABs
Control Measure | Target Algal Species | Action/Mechanism | Reference |
---|---|---|---|
Physical Control | |||
Hypolimnetic withdrawl and horizontal flushing | Dinoflagellates and Cyanobacterial species particualry (Microcystis and Dolichospermum) | Mechanical pumps, pneumatic or hydraulic mixtures are used to produce water mixture which improves water quality and avoids stratification. | [198,199,200] |
Flocculation | Cyanobacterial blooms | Through adhesion and repeated collision, large, rapidly sinking aggregates (or flocs) of algae and clay are formed and settle on the ocean floor. | [201,202] |
Sediment resuspension, burial, and removal | All bloom-forming species (dinoflagellates, cyanobacteria) | To resuspend sediments in an area thought to be a seedbed for algal cysts (thick-walled dormant cells of algae) with the objective of burying cysts in deeper oxygen-depleted sediments where they are unable to germinate and, to resuspend sediments that would act as a natural flocculant to remove algal cells from the water column. Burial can be achieved by the placement of offsite material over the treatment area. All offsite material would be clean and free of toxins and of similar grain size and composition to sediments of the treatment area. Burial is also achievable through hydraulic suction dredging, where dredged material is removed from one area and discharged over the treatment area. | [202] |
Aeration | All bloom-forming species (dinoflagellates, cyanobacteria) | Aerators operate by pumping air through a diffuser near the bottom of a water body, resulting in the formation of plumes that rise to the surface and create vertical circulation cells as they propagate outwards from the aerator. This mixing of the water column disrupts the behavior of algal cells to migrate vertically in addition to limiting the accessibility of nutrients by internal loading. | [203] |
Hydrologic manipulations | All bloom-forming species (dinoflagellates, cyanobacteria) | Manipulation of inflow/outflow of water in the system to disrupt stratification and control HABs. | [203] |
Mechanical mixing (circulation) | Cyanobacterial blooms | Mechanical mixers are usually surface-mounted to disrupt the algal growth to migrate vertically in addition to limiting the accessibility of nutrients. | [203] |
Reservoir drawdown/desiccation | Cyanobacterial blooms | Reservoirs and other controlled waterbodies can draw down the water level to the point where algal accumulations are exposed above the waterline. Subsequent desiccation and/or scraping to remove the layer of algal blooms attached to sediment or rock is required, in addition to the reinjection of water into the system. | [203] |
Surface skimming | Cyanobacterial blooms | Oil-spill skimmers have been used to remove cyanobacterial bloom surface scums. This technique is often coupled with the implementation of some coagulant or flocculent. | [203] |
Ultrasound | Cyanobacterial blooms | An ultrasound device is used to control HABs by emitting ultrasonic waves of a particular frequency such that the cellular structure of algal species is destroyed by rupturing internal gas vesicles used for buoyancy control. | [203] |
Chemical Control | |||
Algaecides/Algaestats applied prior to bloom to resist bloom formation | Cyanobacterial blooms | Algaecides are chemical compounds applied to a waterbody to kill cyanobacteria and destroy the bloom. Several examples are copper-based algaecides (copper sulphate, copper II alkanolamine, copper citrate, etc.), potassium permanganate, chlorine, lime. | [203] |
Biosurfactants | Species specific (depends on specific bacteria or yeast used to produce surfactants) | Surfactants break down algal cell membranes, making them non-functional, often resulting in cell lysis. | [202] |
Barley straw | Cyanobacterial blooms | Barley straw bales are deployed around the perimeter of the waterbody. Barley straw, when exposed to sunlight and in the presence of oxygen, produces a chemical that inhibits algae growth. Field studies suggest significant algistatic effects. Several causes for the observed effects have been suggested; however, the exact mechanism of this process is not well understood. | [203] |
Coagulation | Cyanobacterial blooms | Coagulants are used to facilitate the sedimentation of cyanobacteria cells to the anoxic bottom layer of the water column or below the photic zone. Unable to access light, oxygen, and other critical resources, the cells do not continue to multiply and eventually die. | [203] |
Biological Control | |||
Bacteria as Bio Controllers | |||
Bacillus cereus | Microcystis aeruginosa | Secretion of cyanobacteriolytic substances | [204] |
Bacillus sp. | Aphanizomenon flos-aquae | Cell-to-cell contact mechanism | [205] |
Bacillus sp. | Microcystis aeruginosa | Production of an extracellular product | [206] |
Bacillus sp. | Phaeocystis globosa | Secretion of algalytic substance | [207] |
Bdellovibrio-like sp. | Microcystis aeruginosa (lake) | Penetration | [208] |
Brachybacterium sp. | Alexandrium catenella | Produce secondary metabolites | [209] |
Cytophaga | Microcystis aeruginosa | Direct contact | [210] |
Flexibacter flexilis, F. sancti | Oscillatoria williamsii | Inhibition of the photosynthetic electron transport reactions, and glycolate dehydrogenase and nitrogenase activity | [211] |
Myxococcus fulvus BGO2 | Phormidium lucidum | Entrapment | [212] |
Myxococcus xanthus PCO2 | NA | Entrapment | [213] |
Pseudomonas fluorescens | Heterosigma akashiwo | Indirect attack by alga-lytic substances | [214] |
Pseudomonas putida | Microcystis aeruginosa | Inhibit the synthesis of the photosynthetic apparatus. | [215] |
Pedobacter sp. MaI11-5 | Microcystis aeruginosa | Mucous-like secretion from cyanobacteria for self-defense | [216] |
Raoultella sp. R11 | NA | Dissolved microbial metabolites and humic acid | [217] |
Rhodobacteraceae PD-2 | Prorocentrum donghaiense | Produce N-acyl-homoserine lactone signals | [218] |
Streptomyces neyagawaensis | Microcystis aeruginosa | Secretion of extracellular antialgal substances | [219] |
Saprospira albida | Microcystis aeruginosa | Parasitic lysis | [220] |
Streptomyces sp. | Microcystis aeruginosa | Indirect attack by producing algicidal compounds | [221] |
Agrobacterium vitis | Microcystis aeruginosa | Quorum sensing | [222] |
Rhizobium sp. | Microcystis aeruginosa | Lysis | [223] |
Methylobacterium zatmanii, Sandaracinobactor sibiricus, Halobacillus sp. | Microcystis aeruginosa | Bioflocculation | [224] |
Algicidal bacteria (Pseudoalteromonas sp.) | Chattonella sp., Gymnodinium sp., Heterosigma sp. | Indirect/Algicidal effect | [225] |
Algicidal bacteria (Bacillus sp. LP10) | Phuphania globosa | Indirect/Active compounds lytic | [226] |
Algicidal bacteria (Vibrio sp., Flavobacterium sp., Pseudoaltero sp., Acinetobacter sp.) | Gymnodinium mikimotoi | Direct/Growth inhibition | [227] |
Algicidal bacteria (Bacillus sp. AB-4) | Chattonella marina, Akashiwo sanguinea, Fibrocapsa japonica, Heterosigma akashiwo, Scrippsiella trochoidea | Indirect/Algicidal effect | [228] |
Algicidal bacteria (Vibrio sp. DHQ25) | Alexandrium tamarense | Indirect/Algicidal effect | [229] |
Algicidal bacteria (Pseudoalteromonas sp., Zobellia sp., Cellulophaga lytica, Planomicrobium sp., Bacillus cereus) | Gymnodinium catenatum | Indirect/Active compounds lytic | [230] |
Biosurfactant bacteria (Pseudomonas aeruginosa) | Alexandrium minutum, Karenia brevis, Pseudo-nitzschia sp., Gonyostomum semen, Microcystis aeruginosa | Indirect/Surfactant | [231] |
Algicidal bacteria (Shewanella sp. IRI-160) | Prorocentrum piscicida, Prorocentrum minimum, Gyrodinium uncatenum | Indirect/Algicidal effect | [232] |
Zooplankton as biocontroller | |||
Daphnia ambigua | Microcystis aeruginosa | Grazing | [233] |
Daphnia hyaline | Chlorella sp. | Grazing | [234] |
D. galeata, Cyclops sp. | Scenedesmus sp. | Grazing | [234] |
Poterioochromonas sp. | Microcystis aeruginosa | Grazing | [235] |
Strombidinopsis jeokjo | Cochlodinium polykrikoides | Direct/Grazing | [236] |
Favella taraikaensi, F. azotica | Alexandrium tamarense | Direct/Grazing | [237] |
Algae as bio controller | |||
Dinoflagellate heterotrophic (Stoeckeria algicida) | Heterosigma akashiwo | Direct/Grazing | [238] |
Ankistrodesmus falcatus | Chlorella vulgaris | Bio-flocculation | [239] |
Scenedesmus obliquus | Chlorella vulgaris | Bio-flocculation | [239] |
Tetraselmis suecica | Neochloris oleoabundans | Bio-flocculation | [239] |
Fungi as bio controller | |||
Fungus Trichaptum abietinum | Microcystis aeruginosa, M. flos-aquae, Oocystis borgei | Direct/Preying ability | [240] |
Fungus Trichaptum abietinum | Microcystis aeruginosa, M. flos-aquae, O. borgei | Direct/Preying ability | [240] |
Irpex lacteus, Trametes hirsute, Trametes versicolor, Bjerkandera adusta | Microcystis aeruginosa | Direct attack | [241] |
Fish as bio controller | |||
Silver carp | Microcystis aeruginosa | Grazing | [235] |
Bighead carp | Microcystis aeruginosa | Grazing | [235] |
Tilapia (Oreochromisni loticus) | Microcystis aeruginosa | Ingestion and digestion | [242] |
Virus as bio controller | |||
Virus HaV | Heterosigma akashiwo | Direct/Lysis infection | [243] |
HaNIV | Heterosigma akashiwo | Direct/Induction of cell death or apoptosis | [244] |
HcRNAV | Heterocapsa circularisquama | Direct/Induction of cell lysis | [245] |
4.5.1. Physical Control
4.5.2. Biological Control
4.5.3. Chemical Control
4.5.4. Molecular Approaches
4.6. Constraints of HAB Controlling Methods
4.6.1. Physical Methods
4.6.2. Chemical Methods
4.6.3. Biological Methods
5. Emerging Technologies and Limitations in Their Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horner, R.A.; Garrison, D.L.; Plumley, F.G. Harmful algal blooms and red tide problems on the U.S. west coast. Limnol. Oceanogr. 1997, 42, 1076–1088. [Google Scholar] [CrossRef]
- Sha, J.; Xiong, H.; Li, C.; Lu, Z.; Zhang, J.; Zhong, H.; Zhang, W.; Yan, B. Harmful algal blooms and their ecoenvironmental indication. Chemosphere 2021, 274, e129912. [Google Scholar] [CrossRef]
- Albert, S.; O’Neil, M.J.; Udy, J.W.; Ahern, S.K.; O’Sullivan, C.M.; Dennison, W.C. Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: Disparate sites common factors. Mar. Pollut. Bull. 2005, 51, 428–437. [Google Scholar] [CrossRef]
- Curren, E.; Yoshida, T.; Kuwahara, V.S.; Leong, S.C.Y. Rapid profiling of tropical marine cyanobacterial communities. Reg. Stud. Mar. Sci. 2019, 25, e100485. [Google Scholar] [CrossRef]
- Heisler, J.P.; Gilbert, J.; Burkholder, J.; Anderson, D.; Cochlan, W.; Dennison, W.; Dortch, Q.; Gobler, C.J.; Heil, C.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Cira, E.K.; Wetz, M.S. Spatialtemporal distribution of Aureoumbra lagunensis (“brown tide”) in Baffin Bay, Texas. Harmful Algae 2019, 89, e101669. [Google Scholar] [CrossRef]
- Buskey, E.J.; Montagna, P.A.; Amos, A.F.; Whitledge, T.E. Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom. Limnol. Oceanogr. 1997, 42, 1215–1222. [Google Scholar] [CrossRef]
- Caron, D.A.; Gobler, C.J.; Lonsdale, D.J.; Cerrato, R.M.; Schaffner, R.A.; Rose, J.M.; Buck, N.J.; Taylor, G.; Boissonneault, K.R.; Mehran, R. Microbial herbivory on the brown tide alga, Aureococcus anophagefferens: Results from natural ecosystems, mesocosms and laboratory experiments. Harmful Algae 2004, 3, 439–457. [Google Scholar] [CrossRef]
- Chattopadhyay, J.; Sarkar, R.R.; Pal, S. Mathematical modelling of harmful algal blooms supported by experimental findings. Ecol. Complex. 2004, 1, 225–235. [Google Scholar] [CrossRef]
- Sonak, S.; Patil, K.; Devi, P.; D’Souza, L. Causes, human health impacts and control of harmful algal blooms: A comprehensive review. Environ. Pollut. Protect. 2018, 3, 40–55. [Google Scholar] [CrossRef]
- Zingone, A.; Enevoldsen, H.O. The diversity of harmful algal blooms: Challenge for science and management. Ocean Coast. Manag. 2000, 43, 725–748. [Google Scholar] [CrossRef]
- Paerl, H.W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 2014, 4, 988–1012. [Google Scholar] [CrossRef] [Green Version]
- Peperzak, L. Climate change and harmful algal blooms in the North Sea. Acta Oecologica 2003, 24, 139–144. [Google Scholar] [CrossRef]
- Paerl, H.W. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 2016, 54, 4–20. [Google Scholar]
- Bakker, C.; Herman, P.M.J.; Vink, M. Changes in seasonal succession of phytoplankton induced by the stormsurge barrier in the Oosterschelde (SW Netherlands). J. Plankton Res. 1990, 12, 947–972. [Google Scholar] [CrossRef]
- Hofstraat, J.W.; van Zeijl, W.J.M.; de Vreeze, M.E.J.; Peeters, J.C.H.; Peperzak, L.; Colijn, F.; Rademaker, M. Phytoplankton monitoring by flow cytometry. J. Plankton Res. 1994, 16, 1197–1224. [Google Scholar] [CrossRef]
- Vrieling, E.G.; Koeman, R.P.T.; Nagasaki, K.; Ishida, Y.; Peperzak, L.; Gieskes, W.W.C.; Veenhuis, M. Chattonella and Fi-brocapsa (Raphidophyceae): First observations of, potentially harmful, red tide organisms in Dutch coastal waters. Neth. J. Sea Res. 1995, 33, 183–191. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Shriwastav, A.; Thomas, J.; Bose, P. A comprehensive mechanistic model for simulating algal growth dynamics in photobioreactors. Bioresour. Technol. 2017, 233, 7–14. [Google Scholar] [CrossRef]
- Durand, P.M.; Choudhury, R.; Rashidi, A.; Michod, R.E. Programmed death in a unicellular organism has species-specific fitness effects. Biol. Lett. 2014, 10, e20131088. [Google Scholar] [CrossRef]
- Tester, P.A.; Vandersea, M.W.; Buckel, C.A.; Kibler, S.R.; Holland, W.C.; Davenport, E.D.; Clark, R.D.; Edwards, K.F.; Taylor, J.C.; Vander Pluym, J.L.; et al. Gambierdiscus (Dinophyceae) species diversity in the Flower Garden Banks National Marine Sanctuary, northern Gulf of Mexico, USA. Harmful Algae 2013, 29, 1–9. [Google Scholar] [CrossRef]
- Nishimura, T.; Sato, S.; Wittaya, T.; Sakanari, H.; Uehara, K.; Shah, M.M.R.; Suda, S.; Yasumoto, T.; Taira, Y.; Yamaguchi, H.; et al. Genetic diversity and distribution of the ciguatera causing dinoflagellate Gambierdiscus spp. (Dinophyceae) in coastal areas of Japan. PLoS ONE 2013, 8, e60882. [Google Scholar] [CrossRef] [Green Version]
- Birchenough, S.N.; Reiss, H.; Degraer, S.; Mieszkowska, N.; Borja, Á.; Buhl Mortensen, L.; Braeckman, U.; Craeymeersch, J.; De Mesel, I.; Kerckhof, F. Climate change and marine benthos: A review of existing research and future directions in the North Atlantic. Wires Clim. Change 2015, 6, 203–223. [Google Scholar] [CrossRef] [Green Version]
- Trainer, V.L.; Moore, S.K.; Hallegraeff, G.; Kudela, R.M.; Clement, A.; Mardones, J.I.; Cochlan, W.P. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae 2020, 91, e101591. [Google Scholar] [CrossRef]
- Tester, P.A.; Litaker, R.W.; Berdalet, E. Climate change and harmful benthic microalgae. Harmful Algae 2020, 91, e101655. [Google Scholar] [CrossRef]
- Gobler, C.J.; Doherty, O.M.; Hattenrath-Lehmann, T.K.; Griffith, A.W.; Kang, Y.; Litaker, R.W. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc. Natl. Acad. Sci. USA 2017, 114, 4975–4980. [Google Scholar] [CrossRef] [Green Version]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Glibert, P.M.; Icarus Allen, J.; Artioli, Y.; Beusen, A.; Bouwman, L.; Harle, J.; Holmes, R.; Holt, J. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: Projections based on model analysis. Glob. Change Biol. 2014, 20, 3845–3858. [Google Scholar] [CrossRef]
- Glibert, P.M.; Anderson, D.A.; Gentien, P.; Grane’li, E.; Sellner, K.G. The global, complex phenomena of harmful algal blooms. Oceanography 2005, 18, 136–147. [Google Scholar] [CrossRef]
- Parsons, M.L.; Okolodkov, Y.B.; Aké-Castillo, J.A. Diversity and morphology of the species of Pseudonitzschia (Bacillariophyta) of the National Park Sistema Arrecifal Veracruzano, SW Gulf of Mexico. Acta Bot. Mex. 2012, 98, 51–72. [Google Scholar]
- Kramer, B.J.; Davis, T.W.; Meyer, K.A.; Rosen, B.H.; Goleski, J.A.; Dick, G.J.; Oh, G.; Gobler, C.J. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. PLoS ONE 2018, 13, e0196278. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.W.; Stumpf, R.; Bullerjahn, G.S.; Mckay, R.M.; Chaffin, J.D.; Bridgeman, T.B.; Winslow, C. Science meets policy: A framework for determining impairment designation criteria for large waterbodies affected by cyanobacterial harmful algal blooms. Harmful Algae 2019, 81, 59–64. [Google Scholar] [CrossRef]
- Stauffer, B.A.; Bowers, H.A.; Buckley, E.; Davis, T.W.; Johengen, T.H.; Kudela, R.; McManus, M.A.; Purcell, H.; Smith, G.J.; Woude, A.V.; et al. Considerations in harmful algal bloom research and monitoring: Perspectives from a consensusbuilding workshop and technology testing. Front. Mar. Sci. 2019, 6, e399. [Google Scholar] [CrossRef] [Green Version]
- Kudela, R.M.; Gobler, C.J. Harmful dinoflagellate blooms caused by Cochlodinium sp.: Global expansion and ecological strategies facilitating bloom formation. Harmful Algae 2012, 14, 71–86. [Google Scholar] [CrossRef]
- do Rosario Gomes, H.; Goes, J.I.; Matondkar, S.P.; Parab, S.G.; Al-Azri, A.R.; Thoppil, P.G. Blooms of Noctiluca miliaris in the Arabian Sea—An in situ and satellite study. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 751–765. [Google Scholar] [CrossRef]
- Sakamoto, S.; Lim, W.; Lu, D.; Dai, X.; Orlova, T.; Iwataki, M. Harmful algal blooms and associated fisheries damage in East Asia: Current status and trends in China, Japan, Korea and Russia. Harmful Algae 2021, 102, e101787. [Google Scholar] [CrossRef]
- Capuzzo, E.; Stephens, D.; Silva, T.; Barry, J.; Forster, R.M. Decrease in water clarity of the southern and central North Sea during the 20th century. Glob. Change Biol. 2015, 21, e2206. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.; Flynn, K.J. Promotion of harmful algal blooms by zooplankton predatory activity. Biol. Lett. 2006, 2, e194. [Google Scholar] [CrossRef]
- Mu, D.; Ruan, R.; Addy, M.; Mack, S.; Chen, P.; Zhou, Y. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production. Bioresour. Technol. 2017, 230, 33–42. [Google Scholar] [CrossRef]
- Azevedo, S.M.F.O.; Carmichael, W.W.; Jochimsen, E.M.; Rinehart, K.L.; Lau, S.; Shaw, G.R.; Eaglesham, G.K. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 2002, 182, 441–446. [Google Scholar] [CrossRef]
- Nasri, H.; El, H.S.; Bouaïcha, N. First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol. Environ. Saf. 2008, 71, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Zohdi, E.; Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 2019, 16, 1789–1806. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change costressor in marine and freshwater ecosystems. Harmful Algae 2020, 91, e101590. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Karlson, B.; Wulff, A.; Kudela, R.; Trick, C.; Asnaghi, V.; Trainer, V.L. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 2020, 91, e101632. [Google Scholar] [CrossRef]
- Gobler, C.J. Climate change and harmful algal blooms: Insights and perspective. Harmful Algae 2020, 91, e101731. [Google Scholar] [CrossRef] [PubMed]
- Ralston, D.K.; Moore, S.K. Modeling harmful algal blooms in a changing climate. Harmful Algae 2020, 91, e101729. [Google Scholar] [CrossRef]
- Hennon, G.M.M.; Dyhrman, S.T. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. Harmful Algae 2020, 91, e101587. [Google Scholar] [CrossRef]
- Moss, B.; Kosten, S.; Meerhoff, M.; Battarbee, R.W.; Jeppesen, E.; Mazzeo, N.; Havens, K.; Lacerot, G.; Liu, Z.; De Meester, L.; et al. Allied attack: Climate change and eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Elliott, J.A. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob. Change Biol. 2010, 16, 864–876. [Google Scholar] [CrossRef]
- Zhu, M.; Paerl, H.W.; Zhu, G.; Wu, T.; Li, W.; Shi, K.; Zhao, L.; Zhang, Y.; Qin, B.; Caruso, A.M. The role of tropical cyclones in stimulating Cyanobacteria (Microcystis spp.) blooms in hypertrophic Lake Taihu, China. Harmful Algae 2014, 39, 310–321. [Google Scholar] [CrossRef]
- Polat, S.; Akiz, A.; Olgunoglu, M.P. Daily variation of coastal phytoplankton assemblages in summer condition of the North Eastern Mediterranean (Bay of Iskenderun). Pak. J. Bot. 2005, 37, 715–724. [Google Scholar]
- Sadeghi Mazidi, S.; Ahmadi, M.R.; Taherizadeh, M.R. The seasonal changes in phytoplankton population and environmental factors in winter and spring in Bandar Abbas coastal waters. Fish. Aquat. J. 2011, 5, 13–21. [Google Scholar]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; Van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001; p. 881. [Google Scholar]
- Kamiyama, T.; Nagai, S.; Suzuki, T.; Miyamura, K. Effect of temperature on production of okadaic acid, dinophysistoxin-1, and pectenotoxin-2 by Dinophysis acuminata in culture experiments. Aquat. Microb. Ecol. 2010, 60, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Hamasaki, K. Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Western Japan, as a reflection of changing environmental conditions. J. Plankton Res. 2001, 23, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Etheridge, S.M.; Roesler, C.S. Effects of temperature, irradiance, and salinity on photosynthesis, growth rates, total toxicity, and toxin composition for Alexandrium fundyense isolates from the Gulf of Maine and Bay of Fundy. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 2491–2500. [Google Scholar] [CrossRef]
- Guerrini, F.; Ciminiello, P.; Dell’Aversano, C.; Tartaglione, L.; Fattorusso, E.; Boni, L.; Pistocchi, R. Influence of temperature, salinity and nutrient limitation on yessotoxin production and release by the dinoflagellate Protoceratium reticulatum in batchcultures. Harmful Algae 2007, 6, 707–717. [Google Scholar] [CrossRef]
- Röder, K.; Hantzsche, F.M.; Gebühr, C.; Miene, C.; Helbig, T.; Krock, B.; Hoppenrath, M.; Luckas, B.; Gerdts, G. Effects of salinity, temperature and nutrients on growth, cellular characteristics and yessotoxin production of Protoceratium reticulatum. Harmful Algae 2012, 15, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Fussel, H.M. An updated assessment of the risks from climate change based on research published since the IPCC Fourth Assessment Report. Clim. Change 2009, 97, 469–482. [Google Scholar] [CrossRef]
- Cao, L.; Caldeira, K. Atmospheric CO2 stabilization and ocean acidification. Geophys. Res. Lett. 2008, 35, e19609. [Google Scholar] [CrossRef]
- Qui, B.; Gao, K. Effects of CO2 enrichment on the bloomforming cyanobacterium Microcystis aeruginosa (Cyanophyceae): Physiological responses and relationships with the availability of dissolved inorganic carbon. J. Phycol. 2002, 38, 721–729. [Google Scholar]
- Tatters, A.O.; Flewelling, L.J.; Fu, F.; Granholm, A.A.; Hutchins, D.A. High CO2 promotes the production of paralytic shellfish poisoning toxins by Alexandrium catenella from Southern California waters. Harmful Algae 2013, 30, 37–43. [Google Scholar] [CrossRef]
- Kremp, A.; Godhe, A.; Egardt, J.; Dupont, S.; Suikkanen, S.; Casabianca, S.; Penna, A. Intraspecific variability in the response of bloomforming marine microalgae to changed climate conditions: Phenotypic variability and climate conditions. Ecol. Evol. 2012, 2, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Hattenrath-Lehmann, T.K.; Smith, J.L.; Wallace, R.B.; Merlo, L.R.; Koch, F.; Mittelsdorf, H.; Gobler, C.J. The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense. Limnol. Oceanogr. 2015, 60, 198–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerny, J.; Barcelos e Ramos, J.; Riebesell, U. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloomforming cyanobacterium Nodularia spumigena. Biogeosciences 2009, 6, 1865–1875. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Hutchins, D.A.; Feng, Y.; Seubert, E.L.; Caron, D.A.; Fu, F.X. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudonitzschia multiseries. Limnol. Oceanogr. 2011, 56, 829–840. [Google Scholar] [CrossRef] [Green Version]
- Tatters, A.O.; Fu, F.X.; Hutchins, D.A. High CO2 and silicate limitation synergistically increase the toxicity of Pseudonitzschia fraudulenta. PLoS ONE 2012, 7, e32116. [Google Scholar] [CrossRef] [Green Version]
- Van de Waal, D.B.; Verspagen, J.M.; Finke, J.F.; Vournazou, V.; Immers, A.K.; Kardinaal, W.E.A.; Tonk, L.; Becker, S.; Van Donk, E.; Visser, P.M.; et al. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J. 2011, 5, 1438–1450. [Google Scholar] [CrossRef] [Green Version]
- Sandrini, G.; Matthijs, H.C.P.; Verspagen, J.M.H.; Muyzer, G.; Huisman, J. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J. 2014, 8, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Kong, F.; Shi, X.; Yang, Z.; Zhang, M.; Yu, Y. Effects of elevated CO2 on dynamics of microcystin-producing and non-microcystin-producing strains during Microcystis blooms. J. Environ. Sci. 2015, 27, 251–258. [Google Scholar] [CrossRef]
- Shapiro, J.; Wright, D.I. Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and pH. Verh. IVTLAP 1990, 24, 38–54. [Google Scholar] [CrossRef]
- Whitton, B.A.; Potts, M. Introduction to the Cyanobacteria. In The Ecology of Cyanobacteria; Whitton, B.A., Potts, M., Eds.; Kluwer Academic Publishers: Dortrecht, NL, USA, 2000; pp. 1–11. [Google Scholar]
- Barcelos e Ramos, J.; Biswas, H.; Schulz, K.G.; LaRoche, J.; Riebesell, U. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Glob. Biogeochem. Cycl. 2007, 21, GB2028. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.-X.; Mulholland, M.R.; Garcia, N.S.; Beck, A.; Bernhardt, P.W.; Warner, M.E.; Sanudo-Wilhelmy, S.A.; Hutchins, D.A. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 2008, 53, 2472–2484. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, D.A.; Fu, F.-X.; Zhang, Y.; Warner, M.E.; Feng, Y.; Fortune, K.; Bernhardt, P.W.; Mulholland, M.R. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 2007, 52, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Riebesell, U.; Schulz, K.G.; Bellerby, R.G.; Botros, M.; Fritsche, P.; Meyerhofer, M.; Neill, C.; Nondal, G.; Oschlies, A.; Wohlers, J.; et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 2007, 450, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Kranz, S.A.; Sultemayer, D.; Richter, K.U.; Rost, B. Carbon acquisition by Trichodesmium: The effect of pCO2 and diurnal changes. Limnol. Oceanogr. 2009, 54, 548–559. [Google Scholar] [CrossRef]
- Moisander, P.H.; McClinton, E.; Paerl, H.W. Salinity effects on growth, photosynthetic parameters, and nitrogenise activity in estuarine planktonic cyanobacteria. Microb. Ecol. 2002, 43, 432–442. [Google Scholar] [CrossRef]
- Bordalo, A.A.; Vieira, M.E.C. Spatial variability of phytoplankton, bacteria and viruses in the mesotidal salt wedge Douro Estuary (Portugal). Estuar. Coast Shelf. Sci. 2005, 63, 143–154. [Google Scholar] [CrossRef]
- Orr, P.T.; Jones, G.J.; Douglas, G.B. Response of cultured Microcystis aeruginosa from the Swan River, Australia, to elevated salt concentration and consequences for bloom and toxin management in estuaries. Mar. Freshw. Res. 2004, 55, 277–283. [Google Scholar] [CrossRef]
- Tonk, L.; Bosch, K.; Visser, P.M.; Huisman, J. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 2007, 46, 117–123. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.X.; Tatters, A.O.; Hutchins, D.A. Global change and the future of harmful algal blooms in the ocean. Mar. Ecol. Prog. Ser. 2012, 470, 207–233. [Google Scholar] [CrossRef] [Green Version]
- Wells, M.L.; Trainer, V.L.; Smayda, T.J.; Karlson, B.S.; Trick, C.G.; Kudela, R.M.; Ishikawa, A.; Bernard, S.; Wulff, A.; Anderson, D.M.; et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae 2015, 49, 68–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Qu, P.; Fu, F.; Tennenbaum, N.; Tatters, A.O.; Hutchins, D.A. Understanding the blob bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudonitzschia in California coastal waters. Harmful Algae 2017, 67, 36–43. [Google Scholar] [CrossRef]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition and consequences. Estuaries 2002, 4B, 704–726. [Google Scholar] [CrossRef]
- Olli, K.; Kangro, K.; Kabel, M. Akinete production of Anabaena lemmermannii and A. cylindrica (Cyanophyceae) in natural populations of N- and P-limited coastal mesocosms. J. Phycol. 2005, 41, 1094–1098. [Google Scholar] [CrossRef]
- Figueredo, C.C.; Pinto-Coelho, R.M.; Lopes, A.M.M.B.; Lima, P.H.; Gücker, B.; Giani, A. From intermittent to persistent cyanobacterial blooms: Identifying the main drivers in an urban tropical reservoir. J. Limnol. 2016, 75, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Qin, B.; Paerl, H.W.; Brookes, J.D.; Hall, N.S.; Shi, K.; Long, S. The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Lake Taihu, China. Limnol. Oceanogr. 2016, 61, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Heller, U.; Struss, P.; Guerrin, F.; Roque, W. A qualitative modeling approach to algal bloom prediction. In Proceedings of the IJCAI-95 Workshop on Artificial Intelligence and the Environment, Montreal, QC, Canada, 20–25 August 1995; pp. 21–26. [Google Scholar]
- Bates, S.S.; de Freitas, A.S.W.; Milley, J.E.; Pocklington, R.; Quilliam, M.A.; Smith, J.G.; Worms, J. Controls on domoic acid production by the diatom Nitzschia pungens f. multiseries in culture: Nutrients and irradiance. Can. J. Fish. Aquat. Sci. 1991, 48, 1136–1144. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in Lake Phytoplankton. Science 1983, 221, 669–671. [Google Scholar] [CrossRef] [Green Version]
- Preece, E.P.; Hardy, F.J.; Moore, B.C.; Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 2017, 61, 31–45. [Google Scholar] [CrossRef] [Green Version]
- van der Westhuizen, A.J.; Eloff, J.N. Effect of temperature and light on the toxicity and growth of the bluegreen alga Microcystis aeruginosa (UV-006). Planta 1985, 163, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.F.; Oishi, S. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl. Environ. Microbiol. 1985, 49, 1342–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, A.W.; Gobler, C.J. Temperature Controls the toxicity of the icthyotoxic dinoflagellate, Cochlodinium polykrikoides. Mar. Ecol. Prog. Ser. 2016, 545, 63–76. [Google Scholar] [CrossRef]
- Kim, J.; Seo, J.-K.; Yoon, H.; Kim, P.-J.; Choi, K. Combined effects of the cyanobacterial toxin microcystin-LR and environmental factors on lifehistory traits of indigenous cladoceran Moina macrocopa: Combined toxicity of MC-LR and water environmental factors. Environ. Toxicol. Chem. 2014, 33, 2560–2565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ji, W.; Zhang, H.; Zhang, W.; Xie, P. Studies on the toxic effects of microcystin-LR on the zebrafish (Danio rerio) under differenttemperatures. J. Appl. Toxicol. 2011, 31, 561–567. [Google Scholar] [CrossRef]
- Kim, H.; Spivack, A.J.; Menden-Deuer, S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae 2013, 26, 1–11. [Google Scholar] [CrossRef]
- Talmage, S.C.; Gobler, C.J. Effects of CO2 and the harmful alga Aureococcus anophagefferens on growth and survival of oyster and scallop larvae. Mar. Ecol. Prog. Ser. 2012, 464, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Griffith, A.W.; Gobler, C.J. Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors. Sci. Rep. 2017, 7, e11394. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Wu, F.; Yuan, M.; Li, Q.; Gu, Y.; Wang, Y.; Liu, Q. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia. Chemosphere 2015, 139, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Wu, F.; Yuan, M.; Liu, Q.; Wang, Y. Combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the physiological responses of triangle sail mussel Hyriopsis cumingii. J. Hazard. Mater. 2016, 306, 24–33. [Google Scholar] [CrossRef]
- Wu, F.; Kong, H.; Shang, Y.; Zhou, Z.; Gul, Y.; Liu, Q.; Hu, M. Histopathological alterations in triangle sail mussel (Hyriopsis cumingii) exposed to toxic cyanobacteria (Microcystis aeruginosa) under hypoxia. Aquaculture 2017, 467, 182–189. [Google Scholar] [CrossRef]
- Ramana, T.V.; Reddy, M.P.M. Upwelling and sinking in the Arabian sea along Dakshina Kannada coast. Environ. Ecol. 2006, 24, 379–384. [Google Scholar]
- Malaei Tavana, H.; Behpoor, S.; Changizi, M.; Karimi, H. Investigate the reinforcing factors in forming and occurrence of harmful algal bloom. In Proceedings of the National Conference on Human, Environment and Sustainable Development, Hamedan, Iran; 2008. [Google Scholar]
- Taghavi, L.; Abbaspour, M. The determinative factors for modeling and management of red tide in the Persian Gulf. In Proceedings of the First International Conference of Environmental and Geopolitical Persian Gulf, Qeshm Island, Iran; 2012. [Google Scholar]
- Garcia-Hernandez, J.; Garcia-Rica, L.; Jara-Marini, E.E.; Barraza-Guaradado, R.; Weaver, A.H. Concentrations of heavy metal in sediments and organism during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico. Mar. Pollut. Bull. 2005, 50, 733–739. [Google Scholar] [CrossRef] [PubMed]
- News Report number PII: S2225-326X (01) 00229-6. Red tides and dust storms. Mar. Pollut. Bull. 2001, 42, e796. [CrossRef]
- Gobler, C.J.; Donat, J.R.; Consolvo, J.A.; Sanudo-wilhemy, S.A. Physicochemical speciation of iron during coastal algal blooms. Mar. Chem. 2002, 77, 71–89. [Google Scholar] [CrossRef]
- Anderson, M.D. Red tides. Sci. Am. J. 1994, 271, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Ospar Commission. Assessment of the Impacts of Shipping on the Marine Environment; Ospar Commission: London, UK, 2009; ISBN 978-1-906840-80-8. [Google Scholar]
- Anil, A.C.; Venkat, K.; Sawant, S.S.; Dileepkumar, M.; Dhargalkar, V.K.; Ramaiah, N.; Harkantra, S.N.; Ansari, Z.A. Marine bioinvasion: Concern for ecology and shipping. Curr. Sci. 2002, 83, 214–218. [Google Scholar]
- Untawale, A.G.; Agadi, V.V.; Dhargalkar, V.K. Mahasagar: Bulletin National Institute of Oceanography; National Institute of Oceanography: Goa, India, 1980; Volume 23, pp. 179–181. [Google Scholar]
- Waldichuk, M. Marine biotoxins and human activity. Mar. Pollut. Bull. 1990, 21, 215–216. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Boyer, G.L. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae 2016, 54, 194–212. [Google Scholar] [CrossRef]
- Sournia, A.; Chretiennotdinet, M.J.; Ricard, M. Marine phytoplankton: How many species in the world ocean? J. Plankton Res. 1991, 13, 1093–1099. [Google Scholar] [CrossRef]
- Hallegraef, G.M.; Anderson, D.M.; Cembella, C.D. Manual on Harmful Marine Microalgae; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2003; p. 770. [Google Scholar]
- Shumway, S.E. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquat. Soc. 1990, 21, 65–104. [Google Scholar] [CrossRef]
- Silbergeld, E.K.; Grattan, L.; Oidach, D.; Morris, J.G. Pfiesteria: Harmful algal blooms as Indicator of Human: Ecosystem interactions. Environ. Res. Sec. A 2000, 82, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ianora, A.; Bentley, M.G.; Caldwell, G.S.; Casotti, R.; Cembella, A.D.; EngströmÖst, J.; Halsband, C.; Sonnenschein, E.; Legrand, C.; Llewellyn, C.A.; et al. The relevance of marine chemical ecology to plankton and ecosystem function: An emerging field. Mar. Drugs 2011, 9, 1625–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibelings, B.W.; Backer, L.C.; Kardinaal, W.E.; Chorus, I. Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 2015, 49, 63–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, J.; Loreal, H.; Toyofuku, H.; Hess, P.; Karunasagar, I.; Ababouch, L. Assessment and management of biotoxin risks in bivalve molluscs. FAO Fisher. Aquacult. Tech. Paper. 2011, 551, 1–337. [Google Scholar]
- Turner, J.T.; Granéli, E. “Top-down” predation control on marine harmful algae”. In Ecology of Harmful Algae; Granéli, E., Turner, J.T., Eds.; Springer: Berlin, Germany, 2006; pp. 355–366. [Google Scholar]
- Turner, J.T. Zooplankton community grazing impact on a bloom of Alexandrium fundyense in the Gulf of Maine. Harmful Algae 2010, 9, 578–589. [Google Scholar] [CrossRef]
- Davis, T.W.; Gobler, C.J. Grazing by mesozooplankton and microzooplankton on toxic and non-toxic strains of Microcystis in the Transquaking River, a tributary of Chesapeake Bay. J. Plankton Res. 2011, 33, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Weissbach, A.; Rudstrom, M.; Olofsson, M.; Bechemin, C.; Icely, J.; Newton, A.; Tillmann, U.; Legrand, C. Phytoplankton allelochemical interactions change microbial food web dynamics. Limnol. Oceanogr. 2011, 56, 899–909. [Google Scholar] [CrossRef]
- Hoagland, P.; Anderson, D.M.; Kaoru, Y.; White, A.W. The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs. Estuaries 2002, 25, 677–695. [Google Scholar] [CrossRef]
- Anderson, D.; Hoagland, P.; Kaoru, Y.; White, A.W. Estimated Annual Economic Impacts from Harmful Algal Blooms (HABs) in the United States. In Woods Hole Oceanographic Institution Technical Report: WHOI-2000–2011; Woods Hole Oceanogr Inst.: Woods Hole, MA, USA, 2000. [Google Scholar]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of U.S. Freshwaters: Analysis of potential economic damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanseverino, I.; Conduto, D.; Pozzoli, L.; Dobricic, S.; Lettieri, T. Algal Bloom and its Economic Impact. In EUR 27905 EN; European Union: Luxembourg, 2016. [Google Scholar]
- Pretty, J.N.; Mason, C.F.; Nedwell, D.B.; Hine, R.E.; Leaf, S.; Dils, R. Environmental costs of freshwater eutrophication in England and Wales. Environ. Sci. Technol. 2003, 37, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.M.; Andersen, P.; Bricelj, V.M.; Cullen, J.J.; Rensel, J.E. Monitoring and management strategies for harmful algal blooms in coastal waters, APEC #201-MR-01.1. In Asia Pacific Economic Program, Singapore, and Intergovernmental Oceanographic Commission Technical Series; Intergovernmental Oceanographic Commission: Paris, France, 2001; 268p. [Google Scholar]
- Ahlvik, L.; Hyytiäinen, K. Value of adaptation in water protection—Economic impacts of uncertain climate change in the Baltic Sea. Ecol. Econ. 2015, 116, 231–240. [Google Scholar] [CrossRef]
- Steffensen, D.A. Economic cost of cyanobacterial blooms. Adv. Exp. Med. Biol. 2008, 619, 855–865. [Google Scholar] [PubMed]
- Bernard, S.; Kudela, R.; Velo-Suárez, L. Developing global capabilities for the observation and prediction of harmful algal blooms. In Oceans and Society: Blue Planet; Djavidnia, S., Cheung, V., Ott, M., Seeyave, S., Eds.; Cambridge Scholars Publishing: Cambridge, UK, 2014; pp. 46–52. [Google Scholar]
- Macauley, M.K. The value of information: Measuring the contribution of space-derived earth science data to resource management. Space Policy 2006, 22, 274–282. [Google Scholar] [CrossRef]
- Landsberg, J.H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 2002, 10, 113–390. [Google Scholar] [CrossRef]
- FAO. State of world aquaculture, 2006. In FAO Fisheries Technical Report Paper No. 500; Inland Water and Aquaculture Service, Fishery Resources Division, FAO Fisheries Department: Rome, Italy, 2006. [Google Scholar]
- Berdalet, E.; Fleming, L.E.; Gowen, R.; Davidson, K.; Hess, P.; Backer, L.C.; Enevoldsen, H. Marine harmful algal blooms, human health and wellbeing: Challenges and opportunities in the 21st century. J. Mar. Biol. Assoc. UK 2016, 96, 61–91. [Google Scholar] [CrossRef] [Green Version]
- Larkin, S.; Adams, C. Harmful algal blooms and coastal business: Economic consequences in Florida. Soc. Nat. Resour. 2007, 20, 849–859. [Google Scholar] [CrossRef]
- Morgan, K.; Larkin, S.L.; Adams, C.M. Red tides and participation in marine-based activities: Estimating the response of Southwest Florida residents. Harmful Algae 2010, 9, 333–341. [Google Scholar] [CrossRef]
- Dolah, M.; Roelke, D.; Greene, R.M. Health and Ecological Impacts of Harmful Algal Blooms: Risk Assessment Needs. Hum. Ecol. Risk Assess. An Int. J. 2001, 7, 1329–1345. [Google Scholar] [CrossRef]
- Kazmi, S.S.U.H.; Xu, G.; Xuexi, T.; Xu, H. Insights into identifying the effect of harmful algae on ecological quality status using periphytic ciliates in marine ecosystems. Ecol. Ind. 2020, 117, e106581. [Google Scholar] [CrossRef]
- Harmful Algal Research and Response. A National Environmental Science Strategy 2005–2015; Ramsdell, J.S.; Anderson, D.M.; Glibert, P.M. (Eds.) Ecological Society of America: Washington, DC, USA, 2005; p. 96. [Google Scholar]
- Fleming, L.E.; Easom, J.; Baden, D.; Rowan, A.; Levin, B. Emerging harmful algal blooms and human health: Pfiesteria and related organisms. Toxicol. Pathol. 1999, 27, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Smayda, T.J.; Villareal, T.A. The 1985 ‘brown-tide’and the open phytoplankton niche in Narragansett Bay during summer. In Novel Phytoplankton Blooms; Springer: Berlin/Heidelberg, Germany, 1989; pp. 159–187. [Google Scholar]
- Buskey, E.J.; Hyatt, C.J. Effects of the Texas “brown tide” alga on planktonic grazers. Mar. Ecol. Prog. Ser. 1995, 126, 285–292. [Google Scholar] [CrossRef]
- Heinbokel, J.F. Studies of the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 1978, 47, 177–189. [Google Scholar] [CrossRef]
- Jonsson, P.R. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 1986, 33, 265–277. [Google Scholar] [CrossRef]
- Buskey, E.J.; Coulter, C.J.; Brown, S.L. Feeding, growth and bioluminescence of the heterotrophic dinoflagellate Protoperidinium huberi. Mar. Biol. 1994, 121, 373–380. [Google Scholar] [CrossRef]
- Gifford, D.J. The protozoanmetazoan trophic link in pelagic ecosystems. J. Protozool. 1991, 38, 81–86. [Google Scholar] [CrossRef]
- Cyr, H.; Pace, M.L. Grazing by zooplankton and its relationship to community structure. Can. J. Fish. Aquat. Sci. 1992, 49, 1455–1465. [Google Scholar] [CrossRef]
- McManus, G.B.; Ederington-Cantrell, M.C. Phytoplankton pigments and growth rates, and microzooplankton grazing in a large temperate estuary. Mar. Ecol. Prog. Ser. 1992, 87, 77–85. [Google Scholar] [CrossRef]
- Montagnes, D.J.S.; Lessard, E.J. Population dynamics of the marine planktonic ciliate Strombidinopsis multiaris: Its potential to control phytoplankton blooms. Aquat. Microb. Ecol. 1999, 20, 167–181. [Google Scholar] [CrossRef]
- Strom, S.L.; Morello, T.A. Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J. Plankton Res. 1998, 20, 571–584. [Google Scholar] [CrossRef]
- Kamiyama, T. Growth and grazing responses of tintinnid ciliates feeding on the toxic dinoflagellate Heterocapsa circularisquama. Mar. Biol. 1997, 128, 509–515. [Google Scholar] [CrossRef]
- Jeong, H.J.; Shim, J.H.; Lee, C.W.; Kim, J.S.; Koh, S.M. Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp. on red-tide and toxic dinoflagellates. J. Euk. Microbiol. 1999, 46, 69–76. [Google Scholar] [CrossRef]
- Needler, A.B. Paralytic shellfish poisoning and Gonyaulax tamarensis. J. Fish. Res. Bd. Can. 1949, 7, 490–504. [Google Scholar] [CrossRef]
- Buskey, E.J. How does eutrophication affect the role of grazers in harmful algal bloom dynamics? Harmful Algae 2008, 8, 152–157. [Google Scholar] [CrossRef]
- Roman, M.; Gauzens, A.L.; Rhinehart, W.K.; White, J. Effects of low oxygen water on Chesapeake Bay zooplankton. Limnol. Oceanogr. 1993, 38, 1603–1614. [Google Scholar] [CrossRef]
- Marcus, N.M.; Richmond, C.; Sedlacek, C.; Miller, G.A.; Oppert, C. Impact of hypoxia on the survival, egg production and population dynamics of Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol. 2004, 301, 111–128. [Google Scholar] [CrossRef]
- Fenchel, T.; Kristensen, L.D.; Rasmussen, L. Water column anoxia: Vertical zonation of planktonic protozoa. Mar. Ecol. Prog. Ser. 1990, 62, 1–10. [Google Scholar] [CrossRef]
- Buskey, E.J.; Liu, H.; Collumb, C.; Bersano, J.G.F. The decline and recovery of a persistent Texas Brown Tide algal bloom in the Laguna Madre (TX, USA). Estuaries 2001, 24, 337–346. [Google Scholar] [CrossRef]
- Liu, H.; Buskey, E.J. Hypersalinity enhances the production of extracellular polymeric substance (EPS) in the Texas brown tide alga, Aureoumbra lagunensis (Pelagophyceae). J. Phycol. 2000, 36, 71–77. [Google Scholar] [CrossRef]
- Buskey, E.J.; Stockwell, D.A. Effects of a persistent “brown tide” on zooplankton populations in the Laguna Madre of South Texas, toxic phytoplankton blooms in the sea. In Toxic Phytoplankton Blooms in the Sea; Smayda, T.J., Shimizu, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 659–666. [Google Scholar]
- Gliwicz, Z.M. Why do cladocerans fail to control algal blooms? Hydrobiologia 1990, 200, 83–97. [Google Scholar] [CrossRef]
- Sarnelle, O. Herbivore effects on phytoplankton succession in a eutrophic lake. Ecol. Monogr. 1993, 63, 129–149. [Google Scholar] [CrossRef]
- McCauley, E.; Briand, F. Zooplankton grazing and phytoplankton species richness: Field tests of the predation hypothesis 1. Limnol. Oceano. 1979, 24, 243–252. [Google Scholar] [CrossRef]
- Glibert, P.M. Interactions of top-down and bottom-up control in planktonic nitrogen cycling. Hydrobiologia 1998, 363, 1–12. [Google Scholar] [CrossRef]
- Johansson, N.; Graneli, E. Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in relation to different N:P supply ratios. Mar. Ecol. Prog. Ser. 1999, 239, 243–258. [Google Scholar]
- Wood, R. Acute animal and human poisonings from cyanotoxin exposure—A review of the literature. Environ. Int. 2016, 91, 276–282. [Google Scholar] [CrossRef]
- Banack, S.A.; Caller, T.; Henegan, P.; Haney, J.; Murby, A.; Metcalf, J.S.; Powell, J.; Cox, P.A.; Stommel, E. Detection of Cyanotoxins, Beta-N-methylamino-L-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis. Toxins 2015, 7, 322–336. [Google Scholar] [CrossRef] [Green Version]
- Koreiviene, J.; Anne, O.; Kasperoviciene, J.; Burskyte, V. Cyanotoxin management and human health risk mitigation in recreational waters. Environ. Monit. Assess. 2014, 186, 4443–4459. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, D.; Fang, D. Nodularins in poisoning. Clin. Chim. Acta. 2013, 425, 18–29. [Google Scholar] [CrossRef]
- Yuan, M.; Carmichael, W.W.; Hilborn, E.D. Microcystin analysis in human sera and liver from human fatalities in Caruaru, Brazil 1996. Toxicon 2006, 48, 627–640. [Google Scholar] [CrossRef]
- Scholin, C.A.; Gulland, F.; Doucette, G.J.; Benson, S.; Busman, M.; Chavez, F.P.; Cordaro, J.; DeLong, R.; De Vogelaere, A.; Harvey, J.; et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 2000, 403, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Fehling, J.; Davidson, K.; Bolch, C.J.; Bates, S.S. Growth and domoic acid production by Pseudonitzschia seriata (Bacillariophyceae) under phosphate and silicate limitation. J. Phycol. 2004, 40, 674–683. [Google Scholar] [CrossRef]
- Weiss, K.R. Paying a price for paradise: Sea breeze carries arsenal of toxins ashore during red tide outbreaks. Los Angeles Times, 1 August 2006. [Google Scholar]
- Klontz, K.C.; Abraham, A.; Plakas, S.M.; Dickey, R.W. Musselassociated azaspiracid intoxication in the United States. Annal. Inter. Med. 2009, 150, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twiner, M.; Hess, P.; Doucette, G.J. Azaspiracids: Toxicology, pharmacology, and risk assessment. In Seafood and Freshwater Toxins. Pharmacology, Physiology and Detection, 3rd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 823–855. [Google Scholar]
- Hess, P.; McCarron, P.; Krock, B.; Kilcoyne, J.; Miles, C.O. Azaspiracids: Chemistry, biosynthesis, metabolism and detection. In Seafood and Freshwater Toxins. Pharmacology, Physiology and Detection, 3rd ed.; Botana, L., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 799–821. [Google Scholar]
- Litaker, R.W.; Vandersea, M.W.; Faust, M.A.; Kibler, S.R.; Nau, A.W.; Holland, W.C.; Chinain, M.; Holmes, M.J.; Tester, P.A. Global distribution of ciguatera causing dinoflagellates in the genus. Gamb. Toxicon 2010, 56, 711–730. [Google Scholar] [CrossRef] [PubMed]
- Tester, P.A.; Kibler, S.R.; Holland, W.C.; Usup, G.; Vandersea, M.W.; Leaw, C.P.; Lim, P.T.; Jacob Larsen, J.; Mohammad-Noor, N.; Faust, M.A.; et al. Sampling harmful benthic dinoflagellates: Comparison of artificial and natural substrate methods. Harmful Algae 2014, 39, 8–25. [Google Scholar] [CrossRef]
- Reguera, B.; Riobo, P.; Rodriguez, F.; Diaz, P.A.; Pizarro, G.; Paz, B.; Franco, J.M.; Blanco, J. Causative organisms, distributions and fate in shellfish. Mar. Drugs 2014, 12, 394–461. [Google Scholar] [CrossRef]
- Watkins, S.M.; Reich, A.; Fleming, L.E.; Hammond, R. Neurotoxic shellfish poisoning. Mar. Drugs 2008, 6, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Fleming, L.E.; Kirkpatrick, B.; Backer, L.C.; Walsh, C.J.; Nierenberg, K.; Clark, J.; Reich, A.; Hollenbeck, J.; Benson, J.; Cheng, Y.S.; et al. Review of Florida red tide and human health effects. Harmful Algae 2011, 20, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Vila, M.; Arin, L.; Battocchi, C.; Bravo, I.; Fraga, S.; Penna, A.; Reñé, A.; Riobó, P.; Rodriguez, F.; Sala, M.M.; et al. Management of Ostreopsis blooms in recreational waters along the Catalan coast (NW Mediterranean Sea): Cooperation between a research project and a monitoring program. Cryptogam. Algol. 2012, 33, 143–152. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Yasumoto, T.; Battocchi, C.; Giacobbe, M.; Amorim, A.; et al. Investigation of toxin profile of Mediterranean and Atlantic strains of Ostreopsis cf. siamensis (Dinophyceae) by liquid chromatography–high resolution mass spectrometry. Harmful Algae 2013, 23, 19–27. [Google Scholar] [CrossRef]
- Anderson, D.M.; Keafer, B.A.; Geyer, W.R.; Signell, R.P.; Loder, T.C. Toxic Alexandrium blooms in the western Gulf of Maine: The plume advection hypothesis revisited. Limnol. Oceanogr. 2005, 50, 328–345. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manag. 2009, 52, 342–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.M. Toxic algal blooms and red tides: A global perspective. In Red Tides: Biology, Environmental Science and Toxicology; Okaichi, T., Anderson, D.M., Nemoto, T., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 11–16. [Google Scholar]
- Smayda, T.J. Primary production and the global epidemic of phytoplankton blooms in the sea: A linkage? In Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tide and Other Unusual Blooms; Cosper, E.M., Carpenter, E.J., Bricelj, V.M., Eds.; Springer: New York, NY, USA, 1989; pp. 213–222. [Google Scholar]
- Hallegraeff, G.M.; Bolch, C.J. Transport of diatom and dinoflagellate resting spores via ship’s ballast water: Implications for plankton biogeography and aquaculture. J. Plankton Res. 1992, 1, 67–84. [Google Scholar]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Scott, J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Okaichi, T. Red tides in the Seto Inland Sea. In Sustainable Development in the Seto Inland Sea, Japan—From the Viewpoint of Fisheries; Okaichi, T., Yanagi, Y., Eds.; Terra Scientific Publishing Company: Tokyo, Japan, 1997; pp. 251–304. [Google Scholar]
- Schneider, M.L.; Wilhelms, S.C.; Yates, L.I. SELECT Version 1.0 Beta: A One-Dimensional Reservoir Selective Withdrawal Model Spreadsheet; Engineer Research and Development Center, U.S. Army Corps of Engineers: Washington, DC, USA, 2004. [Google Scholar]
- Cong, H.B.; Huang, T.L.; Chai, B.B. Research on applying a water-lifting aerator to inhibit the growth of algae in a sourcewater reservoir. Int. J. Environ. Pollut. 2011, 45, 166–175. [Google Scholar] [CrossRef]
- Gallardo-Rodríguez, J.J.; Astuya-Villalón, A.; Llanos-Rivera, A.; Avello-Fontalba, V.; Ulloa-Jofré, V. A critical review on control methods for harmful algal blooms. Rev. Aquac. 2019, 11, 661–684. [Google Scholar] [CrossRef]
- Pierce, R.H.; Henry, M.S.; Higham, C.J.; Blum, P.; Sengco, M.R.; Anderson, D.M. Removal of harmful algal cells (Karenia brevis) and toxin from seawater culture by clay flocculation. Harmful Algae 2004, 3, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Kidwell, M.D. Prevention, Control, and Mitigation of Harmful Algal Blooms Program; National Ocean Service National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2015; pp. 1–60. [Google Scholar]
- NEIWPCC (New England Interstate Water Pollution Control Commission). Harmful Algal Bloom Control Methods Synopses; NEIWPCC: Lowell, MA, USA, 2015; pp. 1–28. [Google Scholar]
- Nakamura, N.; Nakano, K.; Sugiura, N.; Matsumura, M. A novel control process of cyanobacterial bloom using cyanobacteriolytic bacteria immobilized in floating biodegradable plastic carriers. Environ. Technol. 2003, 24, 1569–1576. [Google Scholar] [CrossRef]
- Shunyu, S.; Liu, Y.D.; Shen, Y.W.; Li, G.B.; Li, D.H. Lysis of Aphanizomenon flosaquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol. Contr. 2006, 39, 345–351. [Google Scholar] [CrossRef]
- Pei, H.; Hu, W. Lytic characteristics and identification of two algalysing bacterial strains. J. Ocean Univ. China 2006, 5, 368–374. [Google Scholar] [CrossRef]
- Gerphagnon, M.; Macarthur, D.J.; Latour, D.; Gachon, C.M.; Van Ogtrop, F.; Gleason, F.H.; Sime-Ngando, T. Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism. Environ. Microbiol. 2015, 17, 2573–2587. [Google Scholar] [CrossRef]
- Caiola, M.G.; Pellegrini, S. Lysis of Microcystis aeruginosa (kütz.) by bdellovibrio-like bacteria1. J. Phycol. 1984, 20, 471–475. [Google Scholar] [CrossRef]
- Kim, Y.S.; Son, H.J.; Jeong, S.Y. Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species. J. Microbiol. 2015, 53, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Rashidan, K.K.; Bird, D.F. Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb. Ecol. 2001, 41, 97–105. [Google Scholar] [CrossRef]
- Sallal, A.K. Lysis of cyanobacteria with Flexibacter spp. isolated from domestic sewage. Microbios 1993, 77, 57–67. [Google Scholar]
- Burnham, J.C.; Collart, S.A.; Daft, M.J. Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments. Arch. Microbiol. 1984, 137, 220–225. [Google Scholar] [CrossRef]
- Burnham, J.C.; Collart, S.A.; Highison, B.W. Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch. Microbiol. 1981, 129, 285–294. [Google Scholar] [CrossRef]
- Kim, J.D.; Kim, B.; Lee, C.G. Algalytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol. Control. 2007, 41, 296–303. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Z.; Huang, Q.; Xiao, X.; Wang, X.; Zhang, F.; Hu, C. Isolation, identification and characterization of phyto-planktonlytic bacterium CH-22 against Microcystis aeruginosa. Limnologica 2011, 41, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Maeda, H.; Yoshikawa, T.; Zhou, G.Q. Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa. Water Sci. Eng. 2012, 5, 375–382. [Google Scholar]
- Su, J.F.; Shao, S.C.; Ma, F.; Lu, J.S.; Zhang, K. Bacteriological control by Raoultella sp. R11 on growth and toxins production of Microcystis aeruginosa. Chem. Eng. J. 2016, 293, 139–150. [Google Scholar] [CrossRef]
- Zheng, L.; Cui, Z.; Xu, L.; Sun, C.; Powell, R.J.; Hill, R.T. Draft genome sequence of Rhodobacteraceae strain PD-2, an algi-cidal bacterium with a quorum-sensing system, isolated from the marine microalga Prorocentrum donghaiense. Genome Announc. 2015, 3, e01549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.J.; Kim, B.H.; Kim, J.D.; Han, M.S. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol. Control. 2005, 33, 335–343. [Google Scholar] [CrossRef]
- Ashton, P.J.; Robarts, R.D. Apparent predation of Microcystis aeruginosa Kütz. Emend elenkin by a Saprospira-like bacterium in a hypertrophic lake (Hartbeespoort Dam, South Africa). J. Limnol. Soc. S. Afr. 1987, 13, 44–47. [Google Scholar]
- Luo, J.; Wang, Y.; Tang, S.; Liang, J.; Lin, W.; Luo, L. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS ONE 2013, 8, e76444. [Google Scholar] [CrossRef]
- Imai, I.; Kido, T.; Yoshinaga, I.; Ohgi, K.; Nagai, S. Isolation of Microcystis-killer bacterium Agrobacterium vitis from the biofilm on the surface of the water plant Egeria densa. Kalliopi A Pagou. 2010, 150, 150–152. [Google Scholar]
- Pal, M.; Pal, S.; Qureshi, A.; Sangolkar, L.N. Perspective of cyanobacterial harmful algal bloom (HAB) mitigation: Microcystis toxin degradation by bacterial consortia. Indian J. Exp. Biol. 2018, 56, 511–518. [Google Scholar]
- Danyang, Z.; Qian, Y.; Fuxing, Z.; Xueping, S.; Yongxiang, F.; Xiaoying, Z.; Hong, X. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms. Chemosphere 2019, 218, 138–146. [Google Scholar]
- Lovejoy, C.; Bowman, J.P.; Hallegraeff, G.M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, Gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 1998, 64, 2806–2813. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.; Guo, X.; Cai, G.; Zhang, H.; Li, Y.; Zheng, W.; Zheng, T. Novel algicidal evidence of a bacterium Bacillus sp. LP-10 killing Phaeocystis globosa, a harmful algal bloom causing species. Bio. Control 2014, 76, 79–86. [Google Scholar] [CrossRef]
- Yoshinaga, I.; Kawai, T.; Ishida, Y. Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref, Japan. Fish. Sci. 1997, 63, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Lee, D.S.; Jeong, S.Y.; Lee, W.J.; Lee, M.S. Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina. J. Microbiol. 2009, 47, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Zhou, Y.Y.; Bai, S.J.; Su, J.Q.; Tian, Y.; Zheng, T.L.; Yang, X. A novel marine bacterium algicidal to the toxic dino-flagellate Alexandrium tamarense. Lett. Appl. Microbiol. 2010, 51, 552–557. [Google Scholar] [CrossRef]
- Skerratt, J.H.; Bowman, J.P.; Hallegraeff, G.; James, S.; Nichols, P.D. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar. Ecol. Prog. Ser. 2002, 244, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, S.; Hultberg, M.; Figueroa, R.I.; Rengefors, K. On the control of HAB species using low biosurfactant concentrations. Harmful Algae 2009, 8, 857–863. [Google Scholar] [CrossRef]
- Hare, C.E.; Demir, E.; Coyne, K.J.; Craig Cary, S.; Kirchman, D.L.; Hutchins, D.A. A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae 2005, 4, 221–234. [Google Scholar] [CrossRef]
- Urrutia-Cordero, P.; Ekvall, M.K.; Hansson, L.A. Controlling harmful cyanobacteria: Taxaspecific responses of cyanobacteria to grazing by largebodied Daphnia in a biomanipulation scenario. PLoS ONE 2016, 11, e0153032. [Google Scholar] [CrossRef]
- Knisely, K.; Geller, W. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 1986, 69, 86–94. [Google Scholar] [CrossRef]
- Görgényi, J.; Boros, G.; Vitál, Z.; Mozsár, A.; Várbíró, G.; Vasas, G.; Borics, G. The role of filter-feeding Asian carps in algal dispersion. Hydrobiologia 2016, 764, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.J.; Kim, J.S.; Yoo, Y.D.; Kim, S.T.; Song, J.Y.; Kim, T.H.; Seong, K.A.; Kang, N.S.; Kim, M.S.; Kim, J.H.; et al. Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 2008, 7, 368–377. [Google Scholar] [CrossRef]
- Kamiyama, T.; Tsujino, M.; Matsuyama, Y.; Uchida, T. Growth and grazing rates of the tintinnid ciliate Favella taraikaensis on the toxic dinoflagellate Alexandrium tamarense. Mar. Biol. 2005, 147, 989–997. [Google Scholar] [CrossRef]
- Jeong, H.J.; Jae, S.K.; Jong, H.K.; Seong, T.K.; Kyeong, A.S.; Tae, H.K.; Jae, Y.S.; Soo, K.K. Feeding and grazing impact of the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo. Mar. Ecol. Prog. Ser. 2005, 295, 69–78. [Google Scholar] [CrossRef]
- Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H. Harvesting of microalgae by bio-flocculation. J. Appl. Phycol. 2011, 23, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Du, J.J.; Fang, H.; Zhao, G.Y.; Tian, X.J. Inhibition of freshwater algal species by co-culture with two fungi. Mat. Sci. Eng. C-Mater. 2013, 33, 2451–2454. [Google Scholar] [CrossRef] [PubMed]
- Han, G.M.; Feng, X.G.; Jia, Y.; Wang, C.Y.; He, X.B.; Zhou, Q.Y.; Tian, X.J. Isolation and evaluation of Terrestrial fungi with algicidal ability from Zijin Mountain, Nanjing, China. J. Microbiol. 2011, 49, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Salazar Torres, G.; Silva, L.H.; Rangel, L.M.; Attayde, J.L.; Huszar, V.L. Cyanobacteria are controlled by omnivorous filter-feeding fish (Nile tilapia) in a tropical eutrophic reservoir. Hydrobiologia 2016, 765, 115–129. [Google Scholar] [CrossRef]
- Nagasaki, K.; Yamaguchi, M. Isolation of a virus infectious to the harmful bloom causing microalga Heterosigma akashiwo (Raphidophyceae). Aquat. Microb. Ecol. 1997, 13, 135–140. [Google Scholar] [CrossRef]
- Lawrence, J.E.; Chan, A.M.; Suttle, C.A.; British, I. A novel virus (HaNIV) causes lysis of the toxic bloom-forming alga heterosigma akashiwo (raphidophyceae). J. Phycol. 2001, 37, 216–222. [Google Scholar] [CrossRef]
- Mizumoto, H.; Tomaru, Y.; Takao, Y.; Shirai, Y.; Nagasaki, K. Intraspecies host specificity of a single-stranded RNA virus infecting a marine photosynthetic protist is determined at the early steps of infection. J. Virol. 2007, 81, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Backer, L.C.; Manassarambaptiste, D.; Leprell, R.; Bolton, B. Cyanobacteria and algae blooms: Review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011. Toxins 2015, 7, 1048–1064. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Pan, G. Simultaneous removal of harmful algal blooms and microcystins using microorganism- and chitosan-modified local soil. Environ. Sci. Technol. 2015, 49, 6249–6625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamri, S.A.; Mohamed, Z.A. Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters. Saudi J. Biol. Sci. 2013, 20, 357–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Li, X.; Zhou, Y.; Zheng, W.; Yu, C.; Zheng, T. Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense. Sci. Total Environ. 2014, 482–483, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Matthijs, H.C.P.; Visser, P.M.; Reeze, B.; Meeuse, J.; Slot, P.C.; Wjin, G.; Talens, R.; Huisman, J. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res. 2012, 46, 1460–1472. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Culver, M.E.; Tester, P.A.; Tomlinson, M.; Kirkpatrick, G.J.; Pederson, B.A.; Truby, E.; Ransibrahmanakul, V.; Soracco, M. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2003, 2, 147–160. [Google Scholar] [CrossRef]
- Luerssen, R.M.; Thomas, A.C.; Hurst, J. Relationships between satellite-measured thermal features and Alexandrium-imposed toxicity in the Gulf of Maine. Deep. Sea Res. Part II 2005, 52, 2656–2673. [Google Scholar] [CrossRef]
- McManus, M.A.; Kudela, R.M.; Silver, M.W.; Steward, G.F.; Donaghay, P.L.; Sullivan, J.M. Cryptic blooms: Are thin layers the missing connection? Estuar. Coasts 2008, 31, 396–401. [Google Scholar] [CrossRef]
- Ryan, J.P.; Gower, J.F.R.; King, S.A.; Bissett, W.P.; Fischer, A.M.; Kudela, R.M.; Kolber, Z.; Mazzillo, F.; Rienecker, E.V.; Chavez, F.P. A coastal ocean extreme bloom incubator. Geophys. Res. Lett. 2008, 35, e12602. [Google Scholar] [CrossRef]
- Mouw, C.B.; Hardman-Mountford, N.J.; Alvain, S.; Bracher, A.; Brewin, R.J.W.; Bricaud, A.; Ciotti, A.M.; Devred, E.; Fujiwara, A.; Hirata, T.; et al. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the Global Ocean. Front. Mar. Sci. 2017, 4, e41. [Google Scholar] [CrossRef] [Green Version]
- Lombard, F.; Boss, E.; Waite, A.M.; Vogt, M.; Uitz, J.; Stemmann, L.; Sosik, H.M.; Schulz, J.; Romagnan, J.-B.; Picheral, M.; et al. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 2019, 6, 196. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.; Dixon, L.K.; Schofield, O.M.; Kirkpatrick, B.; Kirkpatrick, G.J. New sensors for ocean observing: The optical phytoplankton discriminator. In Coastal Ocean Observing Systems; Liu, Y., Kerkering, H., Weisberg, R.H., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 326–350. [Google Scholar]
- Scholin, C.; Massion, E.I.; Wright, D.K.; Cline, D.E.; Mellinger, E.; Brown, M. Aquatic Autosampler Device. U.S. Patent No. 6187530, 2001. [Google Scholar]
- Doucette, G.J.; Mikulski, C.M.; Jones, K.L.; King, K.L.; Greenfield, D.I.; Marin, R.; Jensen, S.; Roman, B.; Elliott, C.T.; Scholin, C.A. Remote, subsurface detection of the algal toxin domoic acid onboard the environmental sample processor: Assay development and field trials. Harmful Algae 2009, 8, 880–888. [Google Scholar] [CrossRef]
- Bowers, H.A.; Marin, R., III; Birch, J.M.; Scholin, C.A. Sandwich hybridization probes for the detection of Pseudonitzschia (Bacillariophyceae) species: An update to existing probes and a description of new probes. Harmful Algae 2017, 70, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Harred, L.B.; Campbell, L. Predicting harmful algal blooms: A case study with Dinophysis ovum in the Gulf of Mexico. J. Plankt. Res. 2014, 36, 1434–1445. [Google Scholar] [CrossRef]
- Benfield, M.C.; Grosjean, P.; Culverhouse, P.F.; Irigoien, X.; Sieracki, M.E.; Lopez-Urrutia, A.; Dam, H.; Hu, Q.; Davis, C.; Hanson, A.; et al. RAPID: Research on automated plankton identification. Oceanography 2007, 20, 172–187. [Google Scholar] [CrossRef]
- Anderson, D.M. Identification of harmful algal species using molecular probes: An emerging perspective. In Harmful Marine Algal Blooms Technique et Documentation; Lassus, P., Arzul, G., Erard, E., Gentien, P., Marcaillou, C., Eds.; Intercept Ltd.: Paris, France, 1995; pp. 3–13. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazmi, S.S.U.H.; Yapa, N.; Karunarathna, S.C.; Suwannarach, N. Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. Biology 2022, 11, 852. https://doi.org/10.3390/biology11060852
Kazmi SSUH, Yapa N, Karunarathna SC, Suwannarach N. Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. Biology. 2022; 11(6):852. https://doi.org/10.3390/biology11060852
Chicago/Turabian StyleKazmi, Syed Shabi Ul Hassan, Neelamanie Yapa, Samantha C. Karunarathna, and Nakarin Suwannarach. 2022. "Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems" Biology 11, no. 6: 852. https://doi.org/10.3390/biology11060852
APA StyleKazmi, S. S. U. H., Yapa, N., Karunarathna, S. C., & Suwannarach, N. (2022). Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. Biology, 11(6), 852. https://doi.org/10.3390/biology11060852