Acute Effects of Different Overspeed Loads with Motorized Towing System in Young Athletes: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Methodological Aspects
2.4. Data Analysis
2.5. Statistical Procedures
3. Results
3.1. Reliability Tests
3.2. Comparison of Kinematic Parameters between Speed Conditions
Changes in the Variables in Each Condition with Respect to S0
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, K.; Cahill, M.; Korfist, C.; Whitacre, T. Acute kinematic effects of sprinting with motorized assistance. J. Strength Cond. Res. 2021, 35, 1856–1864. [Google Scholar] [CrossRef]
- Mero, A.; Komi, P.V.; Gregor, R.J. Biomechanics of sprint running. A review. Sport. Med. 1992, 13, 376–392. [Google Scholar] [CrossRef]
- Cronin, J.; Hansen, K.; Kawamori, N.; Mcnair, P. Effects of weighted vests and sled towing on sprint kinematics. Sport. Biomech. 2008, 7, 160–172. [Google Scholar] [CrossRef]
- Ebben, W.P. The optimal downhill slope for acute overspeed running. Int. J. Sports Physiol. Perform. 2008, 3, 88–93. [Google Scholar] [CrossRef]
- Hauschildt, M.D. Integrating high-speed treadmills into a traditional strength and conditioning program for speed and power sports. Strength Cond. J. 2010, 32, 21–32. [Google Scholar] [CrossRef]
- Sugiura, Y.; Aoki, J. Effects of supramaximal running on stride frequency and stride length in sprinters. Adv. Exerc. Sport. Physiol. 2008, 14, 9–17. [Google Scholar]
- Van den Tillaar, R. Comparison of development of step-kinematics of assisted 60 m sprints with different pulling forces between experienced male and female sprinters. PLoS ONE 2021, 16, e0255302. [Google Scholar] [CrossRef]
- Corn, R.J.; Knudson, D. Effect of elastic-cord towing on the kinematics of the acceleration phase of sprinting. J. Strength Cond. Res. 2003, 17, 72–75. [Google Scholar] [CrossRef]
- Schiffer, J. Training to overcome the speed plateau. IAAF New Stud. Athl. 2011, 26, 7–16. [Google Scholar]
- Cecilia-Gallego, P.; Odriozola, A.; Beltran-Garrido, J.V.; Álvarez-Herms, J. Acute effects of overspeed stimuli with towing system on athletic sprint performance: A systematic review with meta-analysis. J. Sports Sci. 2022, 40, 704–716. [Google Scholar] [CrossRef]
- Mero, A.; Komi, P.V.; Rusko, H.; Hirvonen, J. Neuromuscular and anaerobic performance of sprinters at maximal and supramaximal speed. Int. J. Sports Med. 1987, 8, 55–60. [Google Scholar] [CrossRef]
- Mero, A.; Komi, P.V. Effects of supramaximal velocity on biomechanical variables in sprinting. J. Appl. Biomech. 1985, 1, 240–252. [Google Scholar] [CrossRef]
- Sedlácek, J.; Krska, P.; Kostial, J. Use of supramaximal speed mean in maximal running speed depment. Gymn. Sci. J. Educ. Sport. Health 2015, 16, 39–50. [Google Scholar]
- Van den Tillaar, R.; Gamble, P. Comparison of step-by-step kinematics and muscle activation of resisted, assisted, and unloaded 30-m sprints in sprinters. Transl. Sport. Med. 2018, 1, 151–159. [Google Scholar] [CrossRef]
- Clark, D.A.; Sabick, M.B.; Pfeiffer, R.P.; Kuhlman, S.M.; Knigge, N.A.; Shea, K.G. Influence of towing force magnitude on the kinematics of supramaximal sprinting. J. Strength Cond. Res. 2009, 23, 1162–1168. [Google Scholar] [CrossRef]
- Van den Tillaar, R. Comparison of step-by-step kinematics of normal and assisted 60 m sprints with different loads in experienced sprinters. In Proceedings of the 36th Conference of the International Society of Biomechanics in Sport, Auckland, New Zealand, 10–14 September 2018; pp. 142–145. [Google Scholar]
- Lahti, J.; Jiménez-Reyes, P.; Cross, M.R.; Samozino, P.; Chassaing, P.; Simond-Cote, B.; Ahtiainen, J.; Morin, J.-B. Individual sprint Force-Velocity profile adaptations to in-season assisted and resisted velocity-based training in professional rugby. Sports 2020, 8, 74. [Google Scholar] [CrossRef]
- Salkind, N.J. (Ed.) Encyclopedia of Research Design; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Padullés-Riu, J.M. Valoración de los Parámetros Mecánicos de Carrera. Desarrollo de un Nuevo Instrumento de Medición; University of Barcelona (UB): Barcelona, Spain, 2011. [Google Scholar]
- Buscà, B.; Quintana, M.; Padullés-Riu, J.M. High-speed cameras in sport and exercise: Practical applications in sports training and performance analysis. Aloma Rev. Psicol. Cièn. l’educ. L’esport Blanquerna 2016, 34, 11–24. [Google Scholar]
- Puig-Diví, A.; Padullés-Riu, J.M.; Busquets-Faciabén, A.; Padullés-Chando, X.; Escalona-Marfil, C.; Marcos-Ruiz, D. Validity and reliability of the Kinovea program in obtaining angular and distance dimensions. PrePrints 2017, 2017100042. [Google Scholar] [CrossRef]
- Reinking, M.F.; Dugan, L.; Ripple, N.; Schleper, K.; Scholz, H.; Spadino, J.; Stahl, C.; McPoil, T.G. Reliability of two-dimensional video-based running gait analysis. Int. J. Sports Phys. Ther. 2018, 13, 453–461. [Google Scholar] [CrossRef]
- Romero-Franco, N.; Jiménez-Reyes, P.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Rodríguez-Juan, J.J.; González-Hernández, J.; Toscano-Bendala, F.J.; Cuadrado-Peñafiel, V.; Balsalobre-Fernández, C. Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods. Eur. J. Sport Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef]
- Turner, A.; Brazier, J.; Bishop, C.; Chavda, S.; Cree, J.; Read, P. Data analysis for strength and conditioning coaches: Using Excel to analyze reliability, differences, and relationships. Strength Cond. J. 2015, 37, 76–83. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L.A. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Bosco, C.; Vittori, C. Biomechanical characteristics of sprint running during maximal and supra-maximal speed. New Stud. Athl. 1986, 1, 39–45. [Google Scholar]
Sex | Males (3) | Females (5) | All (8) |
---|---|---|---|
Age (years) | 15.98 ± 1.09 | 17.18 ± 1.57 | 16.73 ± 1.69 |
Years from PHV | 2.13 ± 0.68 | 3.96 ± 1.39 | 3.28 ± 1.46 |
Years of training | 5.33 ± 1.15 | 5.60 ± 1.34 | 5.50 ± 1.20 |
Height (cm) | 174.87 ± 5.78 | 160.72 ± 13.81 | 166.03 ± 10.56 |
Weight (kg) | 63.22 ± 2.86 | 56.62 ± 10.53 | 59.09 ± 8.70 |
Fat mass % | 7.50 ± 0.17 | 16.18 ± 6.54 | 12.93 ± 5.62 |
% BW OS1 | 3.17 ± 0.14 | 3.65 ± 0.84 | 3.47 ± 0.68 |
% BW OS2 | 6.34 ± 0.29 | 7.31 ± 1.68 | 6.94 ± 1.35 |
% BW OS3 | 8.71 ± 0.40 | 9.28 ± 1.81 | 9.07 ± 1.52 |
PB 60 m (s) | 7.63 ± 0.06 | 8.32 ± 0.60 | 8.06 ± 0.47 |
Variable | S0 | O1 | OS2 | OS3 | ANOVA 4 × 1 (p) | η2p |
---|---|---|---|---|---|---|
T5m (s) | 0.61 ± 0.04 | 0.59 ± 0.04 | 0.58 ± 0.03 * L | 0.56 ± 0.05 * VL # L | <0.001 | 0.72 L |
V5m (m/s) | 8.23 ± 0.58 | 8.46 ± 0.57 | 8.62 ± 0.48 * L | 8.92 ± 0.70 * VL # L ^ M | <0.001 | 0.71 L |
SV (m/s) | 8.59 ± 0.74 | 8.88 ± 0.65 * L | 9.06 ± 0.71 * L | 9.43 ± 0.73 * VL # L ^ L | <0.001 | 0.78 L |
SR (step/s) | 4.31 ± 0.25 | 4.30 ± 0.26 | 4.27 ± 0.28 | 4.31 ± 0.26 | 0.753 | 0.05 S |
SL (cm) | 199.34 ± 12.36 | 206.97 ± 13.96 * M | 212.70 ± 15.44 * L | 219.12 ± 13.75* VL # L | <0.001 | 0.75 L |
FT (s) | 0.119 ± 0.014 | 0.124 ± 0.014 | 0.127 ± 0.017 * L | 0.125 ± 0.012 * S | 0.003 | 0.47 L |
CT (s) | 0.114 ± 0.010 | 0.110 ± 0.007 | 0.109 ± 0.010 * M | 0.108 ± 0.009 * L | 0.009 | 0.41 L |
HD (cm) | 34.16 ± 4.06 | 35.60 ± 3.67 | 38.48 ± 3.81 * VL # VL | 39.72 ± 4.16 * VL # VL | <0.001 | 0.74 L |
Variables | OS 1–S0 | OS 2–S0 | OS 3–S0 |
---|---|---|---|
T5m | −4.80 ± 6.29 | −6.64 ± 5.41 | −9.55 ± 7.36 |
V5m | +2.91 ± 2.91 | +4.88 ± 3.01 | +8.42 ± 3.48 |
SV | +3.46 ± 2.73 | +5.62 ± 3.47 | +9.84 ± 3.30 |
SR | −0.32 ± 2.39 | −0.94 ± 3.08 | −0.09 ± 1.76 |
SL | +3.83 ± 2.36 | +6.70 ± 4.30 | +9.95 ± 3.24 |
FT | +4.12 ± 2.30 | +6.12 ± 4.91 | +5.36 ± 3.18 |
CT | −3.23 ± 3.23 | −4.41 ± 3.47 | −4.47 ± 3.76 |
HD | +4.59 ± 6.93 | +13.20 ± 10.18 | +16.62 ± 7.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecília-Gallego, P.; Odriozola, A.; Beltrán-Garrido, J.V.; Álvarez-Herms, J. Acute Effects of Different Overspeed Loads with Motorized Towing System in Young Athletes: A Pilot Study. Biology 2022, 11, 1223. https://doi.org/10.3390/biology11081223
Cecília-Gallego P, Odriozola A, Beltrán-Garrido JV, Álvarez-Herms J. Acute Effects of Different Overspeed Loads with Motorized Towing System in Young Athletes: A Pilot Study. Biology. 2022; 11(8):1223. https://doi.org/10.3390/biology11081223
Chicago/Turabian StyleCecília-Gallego, Pau, Adrián Odriozola, José Vicente Beltrán-Garrido, and Jesús Álvarez-Herms. 2022. "Acute Effects of Different Overspeed Loads with Motorized Towing System in Young Athletes: A Pilot Study" Biology 11, no. 8: 1223. https://doi.org/10.3390/biology11081223
APA StyleCecília-Gallego, P., Odriozola, A., Beltrán-Garrido, J. V., & Álvarez-Herms, J. (2022). Acute Effects of Different Overspeed Loads with Motorized Towing System in Young Athletes: A Pilot Study. Biology, 11(8), 1223. https://doi.org/10.3390/biology11081223