Proposal of a New Parameter for Evaluating Muscle Mass in Footballers through Bioimpedance Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
- Serie A (the highest category of Italian professional football);
- Serie B (second highest category);
- Serie C (the lowest category of professional football);
- Serie D (national amateur championship).
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slimani, M.; Nikolaidis, P.T. Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: A systematic review. J. Sports Med. Phys. Fit. 2019, 59, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, D.; Zaccagni, L.; Babić, V.; Rakovac, M.; Mišigoj-Duraković, M.; Gualdi-Russo, E. Body composition and size in sprint athletes. J. Sports Med. Phys. Fit. 2017, 57, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, T.; Rossi, A.; Iaia, F.M.; Alberti, G.; Pasta, G.; Trecroci, A. Association of phase angle and appendicular upper and lower body lean soft tissue with physical performance in young elite soccer players: A pilot study. J. Sports Med. Phys. Fit. 2021, 62, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Kawamoto, K.; Dankel, S.; Bell, Z.W.; Spitz, R.W.; Wong, V.; Loenneke, J.P. Longitudinal associations between changes in body composition and changes in sprint performance in elite female sprinters. Eur. J. Sport Sci. 2020, 20, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.; Raymond-Pope, C.J. New Frontiers of Body Composition in Sport. Int. J. Sport. Med. 2021, 42, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernández-García, R.; Rodríguez, F.A. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: Systematic review and future perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar] [CrossRef]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Micheli, M.L.; Pagani, L.; Marella, M.; Gulisano, M.; Piccoli, A.; Angelini, F.; Burtscher, M.; Gatterer, H. Bioimpedance and impedance vector patterns as predictors of league level in male soccer players. Int. J. Sports Physiol. Perform. 2014, 9, 532–539. [Google Scholar] [CrossRef]
- Kalapotharakos, V.I.; Strimpakos, N.; Vithoulka, I.; Karvounidis, C. Physiological characteristics of elite professional soccer teams of different ranking. J. Sports Med. Phys. Fit. 2006, 46, 515–519. [Google Scholar]
- Nabuco, H.C.G.; Silva, A.M.; Sardinha, L.B.; Rodrigues, F.B.; Tomeleri, C.M.; Ravagnani, F.C.P.; Cyrino, E.S.; Ravagnani, C.F.C. Phase Angle is Moderately Associated with Short-term Maximal Intensity Efforts in Soccer Players. Endoscopy 2019, 40, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, A.; Melchiorri, G.; Brozzi, M.; Di Marco, A.; Volpe, S.L.; Garofano, P.; Di Daniele, N.; De Lorenzo, A. Effect of different sports on body cell mass in highly trained athletes. Geol. Rundsch. 2003, 40, S122–S125. [Google Scholar] [CrossRef] [PubMed]
- Mascherini, G.; Gatterer, H.; Lukaski, H.; Burtscher, M.; Galanti, G. Changes in hydration, body-cell mass and endurance performance of professional soccer players through a competitive season. J. Sports Med. Phys. Fit. 2015, 55, 749–755. [Google Scholar]
- Moon, J.R. Body composition in athletes and sports nutrition: An examination of the bioimpedance analysis technique. Eur. J. Clin. Nutr. 2013, 67, S54–S59. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.C.; Moraes, M.S.; Silva, D.A.S. Cell integrity indicators assessed by bioelectrical impedance: A systematic review of studies involving athletes. J. Bodyw. Mov. Ther. 2020, 24, 154–164. [Google Scholar] [CrossRef]
- Matias, C.N.; Campa, F.; Cerullo, G.; D’Antona, G.; Giro, R.; Faleiro, J.; Reis, J.F.; Monteiro, C.P.; Valamatos, M.J.; Teixeira, F.J. Bioelectrical Impedance Vector Analysis Discriminates Aerobic Power in Futsal Players: The Role of Body Composition. Biology 2022, 11, 505. [Google Scholar] [CrossRef]
- Coratella, G.; Campa, F.; Matias, C.N.; Toselli, S.; Koury, J.C.; Andreoli, A.; Sardinha, L.B.; Silva, A.M. Generalized bioelectric impedance-based equations underestimate body fluids in athletes. Scand. J. Med. Sci. Sports 2021, 31, 2123–2132. [Google Scholar] [CrossRef]
- Carling, C.; Orhant, E. Variation in body composition in professional soccer players: Interseasonal and intraseasonal changes and the effects of exposure time and player position. J. Strength Cond. Res. 2010, 24, 1332–1339. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Kotler, D.P.; Burastero, S.; Wang, J.; Pierson, R.N. Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: Effects of race, sex, and disease. Am. J. Clin. Nutr. 1996, 64 (Suppl. 3), 489S–497S. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, M.; Emrich, E.; Pieter, A.; Stark, R. Outcome effects and effects sizes in sport sciences. Int. J. Sports Sci. Eng. 2009, 3, 175–179. [Google Scholar]
- Mascherini, G.; Castizo-Olier, J.; Irurtia, A.; Petri, C.; Galanti, G. Differences between the sexes in athletes’ body composition and lower limb bioimpedance values. Muscle Ligaments Tendons J. 2018, 7, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Mascherini, G.; Petri, C.; Galanti, G. Integrated total body composition and localized fat-free mass assessment. Sport Sci. Heal. 2015, 11, 217–225. [Google Scholar] [CrossRef]
- Mattiello, R.; Amaral, M.A.; Mundstock, E.; Ziegelmann, P.K. Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects. Clin. Nutr. 2020, 39, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchiorri, G.; Monteleone, G.; Andreoli, A.; Callà, C.; Sgroi, M.; De Lorenzo, A. Body cell mass measured by bioelectrical impedance spectroscopy in professional football (soccer) players. J. Sports Med. Phys. Fit. 2007, 47, 408. [Google Scholar]
- Campa, F.; Thomas, D.M.; Watts, K.; Clark, N.; Baller, D.; Morin, T.; Toselli, S.; Koury, J.C.; Melchiorri, G.; Andreoli, A.; et al. Reference Percentiles for Bioelectrical Phase Angle in Athletes. Biology 2022, 11, 264. [Google Scholar] [CrossRef]
- Martins, P.C.; de Lima, T.R.; Silva, A.M.; Silva, D.A.S. Association of phase angle with muscle strength and aerobic fitness in different populations: A systematic review. Nutrition 2022, 93, 111489. [Google Scholar] [CrossRef]
- Orsso, C.E.; Gonzalez, M.C.; Maisch, M.J.; Haqq, A.M.; Prado, C.M. Using bioelectrical impedance analysis in children and adolescents: Pressing issues. Eur. J. Clin. Nutr. 2022, 76, 659–665. [Google Scholar] [CrossRef]
- Coëffier, M.; Gâté, M.; Rimbert, A.; Petit, A.; Folope, V.; Grigioni, S.; Déchelotte, P.; Achamrah, N. Validity of Bioimpedance Equations to Evaluate Fat-Free Mass and Muscle Mass in Severely Malnourished Anorectic Patients. J. Clin. Med. 2020, 9, 3664. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical impedance analysis (BIA)-derived phase angle in sarcopenia: A systematic review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef] [PubMed]
Elite | High | Medium | F | ANOVA | Elite vs. High p Value (ES) | Elite vs. Medium p Value (ES) | High vs. Medium p Value (ES) | |
---|---|---|---|---|---|---|---|---|
Age (yrs) | 26.4 ± 6.5 | 24.4 ± 5.0 | 22.1 ± 5.1 | 32.7 | <0.001 | <0.001 (0.34) | <0.001 (0.74) | <0.001 (0.46) |
Height (cm) | 181.9 ± 6.1 | 180.8 ± 5.7 | 179.3 ± 5.4 | 11.1 | <0.001 | NS (0.19) | <0.001 (0.45) | <0.01 (0.27) |
Weight (kg) | 79.2 ± 6.7 | 76.0 ± 6.3 | 73.1 ± 6.9 | 45.5 | <0.001 | <0.001 (0.49) | <0.001 (0.89) | <0.001 (0.32) |
BMI (kg/m2) | 23.9 ± 1.4 | 23.2 ± 1.4 | 22.7 ± 1.7 | 35.1 | <0.001 | <0.001 (0.50) | <0.001 (0.78) | <0.01 (0.32) |
Elite | High | Medium | F | ANOVA | Elite vs. High p Value (ES) | Elite vs. Medium p Value (ES) | High vs. Medium p Value (ES) | |
---|---|---|---|---|---|---|---|---|
BCM (kg) | 41.0 ± 3.6 | 38.7 ± 3.2 | 36.8 ± 3.6 | 76.6 | <0.001 | <0.001 (0.67) | <0.001 (1.17) | <0.001 (0.56) |
BCMI (kg/m2) | 12.4 ± 0.9 | 11.8 ± 0.8 | 11.5 ± 1.1 | 50.9 | <0.001 | <0.001 (0.70) | <0.001 (0.89) | <0.001 (0.31) |
R (Ohm) | 458.1 ± 38.4 | 470 ± 32.9 | 483.7 ± 47.5 | 22.2 | <0.001 | <0.001 (0.35) | <0.001 (0.59) | <0.001 (0.32) |
XC (Ohm) | 62.0 ± 6.7 | 61.3 ± 6.0 | 61.4 ± 7.0 | 0.8 | 0.423 | NS (0.11) | NS (0.09) | NS (0.02) |
PA (°) | 7.7 ± 0.6 | 7.4 ± 0.5 | 7.2 ± 0.6 | 37.3 | <0.001 | <0.001 (0.54) | <0.001 (0.83) | <0.01 (0.36) |
LMI (°∙cm∙Ω−1) | 3.08 ± 0.35 | 2.87 ± 0.30 | 2.71 ± 0.36 | 65.7 | <0.001 | <0.001 (0.64) | <0.001 (1.04) | <0.001 (0.48) |
LMI | r | r2 | Β | CI 95% | t | p-Value |
---|---|---|---|---|---|---|
BCM (kg) | 0.908 | 0.824 | 0.908 | −0.66; −0.41 | 55.8 | <0.001 |
BCMI (kg/m2) | 0.925 | 0.856 | 0.925 | −1.25; −0.99 | 62.8 | <0.001 |
PA (°) | 0.704 | 0.495 | 0.704 | −0.58; −0.08 | 25.5 | 0.009 |
FM (kg) | 0.035 | 0.001 | −0.036 | 2.83; 3.06 | −0.921 | 0.357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levi Micheli, M.; Cannataro, R.; Gulisano, M.; Mascherini, G. Proposal of a New Parameter for Evaluating Muscle Mass in Footballers through Bioimpedance Analysis. Biology 2022, 11, 1182. https://doi.org/10.3390/biology11081182
Levi Micheli M, Cannataro R, Gulisano M, Mascherini G. Proposal of a New Parameter for Evaluating Muscle Mass in Footballers through Bioimpedance Analysis. Biology. 2022; 11(8):1182. https://doi.org/10.3390/biology11081182
Chicago/Turabian StyleLevi Micheli, Matteo, Roberto Cannataro, Massimo Gulisano, and Gabriele Mascherini. 2022. "Proposal of a New Parameter for Evaluating Muscle Mass in Footballers through Bioimpedance Analysis" Biology 11, no. 8: 1182. https://doi.org/10.3390/biology11081182
APA StyleLevi Micheli, M., Cannataro, R., Gulisano, M., & Mascherini, G. (2022). Proposal of a New Parameter for Evaluating Muscle Mass in Footballers through Bioimpedance Analysis. Biology, 11(8), 1182. https://doi.org/10.3390/biology11081182