Climatic Warming-Induced Drought Stress Has Resulted in the Transition of Tree Growth Sensitivity from Temperature to Precipitation in the Loess Plateau of China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Chronological Data
2.3. Climate Data
2.4. Statistical Analysis
3. Results
3.1. Trends in Climate and Tree Growth
3.2. Spatial Pattern of Growth Rate and Climatic Sensitivity
3.3. Relationships between Tree Growth and Climate
4. Discussion
4.1. Trends in Climate and Tree Growth Rates
4.2. Variations of Tree Growth-Climate Relationships
4.3. Response of Tree Radial Growth to Climate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scafetta, N. Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth Sci. Rev. 2013, 126, 321–357. [Google Scholar] [CrossRef]
- Fyllas, N.M.; Christopoulou, A.; Galanidis, A.; Michelaki, C.Z.; Dimitrakopoulos, P.G.; Fulé, P.Z.; Arianoutsou, M. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains. Sci. Total Environ. 2017, 598, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Park Williams, A.; Allen, C.D.; Guo, D.; Wu, X.; Anenkhonov, O.A.; Liang, E.; Sandanov, D.V.; Yin, Y.; Qi, Z.; et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Chang. Biol. 2013, 19, 2500–2510. [Google Scholar] [CrossRef]
- Roshani; Sajjad, H.; Kumar, P.; Masroor, M.; Rahaman, M.H.; Rehman, S.; Ahmed, R.; Sahana, M. Forest Vulnerability to Climate Change: A Review for Future Research Framework. Forests 2022, 13, 917. [Google Scholar] [CrossRef]
- Cui, J.; Lian, X.; Huntingford, C.; Gimeno, L.; Wang, T.; Ding, J.; He, M.; Xu, H.; Chen, A.; Gentine, P.; et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nat. Geosci. 2022, 15, 982–988. [Google Scholar] [CrossRef]
- Puntener, D.; Samonil, P.; Tikhomirov, D.; Danek, P.; Christl, M.; Rolecek, J.; Egli, M. Soil erosion rates during the Holocene continuity in a forest-steppe landscape. Earth Surf. Process. Landforms 2023, 48, 504–524. [Google Scholar] [CrossRef]
- Brown, P.T.; Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature 2017, 552, 45–50. [Google Scholar] [CrossRef]
- Saxe, H.; Cannell, M.G.R.; Johnsen, Ø.; Ryan, M.G.; Vourlitis, G. Tree and forest functioning in response to global warming. New Phytol. 2001, 149, 369–399. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Babst, F.; Groenendijk, P.; Trouet, V.; Abiyu, A.; Acuña-Soto, R.; Adenesky-Filho, E.; Alfaro-Sánchez, R.; Aragão, J.R.V.; Assis-Pereira, G.; et al. Tropical tree growth driven by dry-season climate variability. Nat. Geosci. 2022, 15, 269–276. [Google Scholar] [CrossRef]
- Shi, S.; Liu, G.; Li, Z.; Ye, X. Elevation-dependent growth trends of forests as affected by climate warming in the southeastern Tibetan Plateau. For. Ecol. Manag. 2021, 498, 119551. [Google Scholar] [CrossRef]
- Suarez, M.L.; Villalba, R.; Mundo, I.A.; Schroeder, N. Sensitivity of Nothofagus dombeyi tree growth to climate changes along a precipitation gradient in northern Patagonia, Argentina. Trees 2015, 29, 1053–1067. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Houle, D.; Duchesne, L.; Phillips, R.P.; Bergeron, Y.; Kneeshaw, D. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 2018, 9, 3213. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Chen, F.; Jacoby, G.; Cook, E.; Yang, M.; Peng, J.; Zhang, Y. Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. Int. J. Climatol. 2007, 27, 1497–1503. [Google Scholar] [CrossRef]
- Li, X.; Piao, S.; Wang, K.; Wang, X.; Wang, T.; Ciais, P.; Chen, A.; Lian, X.; Peng, S.; Penuelas, J. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 2020, 4, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Z.-S.; Keyimu, M.; Wang, X.; Liang, H.; Feng, X.; Gao, G.; Fu, B.; Liang, E. Accelerated warming in the late 20th century promoted tree radial growth in the Northern Hemisphere. J. Plant. Ecol. 2023, 16, rtac077. [Google Scholar] [CrossRef]
- Allen, C.; Breshears, D.D. Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation. Ecology 1998, 95, 14839–14842. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Huang, M.; Wang, X.; Keenan, T.F.; Piao, S. Drought timing influences the legacy of tree growth recovery. Glob. Chang. Biol. 2018, 24, 3546–3559. [Google Scholar] [CrossRef]
- Babst, F.; Bouriaud, O.; Poulter, B.; Trouet, V.; Girardin, M.P.; Frank, D.C. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019, 5, eaat4313. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Meadows, M.E. Ecological restoration for sustainable development in China. Natl. Sci. Rev. 2023, 10, nwad033. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, W.W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau: From degradation to restoration. Sci. Total Environ. 2020, 738, 140206. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-x.; Fan, X.-h.; Qin, Z.-d.; Wang, M.-b. Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010. Glob. Planet. Chang. 2012, 92–93, 138–147. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, L.; Gou, J. Statistical downscaling and projection of future temperatures across the Loess Plateau, China. Weather. Clim. Extrem. 2021, 32, 1–12. [Google Scholar] [CrossRef]
- Guo, M.Y.; She, D.X.; Zhang, L.P.; Li, L.C.; Yang, Z.L.; Hong, S. Attribution of trends in meteorological drought during 1960–2016 over the Loess Plateau, China. J. Geogr. Sci. 2021, 31, 1123–1139. [Google Scholar] [CrossRef]
- Wang, A.; Gao, X.R.; Zhou, Z.Y.; Yang, H.; Zhao, X.H.; Wang, Y.M.; Li, M.; Zhao, X.N. Dynamic responses of tree-ring growth to drought over Loess Plateau in the past three decades. Ecol. Indic. 2022, 143, 109423. [Google Scholar] [CrossRef]
- Ding, Z.Y.; Pu, J.; Meng, L.H.; Lu, R.J.; Wang, Y.Y.; Li, Y.P.; Dong, Y.Y.; Wang, S.Z. Asymmetric trends of extreme temperature over the Loess Plateau during 1998–2018. Int. J. Climatol. 2021, 41, E1663–E1685. [Google Scholar] [CrossRef]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Wang, Y.F. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Glob. Planet. Chang. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, B.T.; Xu, X.Y. Effects of large-scale climate anomalies on trends in seasonal precipitation over the Loess Plateau of China from 1961 to 2016. Ecol. Indic. 2019, 107, 105643. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, Q.; Liu, W.; Lu, A.G.; Wang, Y.; Yang, J.; Cheng, A.G.; Wang, Y.M.; Su, Y.B.; Liu, L.; et al. Changes of daily climate extremes in Loess Plateau during 1960–2013. Quat. Int. 2015, 371, 5–21. [Google Scholar]
- Qiu, L.; Wu, Y.; Shi, Z.; Chen, Y.; Zhao, F. Quantifying the Responses of Evapotranspiration and Its Components to Vegetation Restoration and Climate Change on the Loess Plateau of China. Remote Sens. 2021, 13, 2358. [Google Scholar] [CrossRef]
- Xu, X.M.; Huang, T. Spatiotemporal Trends and Variation of Precipitation over China’s Loess Plateau across 1957–2018. Atmosphere 2023, 14, 323. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Ma, X.W.; Liang, L.; Yao, W.Q. Spatial-Temporal Variation Characteristics of Multiple Meteorological Variables and Vegetation over the Loess Plateau Region. Appl. Sci. 2020, 10, 1000. [Google Scholar] [CrossRef]
- Yu, L.; Wu, Z.T.; Liu, Y.; Du, Z.Q.; Zhang, H. Does drought show a significant weakening trend from 1961 to 2017 in northern China? Meteorol. Atmos. Phys. 2022, 134, 31. [Google Scholar] [CrossRef]
- Kong, D.X.; Miao, C.Y.; Duan, Q.Y.; Lei, X.H.; Li, H. Vegetation-Climate Interactions on the Loess Plateau: A Nonlinear Granger Causality Analysis. J. Geophys. Res. 2018, 123, 11068–11079. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Xu, C.X.; An, W.L.; Liu, Y.C.; Xiao, G.Q.; Huang, C.J. Increasing tree growth in subalpine forests of central China due to earlier onset of the thermal growing season. Agric. For. Meteorol. 2023, 333, 109391. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Fang, O.Y.; Shao, X.M. Long-term changes in the tree radial growth and intrinsic water-use efficiency of Chuanxi spruce (Picea likiangensis var. balfouriana) in southwestern China. J. Geogr. Sci. 2018, 28, 833–844. [Google Scholar] [CrossRef]
- Li, F.; Peng, Y.F.; Zhang, D.Y.; Yang, G.B.; Fang, K.; Wang, G.Q.; Wang, J.; Yu, J.C.; Zhou, G.Y.; Yang, Y.H. Leaf Area Rather Than Photosynthetic Rate Determines the Response of Ecosystem Productivity to Experimental Warming in an Alpine Steppe. J. Geophys. Res. Biogeosci. 2019, 124, 2277–2287. [Google Scholar] [CrossRef]
- Nakamura, M.; Makoto, K.; Tanaka, M.; Inoue, T.; Son, Y.; Hiura, T. Leaf flushing and shedding, bud and flower production, and stem elongation in tall birch trees subjected to increases in aboveground temperature. Trees 2016, 30, 1535–1541. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J. Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. Eur. J. For. Res. 2012, 131, 1001–1012. [Google Scholar] [CrossRef]
- Robbins, Z.J.; Xu, C.G.; Aukema, B.H.; Buotte, P.C.; Chitra-Tarak, R.; Fettig, C.J.; Goulden, M.L.; Goodsman, D.W.; Hall, A.D.; Koven, C.D.; et al. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California. Glob. Chang. Biol. 2022, 28, 509–523. [Google Scholar] [CrossRef]
- Valencia, E.; Quero, J.L.; Maestre, F.T. Functional leaf and size traits determine the photosynthetic response of 10 dryland species to warming. J. Plant Ecol. 2016, 9, 773–783. [Google Scholar] [CrossRef]
- Crous, K.Y.; Drake, J.E.; Aspinwall, M.J.; Sharwood, R.E.; Tjoelker, M.G.; Ghannoum, O. Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species. Glob. Chang. Biol. 2018, 24, 4626–4644. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.F.; Ma, Y.Y. Effects of non-linear temperature and precipitation trends on Loess Plateau droughts. Quat. Int. 2015, 372, 175–179. [Google Scholar] [CrossRef]
- Taccoen, A.; Piedallu, C.; Seynave, I.; Gegout-Petit, A.; Gegout, J.C. Climate change-induced background tree mortality is exacerbated towards the warm limits of the species ranges. Ann. For. Sci. 2022, 79, 23. [Google Scholar] [CrossRef]
- Liang, E.; Leuschner, C.; Dulamsuren, C.; Wagner, B.; Hauck, M. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim. Chang. 2016, 134, 163–176. [Google Scholar] [CrossRef]
- Liu, Z.J.; Liu, Y.S. Does Anthropogenic Land Use Change Play a Role in Changes of Precipitation Frequency and Intensity over the Loess Plateau of China? Remote Sens. 2018, 10, 1818. [Google Scholar] [CrossRef]
- Helcoski, R.; Tepley, A.J.; Pederson, N.; McGarvey, J.C.; Meakem, V.; Herrmann, V.; Thompson, J.R.; Anderson-Teixeira, K.J. Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytol. 2019, 223, 1204–1216. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jiang, L.; Shi, F.; Li, X.; Zhang, S.; Zhao, Y.; Ma, Y.; Gao, Z.; Bai, Y. Intensified Drought Enhances Coupling between Vegetation Growth and Pregrowing Season Precipitation in the Drylands of the Silk Road Economic Belt. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005914. [Google Scholar] [CrossRef]
- Xiao, S.C.; Peng, X.M.; Tian, Q.Y.; Zhu, G. Stem radial growth indicate the options of species, topography and stand management for artificial forests in the western Loess Plateau, China. Sci. Cold Arid Reg. 2019, 11, 226–238. [Google Scholar]
- Tang, X.; Miao, C.; Xi, Y.; Duan, Q.; Lei, X.; Li, H. Analysis of precipitation characteristics on the loess plateau between 1965 and 2014, based on high-density gauge observations. Atmos. Res. 2018, 213, 264–274. [Google Scholar] [CrossRef]
- Yao, L.; Fei, L.F.; Gui, S.; Liu, Q.S.; Liu, G.H. Remote sensing for monitoring on the health of artificial Robinia Pseudoacacia Forests in the Yellow River Delta. In Proceedings of the 2009 17TH International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; Volumes 1+2, p. 1088. [Google Scholar]
- Chen, H.S.; Shao, M.G.; Li, Y.Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Shangguan, Z.P. Soil desiccation occurrence an its impact on forest vegetation in the Loess Plateau of China. Int. J. Sustain. Dev. World Ecol. 2007, 14, 299–306. [Google Scholar] [CrossRef]
- Chen, W.; Li, G.C.; Wang, D.L.; Yang, Z.; Wang, Z.; Zhang, X.P.; Peng, B.; Bi, P.S.; Zhang, F.J. Influence of the ecosystem conversion process on the carbon and water cycles in different regions of China. Ecol. Indic. 2023, 148, 110040. [Google Scholar] [CrossRef]
- Wang, W.X.; Cui, C.F.; Yu, W.H.; Lu, L. Response of drought index to land use types in the Loess Plateau of Shaanxi, China. Sci. Rep. 2022, 12, 8668. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.J.; Wei, W.; Chen, L.D.; Cerda, A.; Yang, L.; Yu, Y. Combining land preparation and vegetation restoration for optimal soil eco-hydrological services in the Loess Plateau, China. Sci. Total Environ. 2019, 657, 535–547. [Google Scholar] [CrossRef]
- Xu, L.H.; Cao, G.X.; Wang, Y.N.; Hao, J.; Wang, Y.H.; Yu, P.T.; Liu, Z.B.; Xiong, W.; Wang, X. Components of stand water balance of a larch plantation after thinning during the extremely wet and dry years in the Loess Plateau, China. Glob. Ecol. Conserv. 2020, 24, e01307. [Google Scholar] [CrossRef]
- Cao, R.X.; Pei, Y.W.; Jia, X.X.; Huang, L.M. Rapid soil water recovery after conversion of introduced peashrub and alfalfa to natural grassland on northern China’s Loess Plateau. Can. J. Soil Sci. 2020, 100, 302–313. [Google Scholar] [CrossRef]
- Muller, C.; Stehfest, E.; van Minnen, J.G.; Strengers, B.; von Bloh, W.; Beusen, A.H.W.; Schaphoff, S.; Kram, T.; Lucht, W. Drivers and patterns of land biosphere carbon balance reversal. Environ. Res. Lett. 2016, 11, 044002. [Google Scholar] [CrossRef]
- Manusch, C.; Bugmann, H.; Wolf, A. The impact of climate change and its uncertainty on carbon storage in Switzerland. Reg. Environ. Chang. 2014, 14, 1437–1450. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhou, G.Y.; Liu, J.X. Different Growth and Physiological Responses of Six Subtropical Tree Species to Warming. Front. Plant Sci. 2017, 8, 1511. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Lei, Y.; Bao, G.; Sun, B. Reconstruction of the March-August PDSI since 1703 AD based on tree rings of Chinese pine (Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau. Clim. Past. 2014, 10, 509–521. [Google Scholar] [CrossRef]
- Cai, Q.F.; Liu, Y. Climatic response of Chinese pine and PDSI variability in the middle Taihang Mountains, north China since 1873. Trees 2013, 27, 419–427. [Google Scholar] [CrossRef]
- Cai, Q.F.; Liu, Y. Climatic response of three tree species growing at different elevations in the Luliang Mountains of Northern China. Dendrochronologia 2013, 31, 311–317. [Google Scholar] [CrossRef]
- Cai, Q.F.; Liu, Y.; Yang, Y.K.; Shi, J.F.; Sun, J.Y.; Wang, L. The reconstruction of tree-ring chronology and early spring (from February to March) precipitation information in Huanglong region, Shaanxi Province. Mar. Geol. Quat. 2005, 25, 133–139. [Google Scholar]
- Chen, F.; Wang, H.; Chen, F.-H.; Yuan, Y.; Zhang, R.-B. Tree-ring reconstruction of July-May precipitation (AD 1816-2010) in the northwestern marginal zone of the East Asian summer monsoon reveals the monsoon-related climate signals. Int. J. Climatol. 2015, 35, 2109–2121. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y.J. May-June Maximum Temperature Reconstruction from Mean Earlywood Density in North Central China and Its Linkages to the Summer Monsoon Activities. PLoS ONE 2014, 9, e107501. [Google Scholar] [CrossRef]
- Dang, H.S.; Jiang, M.X.; Zhang, Q.F.; Zhang, Y.J. Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China. For. Ecol. Manag. 2007, 240, 143–150. [Google Scholar] [CrossRef]
- Deng, Y.; Gou, X.H.; Gao, L.L.; Zhao, Z.Q.; Cao, Z.Y.; Yang, M.X. Aridity changes in the eastern Qilian Mountains since AD 1856 reconstructed from tree-rings. Quat. Int. 2013, 283, 78–84. [Google Scholar] [CrossRef]
- Fang, K.Y.; Gou, X.H.; Chen, F.H.; Liu, C.Z.; Davi, N.; Li, J.B.; Zhao, Z.Q.; Li, Y.J. Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China. Glob. Planet. Chang. 2012, 80–81, 190–197. [Google Scholar] [CrossRef]
- Fang, K.Y.; Gou, X.H.; Chen, F.H.; Yang, M.X.; Li, J.B.; He, M.S.; Zhang, Y.; Tian, Q.H.; Peng, J.F. Drought variations in the eastern part of northwest China over the past two centuries: Evidence from tree rings. Clim. Chang. 2009, 38, 129–135. [Google Scholar] [CrossRef]
- Fang, K.Y.; Wilmking, M.; Davi, N.; Zhou, F.F.; Liu, C.Z. An Ensemble Weighting Approach for Dendroclimatology: Drought Reconstructions for the Northeastern Tibetan Plateau. PLoS ONE 2014, 9, e86689. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.Y.; Lu, R.J.; Qiang, M.R.; Hasi, E.; Zhang, D.S.; Chen, Y.; Xia, H. Reconstruction of precipitation in the last 140 years from tree ring at south margin of the Tengger Desert, China. Chin. Sci. Bull. 2005, 50, 2487–2492. [Google Scholar] [CrossRef]
- Liang, E.Y.; Shao, X.M.; Huang, L.; Wang, L.L. Indication of tree-ring on drought disasters in the 1920s in central and western China. Prog. Nat. Sci. 2004, 14, 111–116. [Google Scholar]
- Li, Q.; Liu, Y.; Cai, Q.F.; Sun, J.Y.; Yi, L.; Song, H.M.; Wang, L. Reconstruction of annual precipitation since 1686 A.D. from Ningwu region.; Shanxi Province. Quat. Res. 2006, 26, 99–1006. [Google Scholar]
- Li, Q.; Liu, Y.; Nakatsuka, T.; Song, H.M.; McCarroll, D.; Yang, Y.K.; Qi, J. The 225-year precipitation variability inferred from tree-ring records in Shanxi Province, the North China and its teleconnection with Indian summer monsoon. Glob. Planet. Chang. 2015, 132, 11–19. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Song, H.M.; Yang, Y.K.; Zhao, B.Y. Divergence of tree-ring-based drought reconstruction between the individual sampling site and the Monsoon Asia Drought Atlas: An example from Guancen Mountain. Sci. Bull. 2015, 60, 1688–1697. [Google Scholar] [CrossRef]
- Li, Y.J.; Gou, X.H.; Fang, K.Y.; Yang, T.; Deng, Y.; Man, Z.H. Reconstruction of precipitation of previous August to current June during 1821-2008 in the eastern Qilian Mountains. J. Desert Res. 2012, 32, 1393–1401. [Google Scholar]
- Liu, Y.L.; Gou, X.H.; Zhang, F.; Yin, D.C.; Wang, X.J.; Xia, J.Q.; Li, Q.; Du, M.M. Effects of warming on radial growth of Picea crassifolia in the eastern Qilian Mountains, China. Chin. J. Appl. Ecol. 2021, 32, 3576–3584. [Google Scholar]
- Liu, Y.; Tian, Q.H.; Song, H.M.; Sun, J.Y.; Linderholm, H.W.; Chen, D.; Cai, Q.F.; Ta, W.Y.; Lei, Y. Tree ring width based May-June mean temperature reconstruction for Huashan Mountain since A.D. 1558 and 20th century warming. Quat. Sci. 2009, 29, 888–895. [Google Scholar]
- Li, Y.J.; Wang, S.Y.; Niu, J.J.; Fang, K.Y.; Li, X.L.; Li, Y.; Bu, W.L.; Li, Y.H. Climate-adial growth relationship of Larix principis-rupprechtii at different altitudes on Luya Mountain. Acta Ecol. Sin. 2016, 36, 1608–1618. [Google Scholar]
- Qi, G.Z.; Bai, H.Y.; Meng, Q.; Zhao, T.; Guo, S.Z. Reconstruction of spring dry and wet changes in Taibai Mountain area bases on tree ring width. Arid Land Geogr. 2020, 43, 955–966. [Google Scholar]
- Ren, J.L.; Liu, Y.; Song, H.M.; Ma, Y.Y.; Li, Q.; Wang, Y.C.; Cai, Q.F. The historical reconstruction of the maximum temperature over the past 195 year, Linxia region, Gansu Province—Based on the data from Picea purpurea Mast. Quat. Sci. 2014, 34, 1270–1279. [Google Scholar]
- Song, H.M.; Liu, Y. PDSI variations at Kongtong Mountain, China, inferred from a 283-year Pinus tabulaeformis ring width chronology. J. Geophys. Res. Atmos. 2011, 116, 1–9. [Google Scholar] [CrossRef]
- Song, H.M.; Mei, R.C.; Liu, Y.; Nievergelt, D.; Verstege, A.; Cherubini, P.; Liu, R.S.; Sun, C.F.; Li, Q.; Chen, L.; et al. Maximum July-September temperatures derived from tree-ring densities on the western Loess Plateau, China. Int. J. Climatol. 2021, 41, 779–790. [Google Scholar] [CrossRef]
- Su, K.; Bai, H.Y.; Zhang, Y.; Huang, X.Y.; Qin, J. Reconstruction of precipitation history in Taibai Mountain of Qinling Mountains based on tree-ring width and meteorological data in recent 160 years. Chin. J. Appl. Ecol. 2018, 37, 1467–1475. [Google Scholar]
- Sun, B.L.; Ma, L.; Liu, T.X.; Huang, X.; Zhou, Y. Temperature reconstruction based on 361 year old dendrochronology of Platycladus orientalis (L.) franco in the Wula Mountains, China. Quat. Int. 2021, 583, 94–102. [Google Scholar] [CrossRef]
- Sun, C.F.; Liu, Y.; Song, H.M.; Mei, R.C.; Payomrat, P.; Wang, L.; Liu, R.S. Tree-ring—Based precipitation reconstruction in the source region of Weihe River, northwest China since AD 1810. Int. J. Climatol. 2018, 38, 3421–3431. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.L.; Chen, J.; Duan, J.P.; Shao, X.M.; Chen, K.L. Growth characteristics and response to climate change of Larix Miller tree-ring in China. Sci. China-Earth Sci. 2010, 53, 871–879. [Google Scholar] [CrossRef]
- Wang, M.M.; Dai, J.H.; Bai, J.; Cui, H.T. Reconstruction of humidity changes from tree rings in Liupan Mountains area since 1900. J. Palaeogeogr. 2009, 11, 355–360. [Google Scholar]
- Wang, Y.J.; Lu, R.J.; Ma, Y.Z.; Sang, Y.L.; Meng, H.W.; Gao, S.Y. Annual variation in PDSI since 1897 AD in the Tengger Desert, Inner Mongolia, China, as recorded by tree-ring data. J. Arid Environ. 2013, 98, 20–26. [Google Scholar] [CrossRef]
- Wang, Y.J.; Ma, Y.Z.; Lu, R.J.; Sang, Y.L.; Meng, H.W.; Hua, F.C.; Man, Z.H. Reconstruction of mean temperatures of January to August since A.D. 1895 based on tree-ring datain the eastern part of the Qilian Mountains. Quat. Sci. 2009, 29, 905–912. [Google Scholar]
- Wang, Y.J.; Ma, Y.Z.; Zheng, Y.H.; Lu, R.J.; Sang, Y.L.; Meng, H.W. Response of Tree-Ring Width of Pinus tabulae for mis to Climate Factors in Luoshan Mountains of Ningxia. J. Desert Res. 2009, 29, 971–976. [Google Scholar]
- Zhang, Q.; Fang, O.Y. History of forest health from 1900 to 2012 in Xinzhou Prefecture, Shanxi Province. Acta Ecol. Sin. 2018, 38, 236–243. [Google Scholar]
- Zhang, Y.X.; Wilmking, M.; Gou, X.H. Changing relationships between tree growth and climate in Northwest China. Plant Ecol. 2009, 201, 39–50. [Google Scholar] [CrossRef]
- Zhu, X.L. Based on Tree Rings Study on the NDVI and SPEI Response of Larix chensesis in Qinling Mountains. Master Thesis, Northwest University, Xi’an, China, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Fu, S.; Guo, H.; Chen, S.; Li, Z. Climatic Warming-Induced Drought Stress Has Resulted in the Transition of Tree Growth Sensitivity from Temperature to Precipitation in the Loess Plateau of China. Biology 2023, 12, 1275. https://doi.org/10.3390/biology12101275
Zhang Q, Fu S, Guo H, Chen S, Li Z. Climatic Warming-Induced Drought Stress Has Resulted in the Transition of Tree Growth Sensitivity from Temperature to Precipitation in the Loess Plateau of China. Biology. 2023; 12(10):1275. https://doi.org/10.3390/biology12101275
Chicago/Turabian StyleZhang, Qindi, Shaomin Fu, Hui Guo, Shaoteng Chen, and Zongshan Li. 2023. "Climatic Warming-Induced Drought Stress Has Resulted in the Transition of Tree Growth Sensitivity from Temperature to Precipitation in the Loess Plateau of China" Biology 12, no. 10: 1275. https://doi.org/10.3390/biology12101275
APA StyleZhang, Q., Fu, S., Guo, H., Chen, S., & Li, Z. (2023). Climatic Warming-Induced Drought Stress Has Resulted in the Transition of Tree Growth Sensitivity from Temperature to Precipitation in the Loess Plateau of China. Biology, 12(10), 1275. https://doi.org/10.3390/biology12101275