Heavy Metal Accumulation and Phytoremediation Potentiality of Some Selected Mangrove Species from the World’s Largest Mangrove Forest
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection, Preparation and Analysis
2.3. Quality Control and Accuracy
2.4. Ecological Risk Assessments of Heavy Metals
2.4.1. Enrichment Factor (EF)
2.4.2. Contamination Factor (CF)
2.4.3. Geo-Accumulation Index (Igeo)
2.5. Assessment of Phytoremediation Potentiality
2.6. Statistical Analysis
3. Results and Discussion
3.1. Metal Concentrations in Sediment
3.2. Ecological Risk Assessment in Sediment
3.2.1. Contamination Factor (CF)
3.2.2. Geo-Accumulation Index (Igeo)
3.2.3. Enrichment Factor (EF)
3.3. Concentration of Metals in Mangroves
3.4. Phytoremediation Potentiality of Mangroves
3.4.1. Bioconcentration Factor (BCF)
3.4.2. Translocation Factor (TF)
3.4.3. Relationship between Metal Concentrations in Sediment and Plants Tissue
3.4.4. Practical Implications of This Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S. Recycling sludge on cropland as fertilizer–Advantages and risks. Resour. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Bai, J.; Meng, Y.; Diao, X.; Pan, K.; Lin, G. Effects of land use on the heavy metal pollution in mangrove sediments: Study on a whole island scale in Hainan, China. Sci. Total Environ. 2022, 824, 153856. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Noman, M.A.; Narale, D.D.; Feng, W.; Pujari, L.; Sun, J. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environ. Pollut. 2020, 264, 114791. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.-W.; Kim, S.-G.; Choi, M.; Lee, I.-S.; Kim, S.-S.; Choi, H.-G. Monitoring of trace metals in coastal sediments around Korean Peninsula. Mar. Pollut. Bull. 2016, 102, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Ahmed, Z.; Seefat, S.M.; Alam, R.; Islam, A.R.M.T.; Choudhury, T.R.; Begum, B.A.; Idris, A.M. Assessment of heavy metal contamination in sediment at the newly established tannery industrial Estate in Bangladesh: A case study. Environ. Chem. Ecotoxicol. 2022, 4, 1–12. [Google Scholar] [CrossRef]
- Zhang, C.; Shan, B.; Tang, W.; Dong, L.; Zhang, W.; Pei, Y. Heavy metal concentrations and speciation in riverine sediments and the risks posed in three urban belts in the Haihe Basin. Ecotoxicol. Environ. Saf. 2017, 139, 263–271. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hossain, M.B.; Babu, S.O.F.; Rahman, M.; Ahmed, A.S.; Jolly, Y.; Choudhury, T.; Begum, B.; Kabir, J.; Akter, S. Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Mar. Pollut. Bull. 2019, 141, 137–146. [Google Scholar] [CrossRef]
- Signa, G.; Mazzola, A.; Di Leonardo, R.; Vizzini, S. Element-specific behaviour and sediment properties modulate transfer and bioaccumulation of trace elements in a highly-contaminated area (Augusta Bay, Central Mediterranean Sea). Chemosphere 2017, 187, 230–239. [Google Scholar] [CrossRef]
- Islam, M.S.; Hossain, M.B.; Matin, A.; Sarker, M.S.I. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere 2018, 202, 25–32. [Google Scholar] [CrossRef]
- Choudhury, T.R.; Acter, T.; Uddin, N.; Kamal, M.; Chowdhury, A.S.; Rahman, M.S. Heavy metals contamination of river water and sediments in the mangrove forest ecosystems in Bangladesh: A consequence of oil spill incident. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100484. [Google Scholar] [CrossRef]
- Chowdhury, R.; Favas, P.J.; Pratas, J.; Jonathan, M.; Ganesh, P.S.; Sarkar, S.K. Accumulation of trace metals by mangrove plants in Indian Sundarban Wetland: Prospects for phytoremediation. Int. J. Phytoremediat. 2015, 17, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Machado, W.; Moscatelli, M.; Rezende, L.; Lacerda, L. Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environ. Pollut. 2002, 120, 455–461. [Google Scholar] [CrossRef]
- Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [Google Scholar] [CrossRef]
- Lamb, J.B.; Van De Water, J.A.; Bourne, D.G.; Altier, C.; Hein, M.Y.; Fiorenza, E.A.; Abu, N.; Jompa, J.; Harvell, C.D. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 2017, 355, 731–733. [Google Scholar] [CrossRef]
- Islam, M.; Wahab, M. A review on the present status and management of mangrove wetland habitat resources in Bangladesh with emphasis on mangrove fisheries and aquaculture. In Aquatic Biodiversity II; Springer: Dordrecht, The Netherlands, 2005; pp. 165–190. [Google Scholar]
- MacFarlane, G.R.; Koller, C.E.; Blomberg, S.P. Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere 2007, 69, 1454–1464. [Google Scholar] [CrossRef]
- Nayak, G.N. Changing tropical estuarine sedimentary environments with time and metals contamination, West Coast of India. J. Indian Assoc. Sedimentol. 2021, 38, 63–78. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Varun, M.; Paul, M.S. Phytoremediation: Uptake and role of metal transporters in some members of Brassicaceae. In Phytoremediation; Springer: Cham, Switzerland, 2016; pp. 453–468. [Google Scholar]
- Salem, H.M.; Abdel-Salam, A.; Abdel-Salam, M.A.; Seleiman, M.F. Phytoremediation of Metal and Metalloids from Contaminated Soil. In Plants Under Metal and Metalloid Stress; Hasanuzzaman, M., Nahar, M., Fujita, K.M., Eds.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Garbisu, C.; Alkorta, I. Basic concepts on heavy metal soil bioremediation. Eur. J. Miner. Proc. Environ. Prot. 2003, 3, 58–66. [Google Scholar]
- Salem, M.H.; Fahad, S.; Khan, S.U.; Ahmar, S.; Khan, M.H.U.; Rehman, M.; Maqbool, Z.; Liu, L. Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. Ecotoxicol. Environ. Saf. 2020, 189, 109915. [Google Scholar] [CrossRef]
- Clemens, S.; Palmgren, M.G.; Krämer, U. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci. 2002, 7, 309–315. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Reshi, Z.A.; Shah, M.A.; Rashid, I.; Ara, R.; Andrabi, S.M. Phytoremediation potential of Phragmites australis in Hokersar wetland-a Ramsar site of Kashmir Himalaya. Int. J. Phytoremediat. 2014, 16, 1183–1191. [Google Scholar] [CrossRef]
- Adams, A.; Raman, A.; Hodgkins, D. How do the plants used in phytoremediation in constructed wetlands, a sustainable remediation strategy, perform in heavy-metal-contaminated mine sites? Water Environ. J. 2013, 27, 373–386. [Google Scholar] [CrossRef]
- Chowdhury, R.; Lyubun, Y.; Favas, P.J.; Sarkar, S.K. Phytoremediation potential of selected mangrove plants for trace metal contamination in Indian Sundarban wetland. In Phytoremediation; Springer: Cham, Schwitzerland, 2016; pp. 283–310. [Google Scholar]
- Rahman, M.T.; Rahman, M.S.; Quraishi, S.; Ahmad, J.; Choudhury, T.; Mottaleb, M. Distribution of heavy metals in water and sediments in Passur River, Sundarban Mangrove Forest, Bangladesh. J. Int. Environ. Appl. Sci. 2011, 6, 537. [Google Scholar]
- Ahmed, M.; Mehedi, M.; Haque, M.; Ghosh, R.K. Concentration of heavy metals in two upstream rivers sediment of the Sundarbans mangrove forest, Bangladesh. Asian J. Microbiol. Biotechnol. Environ. Sci. 2003, 5, 41–47. [Google Scholar]
- Kumar, A.; Ramanathan, A.; Prasad, M.; Datta, D.; Kumar, M.; Sappal, S.M. Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: A baseline study before Sundarban oil spill of December, 2014. Environ. Sci. Pollut. Res. 2016, 23, 8985–8999. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Hossain, M.B.; Rakib, M.R.J.; Jolly, Y.; Ullah, M.A.; Elliott, M. Ecological and human health risk evaluation using pollution indices: A case study of the largest mangrove ecosystem of Bangladesh. Reg. Stud. Mar. Sci. 2021, 47, 101913. [Google Scholar] [CrossRef]
- Hoque, A.F.; Datta, D.K. The mangroves of Bangladesh. Int. J. Ecol. Environ. Sci. 2005, 31, 245–253. [Google Scholar]
- Hussain, S. An introduction to the coasts and the Sundarbans. In Shores of Tears; Society for Environment and Human Development (SEHD): Dhaka, Bangladesh, 2013; pp. 1–19. [Google Scholar]
- Rahman, M.; Asaduzzaman, M. Ecology of sundarban, Bangladesh. J. Sci. Found. 2010, 8, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Chongling, Y.; Islam, K.S.; Haoliang, L. A brief review on pollution and ecotoxicologic effects on Sundarbans mangrove ecosystem in Bangladesh. Int. J. Environ. Eng. 2009, 1, 369–383. [Google Scholar] [CrossRef]
- Islam, A.; Jolly, Y. Chemistry Division, Atomic Energy Centre, 4 Kazi Nazrul Islam Avenue. J. Bangladesh Acad. Sci. 2007, 31, 163–171. [Google Scholar]
- Jolly, Y.N.; Islam, A.; Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus 2013, 2, 385. [Google Scholar] [CrossRef] [Green Version]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Ergin, M.; Saydam, C.; Baştürk, Ö.; Erdem, E.; Yörük, R. Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chem. Geol. 1991, 91, 269–285. [Google Scholar] [CrossRef]
- Birch, G.F.; Olmos, M.A. Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES J. Mar. Sci. 2008, 65, 1407–1413. [Google Scholar] [CrossRef]
- Soltani, N.; Bahrami, A.; Pech-Canul, M.; González, L. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 2015, 264, 899–935. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Mmolawa, K.B.; Likuku, A.S.; Gaboutloeloe, G.K. Assessment of heavy metal pollution in soils along major roadside areas in Botswana. Afr. J. Environ. Sci. Technol. 2011, 5, 186–196. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef]
- Chandra, R.; Yadav, S.; Yadav, S. Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol. Eng. 2017, 98, 134–145. [Google Scholar] [CrossRef]
- Phaenark, C.; Pokethitiyook, P.; Kruatrachue, M.; Ngernsansaruay, C. Cd and Zn accumulation in plants from the Padaeng zinc mine area. Int. J. Phytoremediat. 2009, 11, 479–495. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Mohamed, H.M. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere 2009, 76, 893–899. [Google Scholar] [CrossRef] [PubMed]
- NOAA. Screening Quick Reference Tables. Available online: https://repository.library.noaa.gov/view/noaa/9327/noaa_9327_DS1.pdf (accessed on 21 March 2022).
- Suresh, G.; Ramasamy, V.; Sundarrajan, M.; Paramasivam, K. Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala, India. Mar. Pollut. Bull. 2015, 91, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Kathiresan, K.; Saravanakumar, K.; Mullai, P. Bioaccumulation of trace elements by Avicennia marina. J. Coast. Life Med. 2014, 2, 888–894. [Google Scholar]
- Behera, B.; Mishra, R.; Patra, J.; Sarangi, K.; Dutta, S.; Thatoi, H. Impact of heavy metals on bacterial communities from mangrove soils of the Mahanadi Delta (India). Chem. Ecol. 2013, 29, 604–619. [Google Scholar] [CrossRef]
- Fernández-Cadena, J.C.; Andrade, S.; Silva-Coello, C.; De la Iglesia, R. Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Mar. Pollut. Bull. 2014, 82, 221–226. [Google Scholar] [CrossRef]
- Bodin, N.; N’Gom-Kâ, R.; Kâ, S.; Thiaw, O.; de Morais, L.T.; Le Loc’h, F.; Rozuel-Chartier, E.; Auger, D.; Chiffoleau, J.-F. Assessment of trace metal contamination in mangrove ecosystems from Senegal, West Africa. Chemosphere 2013, 90, 150–157. [Google Scholar] [CrossRef]
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Selim, S.; Jaakkola, S.; Mäkelä, P.S. Chemical composition and in vitro digestibility of whole-crop maize fertilized with synthetic fertilizer or digestate and harvested at two maturity stages in boreal growing conditions. Agric. Food Sci. 2017, 26, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.J.; Walker, P.L. Ecophysiology of metal uptake by tolerant plants. Heavy Met. Toler. Plants Evol. Asp. 1990, 2, 155–165. [Google Scholar]
- Alzahrani, D.A.; Selim, E.M.M.; El-Sherbiny, M.M. Ecological assessment of heavy metals in the grey mangrove (Avicennia marina) and associated sediments along the Red Sea coast of Saudi Arabia. Oceanologia 2018, 60, 513–526. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chen, F.A.; Hsu, M.J. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environ. Pollut. 2008, 155, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Fernandez, T.V. Incidence of heavy metals in the mangrove flora and sediments in Kerala, India. In Proceedings of the Asia-Pacific Conference on Science and Management of Coastal Environment, Hong Kong, 25–28 June 1996; Springer: Dordrecht, The Netherlands, 1997; pp. 77–87. [Google Scholar]
- Kumar, M.; Mohapatra, S.; Karim, A.A.; Dhal, N.K. Heavy metal fractions in rhizosphere sediment vis-à-vis accumulation in Phoenix paludosa (Roxb.) mangrove plants at Dhamra Estuary of India: Assessing phytoremediation potential. Chem. Ecol. 2021, 37, 1–14. [Google Scholar] [CrossRef]
- Kader, A.; Narayan Sinha, S. Heavy metal contamination in the sediment and plants of the Sundarbans, India. Chem. Ecol. 2018, 34, 506–518. [Google Scholar] [CrossRef]
Location | Cu | Mn | Fe | Zn | Sr | References |
---|---|---|---|---|---|---|
Mongla, Sundarbans | 86.82 ± 5.57 | 88.78 ± 8.40 | 26,930 ± 478.2 | 55.18 ± 5.6 | 173.08 ± 8.7 | Present study |
Karamjal, Sundarbans | 81.13 ± 12.85 | 103.97 ± 20.5 | 23,357 ± 516.9 | 55.11 ± 5.36 | 204.05 ± 19.1 | Present study |
Mongla, Sundarbans | 18.22 | 548 | 26,720 | 53.13 | - | [26] |
North-West coast mangrove sediment, South America | 139.46 | 359.06 | 13,431.1 | 331.31 | - | [52] |
Kerala mangrove ecosystem, southern part India | 76.73 | - | - | 127.6 | - | [49] |
Pichavaram mangrove forest, south eastern India | 46 | 25 | 1770 | 25 | - | [50] |
Mahanadi delta mangrove area, India | 17.9 | - | 37,810 | 98.3 | - | [51] |
Indian Sundarbans, West Bengal | 36.03 | 709.06 | 11,097 | 40.42 | - | [25] |
Mangrove ecosystems from Senegal, West Africa | 3.5 | 21 | - | 5.4 | - | [53] |
Average Shale Value (ASV) | 45 | 850 | 47,200 | 95 | - | [36] |
Threshold Effects Level (TEL) | 18.7 | 124 | [48] |
Concentration Factor (CF) | Enrichment Factor (EF) | Geo-Accumulation index (Igeo) | ||||
---|---|---|---|---|---|---|
Metals | Station 1 | Station 2 | Station 1 | Station 2 | Station 1 | Station 2 |
Cu | 1.93 | 1.8 | 3.38 | 3.64 | 0.363 | 0.27 |
Mn | 0.11 | 0.13 | 0.18 | 0.25 | −3.85 | −3.62 |
Fe | 0.57 | 0.49 | 1 | 1 | −1.39 | −1.6 |
Zn | 0.58 | 0.58 | 1.018 | 1.17 | −1.37 | −1.37 |
Sr | 0.68 | 0.58 | 1.19 | 1.17 | −1.41 | −1.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.B.; Masum, Z.; Rahman, M.S.; Yu, J.; Noman, M.A.; Jolly, Y.N.; Begum, B.A.; Paray, B.A.; Arai, T. Heavy Metal Accumulation and Phytoremediation Potentiality of Some Selected Mangrove Species from the World’s Largest Mangrove Forest. Biology 2022, 11, 1144. https://doi.org/10.3390/biology11081144
Hossain MB, Masum Z, Rahman MS, Yu J, Noman MA, Jolly YN, Begum BA, Paray BA, Arai T. Heavy Metal Accumulation and Phytoremediation Potentiality of Some Selected Mangrove Species from the World’s Largest Mangrove Forest. Biology. 2022; 11(8):1144. https://doi.org/10.3390/biology11081144
Chicago/Turabian StyleHossain, M. Belal, Zobaer Masum, M. Safiur Rahman, Jimmy Yu, Md. Abu Noman, Yeasmin N. Jolly, Bilkis A. Begum, Bilal Ahamad Paray, and Takaomi Arai. 2022. "Heavy Metal Accumulation and Phytoremediation Potentiality of Some Selected Mangrove Species from the World’s Largest Mangrove Forest" Biology 11, no. 8: 1144. https://doi.org/10.3390/biology11081144
APA StyleHossain, M. B., Masum, Z., Rahman, M. S., Yu, J., Noman, M. A., Jolly, Y. N., Begum, B. A., Paray, B. A., & Arai, T. (2022). Heavy Metal Accumulation and Phytoremediation Potentiality of Some Selected Mangrove Species from the World’s Largest Mangrove Forest. Biology, 11(8), 1144. https://doi.org/10.3390/biology11081144