Pilot-Scale Fermentation of Pseudoalteromonas sp. Strain FDHY-MZ2: An Effective Strategy for Increasing Algicidal Activity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Algal Cultures and Algicidal Bacteria
2.2. Analysis of Algicidal Rate
2.3. Single Factor and Orthogonal Design to Optimize Shake Flask Culture of Strain FDHY-MZ2
2.4. Optimization of Small-Scale Fermentation (5 L Fermenter) Conditions
2.5. Optimization of Pilot Fermentation (50 L Fermenter) Conditions
2.6. Estimation of Protein, Oxidative, and Antioxidant Systems in Algal Cells
2.7. Determination of Chlorophyll a and Photosynthetic Parameters in Algal Cells
2.8. Statistical Analysis
3. Results
3.1. Optimization of Shake Flask Culture and Medium for Strain FDHY-MZ2
3.2. Optimization of Fermenter Conditions for Scale-Up
3.2.1. Small (5 L) Fermenter Condition Optimization
3.2.2. Large (50 L) Fermenter Condition Optimization
3.3. Cellular Photosynthetic Pigment and Protein in K. mikimotoi to Optimized Pseudoalteromonas sp. FDHY-MZ2 Culture
3.4. Oxidative Stress and Antioxidant Responses of K. mikimotoi to Optimized Pseudoalteromonas sp. FDHY-MZ2 Culture
3.5. Optimized Pseudoalteromonas sp. FDHY-MZ2-Induced Photochemical Responses in K. mikimotoi
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Shehawy, R.; Gorokhova, E.; Fernández-Piñas, F.; Campo, F.F.D. Global warming and hepatotoxin production by cyanobacteria: What can we learn from experiments? J. Water Res. 2012, 46, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Yamasaki, Y.; Matsuyama, Y.; Yamaguchi, K.; Honjo, T.; Oda, T. Possible involvement of hemolytic activity in the contact-dependent lethal effects of the dinoflagellate Karenia mikimotoi on the rotifer Brachionus plicatilis. Harmful Algae 2010, 9, 367–373. [Google Scholar] [CrossRef]
- Gentien, P.; Lunven, M.; Lazure, P.; Youenou, A.; Crassous, M.P. Motility and autotoxicity in Karenia mikimotoi (Dinophyceae). Philos. Trans. R. Soc. B—Biol. Sci. 2007, 362, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.; Berdalet, E.; Burford, M.; Pitcher, G.; Zhou, M. Global Ecology and Oceanography of Harmful Algal Blooms; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Coyne, K.J.; Wang, Y.; Johnson, G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front. Microbiol. 2022, 13, 871177. [Google Scholar] [CrossRef] [PubMed]
- Imai, I.; Fujimaru, D.; Nishigaki, T.; Kurosaki, M.; Sugita, H. Algicidal bacteria isolated from the surface of seaweeds from the coast of Osaka Bay in the Seto Inland Sea, Japan. S. Afr. J. Mar. Sci. 2006, 28, 319–323. [Google Scholar] [CrossRef]
- Shi, X.; Liu, L.; Li, Y.; Xiao, Y.; Ding, G.; Lin, S.; Chen, J. Isolation of an algicidal bacterium and its effects against the harmful-algal-bloom dinoflagellate Prorocentrum donghaiense (Dinophyceae). Harmful Algae 2018, 80, 72–79. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, X.; Hu, W.; Xu, M.; Chen, L. Advances in functional diversity and application of algicidal bacteria. Acta Microbiol. Sin. 2022, 62, 1171–1189. [Google Scholar]
- Liu, D.; Li, K.; Zhao, Q.; Chu, J.; Wang, Y.; Zhuang, Y.; Zhang, S. Optimization of Fermentation Conditions for Aerobic Biosynthesis of Vitamin B12 by Pseudomonas denitrificans. Food Ferment. Ind. 2008, 34, 7–10. [Google Scholar]
- Sun, C.; Lai, Y.; Jiang, X.; Luo, X.; Gong, H.; Huang, Z.; Tao, J. Optimization of Fermentation Conditions for Inactivated Vaccine of Pseudomonas aeruginosa in Grass Carp. Acta Agric. Univ. Jiangxiensis 2019, 41, 558–564. [Google Scholar]
- Riesenberg, D.; Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 1999, 51, 422–430. [Google Scholar] [CrossRef]
- Malairuang, K.; Krajang, M.; Sukna, J.; Rattanapradit, K.; Chamsart, S. High Cell Density Cultivation of Saccharomyces cerevisiae with Intensive Multiple Sequential Batches Together with a Novel Technique of Fed-Batch at Cell Level (FBC). Processes 2020, 8, 1321. [Google Scholar] [CrossRef]
- Qi, G.; Wang, X.; Wang, J. Study on Polyfungicide Fermentation from Shaker to 50L Fermentation Bin. Mod. Chem. Res. 2021, 100, 151–155. [Google Scholar]
- Jiang, X.; Ren, C.H.; Hu, C.Q.; Zhao, Z. Isolation and algicidal characterization of Bowmanella denitrificans S088 against Chlorella vulgaris. World J. Microbiol. Biotechnol. 2014, 30, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Heon, O.K.; Woo, M.C.; Cho, S.H. Optimized Production of Biosurfactant by the Indigenous Bacterium, Pseudoalteromonas sp. HK-3 Originating from Oil-Spilled Areas. Korean Soc. Biotechnol. Bioeng. J. 2011, 26, 57–61. [Google Scholar]
- Yang, X.; Xiao, X.; Liu, D.; Wu, R.; Wu, C.; Zhang, J.; Huang, J.; Liao, B.; He, H. Optimization of Collagenase Production by Pseudoalteromonas sp. SJN2 and Application of Collagenases in the Preparation of Antioxidative Hydrolysates. Mar. Drugs 2017, 15, 377. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.H.; Zhou, Y.X.; Li, Y.; Zhou, J.; Xu, Y.X. Optimized culturing conditions for an algicidal bacterium Pseudoalteromonas sp. SP 48 on harmful algal blooms caused by Alexandrium tamarense. MicrobiologyOpen 2019, 8, e803. [Google Scholar] [CrossRef] [PubMed]
- Lili, Y.; Weibin, P.; Yong, W.; Qun, C. High Cell Density Culture, Purification and Identification of Algicidal Components of An Indigenous Algicidal Bacteria L7. Acta Sci. Nat. Univ. Sunyatseni 2013, 52, 83–88. [Google Scholar]
- Ma, G.; Wang, S.; Bao, Z.; Wu, S.; Xia, Z.; Fu, H. Study on the Technology of Paenibacillus polymyxa Strain L1-9 in 50 L Fermenter. Food Ferment. Ind. 2011, 37, 6–10. [Google Scholar]
- Meyer, N.; Pohnert, G. Isolate-specific resistance to the algicidal bacterium Kordia algicida in the diatom Chaetoceros genus. Bot. Mar. 2019, 62, 527–535. [Google Scholar] [CrossRef]
- Lyu, P.; Li, H.; Zheng, X.; Zhang, H.; Wang, C.; Qin, Y.; Xia, B.; Wang, D.; Xu, S.; Zhuang, X. Oxidative stress of Microcystis aeruginosa induced by algicidal bacterium Stenotrophomonas sp. KT48. Appl. Microbiol. Biotechnol. 2022, 106, 4329–4340. [Google Scholar] [CrossRef]
- Shi, X.G.; Zou, Y.Z.; Zheng, W.H.; Liu, L.M.; Xie, Y.P.; Ma, R.J.; Chen, J.F. A Novel Algicidal Bacterium and Its Effects against the Toxic Dinoflagellate Karenia mikimotoi (Dinophyceae). Microbiol. Spectr. 2022, 10, e0042922. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Zhang, X. Studies on the toxicological response and bioaccumulation of selenastrum capricornutum to cadmium I. The toxic action of cadmium to selenastrum capriconutum. Bull. Bot. Res. 1988, 8, 195–202. [Google Scholar]
- Liu, Y.; Yan, W.; Liu, C. The acute toxic effect of anthracene and cadmium on Karenia mikimotoi Hansen. Ecol. Sci. 2016, 35, 47–51. [Google Scholar]
- Zhao, Y.; Wang, Y.; Li, Y.; Santschi, P.H.; Quigg, A. Response of photosynthesis and the antioxidant defense system of two microalgal species (Alexandrium minutum and Dunaliella salina) to the toxicity of BDE-47. Mar. Pollut. Bull. 2017, 124, 459–469. [Google Scholar] [CrossRef]
- Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal-ions. Free Radic. Biol. Med. 1995, 18, 321–336. [Google Scholar] [CrossRef]
- Tripathi, B.N.; Mehta, S.K.; Amar, A.; Gaur, J.P. Oxidative stress in Scenedesmus sp during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 2006, 62, 538–544. [Google Scholar] [CrossRef]
- Lei, Z.; Shunshan, D.; Kaifeng, S. Hormesis effect of organophosphorus pesticide Glyphosate-isopropylammonium on Phaeocystis globosa. Ecol. Environ. Sci. 2010, 19, 51–56. [Google Scholar]
- Jing, Z.; Lei, Z.; Min, A.; Shun, D. Hormesis effect of organophosphorus pesticide glyphosate-isopropy lammonium on Heterosigma akashiwo. Ecol. Sci. 2012, 31, 396–400. [Google Scholar]
- Cai, Z.P.; Liu, W.J.; Luo, Y.M.; Wu, H.; Diao, P.P.; Duan, S.S. Toxicity of Cd2+ and Pb2+ to the growth and physiology of marina microalga Karenia mikimotoi. Ecol. Sci. 2019, 38, 211–217. [Google Scholar]
- Wang, B.; Wu, D.; Chu, K.H.; Ye, L.; Yip, H.Y.; Cai, Z.; Wong, P.K. Removal of harmful alga, Chattonella marina, by recyclable natural magnetic sphalerite. J. Hazard. Mater. 2017, 324 Pt B, 498–506. [Google Scholar] [CrossRef]
- Shi, J.; Wang, W.; Wang, F.; Lei, S.; Shao, S.; Wang, C.; Li, G.; An, T. Efficient inactivation of harmful algae K. mikimotoi by a novel algicidal bacterium via a rare direct contact pathway: Performances and mechanisms. Sci. Total Environ. 2023, 892, 164401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Zhu, L.; Zhou, B.; Tang, X. Comparative studies on the ecophysiological differences of two green tide macroalgae under controlled laboratory conditions. PLoS ONE 2012, 7, e38245. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Strasser, R.J.; Qiang, S. In Vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant Physiol. Biochem. 2014, 84, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.T.; He, M.L.; Liu, J.G.; Li, L. Role of the mitochondrial alternative oxidase pathway in hydrogen photoproduction in Chlorella protothecoides. Planta 2015, 241, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Lin, S.; Cheng, S.; Song, B. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 2015, 350, 691–694. [Google Scholar] [CrossRef]
- Ballantine, D.; Smith, F.M.J.B.P.J. Observations on blooms of the dinoflagellate Gyrodinium aureolum Hulburt in the River Conwy and its occurrence along the North Wales coast. Br. Phycol. J. 1973, 8, 233–238. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Wen, C.; Tang, J. Study on the design and analysis methods of orthogonal experiment. Exp. Technol. Manag. 2013, 27, 52–55. [Google Scholar]
- Sedmak, J.J.; Grossberg, S.E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 1977, 79, 544–552. [Google Scholar] [CrossRef]
- Celekli, A.; Kapı, M.; Bozkurt, H. Effect of cadmium on biomass, pigmentation, malondialdehyde, and proline of Scenedesmus quadricauda var. longispina. Bull. Environ. Contam. Toxicol. 2013, 91, 571–576. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction coefficients of chlorophyll a and B in n,n-dimethylformamide and 80% acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.K.; Cho, S.Y.; Kang, Y.H.; Katano, T.; Jin, E.S.; Kong, D.S.; Han, M.S. Isolation, identification and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algal blooms. J. Appl. Phycol. 2008, 20, 375–386. [Google Scholar] [CrossRef]
- Imai, I.; Inaba, N.; Yamamoto, K. Harmful algal blooms and environmentally friendly control strategies in Japan. Fish. Sci. 2021, 87, 437–464. [Google Scholar] [CrossRef]
- Mehrotra, T.; Dev, S.; Banerjee, A.; Chatterjee, A.; Singh, R.; Aggarwal, S. Use of immobilized bacteria for environmental bioremediation: A review. J. Environ. Chem. Eng. 2021, 9, 105920. [Google Scholar] [CrossRef]
- Li, Y.; Bai, S.J.; Yang, C.Y. Mangrovimonas yunxiaonensis gen. nov., sp nov., isolated from mangrove sediment. Int. J. Syst. Evol. Microbiol. 2013, 63, 2043–2048. [Google Scholar] [CrossRef]
- Liao, C.; Liu, X.; Shan, L. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23. Can. J. Microbiol. 2014, 60, 593–597. [Google Scholar] [CrossRef]
- Gauthier, M.J. Morphological, physiological, and biochemical characteristics of some violet-pigmented bacteria isolated from seawater. Can. J. Microbiol. 1976, 22, 138–149. [Google Scholar] [CrossRef]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A. Strategies for Fermentation Medium Optimization: An In-Depth Review. Front. Microbiol. 2017, 7, 2087. [Google Scholar] [CrossRef]
- Lijun, F.U.; Xinli, A.N.; Dong, L.I.; Lixia, X.U.; Yun, T.; Tianling, Z. Optimization of medium components and culture conditions of algicidal actinomycetes BS01. J. Trop. Oceanogr. 2011, 30, 109–114. [Google Scholar]
- Seme, H.; Gjuracic, K.; Kos, B.; Fujs, S.; Stempelj, M. Acid resistance and response to pH-induced stress in two Lactobacillus plantarum strains with probiotic potential. Benef. Microbes 2015, 6, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Xia, X.; Hu, H.; Fu, Q.; Xiao, Y.; Guang-gang, Q.; Zhiqiang, S.; Cheng, L. Optimization of culture conditions for high cell-density fermentation of bovine Escherichia coli. Kafkas Üniversitesi Vet. Fakültesi Derg. 2018, 24, 735–742. [Google Scholar]
- Hong, A.-A.; Cheng, K.-K.; Peng, F.; Zhou, S.; Sun, Y. Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J. Chem. Technol. Biotechnol. 2009, 84, 1576–1581. [Google Scholar] [CrossRef]
- Zhu, Y.; Song, J.; Chen, Y.; Sun, B.; Chen, J.; Wei, X. High production of nattokinase by Bacillus licheniformis gene engineering strain in bioreactor: Fermentation process optimization and pilot-plant test. Food Ferment. Ind. 2016, 42, 37–41. [Google Scholar]
- Dick, O.; Onken, U.; Sattler, I.; Zeeck, A. Influence of increased dissolved-oxygen concentration on productivity and selectivity in cultures of a colabomycin-producing strain of Streptomyces-griseoflavus. Appl. Microbiol. Biotechnol. 1994, 41, 373–377. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Roman, R.V. Oxygen mass-transfer and gas holdup in a bubble-column bioreactor with biosynthesis liquids. Acta Biotechnol. 1994, 14, 27–36. [Google Scholar] [CrossRef]
- Clark, G.J.; Langley, D.; Bushell, M.E. Oxygen limitation can induce microbial secondary metabolite formation-investigations with miniature electrodes in shaker and bioreactor culture. Microbiology 1995, 141, 663–669. [Google Scholar] [CrossRef]
- Pfefferle, C.; Theobald, U.; Gurtler, H.; Fiedler, H.P. Improved secondary metabolite production in the genus Streptosporangium by optimization of the fermentation conditions. J. Biotechnol. 2000, 80, 135–142. [Google Scholar] [CrossRef]
- Eslami, P.; Hajfarajollah, H.; Bazsefidpar, S. Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv. 2020, 10, 34014–34032. [Google Scholar] [CrossRef]
- Tashiro, Y.; Takeda, K.; Kobayashi, G.; Sonomoto, K. High production of acetone-butanol-ethanol with high cell density culture by cell-recycling and bleeding. J. Biotechnol. 2005, 120, 197–206. [Google Scholar] [CrossRef]
- Lizhu, C.; Xueping, L.; Keju, J.; Fan, B.A.I.; Yuan, Y.; Yinghua, L.U. Production of Docosahexaenoic Acid by Fed-batch Cultivation of Schizochytrium sp. J. Xiamen University. Nat. Sci. 2009, 48, 84–88. [Google Scholar]
- Zhang, B.; Zhang, Y.H.; Chen, Y. Enhanced AmB Production in Streptomyces nodosus by Fermentation Regulation and Rational Combined Feeding Strategy. Front. Bioeng. Biotechnol. 2020, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis; Springer: Berlin/Heidelberg, Germany, 1995; pp. 49–70. [Google Scholar]
- Domingues, N.; Matos, A.R.; Marques da Silva, J.; Cartaxana, P. Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. PLoS ONE 2012, 7, e38162. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Guo, X.; Cai, G.; Zhang, H.; Li, Y.; Zheng, W.; Zheng, T. Novel algicidal evidence of a bacterium Bacillus sp. LP-10 killing Phaeocystis globosa, a harmful algal bloom causing species. Biol. Control 2014, 76, 79–86. [Google Scholar] [CrossRef]
- Kong, Y.; Xu, X.; Zhu, L. Cyanobactericidal effect of Streptomyces sp. HJC-D1 on Microcystis auruginosa. PLoS ONE 2013, 8, e57654. [Google Scholar] [CrossRef]
- Zhang, H.; An, X.; Zhou, Y.; Zhang, B.; Zhang, S. Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species-Alexandrium tamarense. PLoS ONE 2013, 8, e63018. [Google Scholar] [CrossRef]
- Wang, Y.; Coyne, K.J. Immobilization of algicidal bacterium Shewanella sp. IRI-160 and its application to control harmful dinoflagellates. Harmful Algae 2020, 94, 101798. [Google Scholar] [CrossRef]
- Ouyang, L.; Liu, Y.; Chen, H.; Zaynab, M.; Yang, X.; Wang, S.; Li, S. Encapsulation and Algicidal Properties of Fermentation Products from Vibrio brasiliensis H115. Front. Mar. Sci. 2021, 8, 676913. [Google Scholar] [CrossRef]
Experiment No. | Carbon Sources (A,%) | Nitrogen Sources (B,%) | pH (C) | Time (D,h) | OD600 |
---|---|---|---|---|---|
1 | 1 (0.5) | 1 (0.5) | 1 (7.5) | 1 (24) | 3.88 |
2 | 1 (0.5) | 2 (1.0) | 2 (8.0) | 2 (36) | 5.64 |
3 | 1 (0.5) | 3 (1.5) | 3 (8.5) | 3 (48) | 6.15 |
4 | 2 (1.0) | 1 (0.5) | 2 (8.0) | 3 (48) | 7.38 |
5 | 2 (1.0) | 2 (1.0) | 3 (8.5) | 1 (24) | 3.75 |
6 | 2 (1.0) | 3 (1.5) | 1 (7.5) | 2 (36) | 5.78 |
7 | 3 (1.5) | 1 (0.5) | 3 (8.5) | 2 (36) | 6.10 |
8 | 3 (1.5) | 2 (1.0) | 1 (7.5) | 3 (48) | 7.71 |
9 | 3 (1.5) | 3 (1.5) | 2 (8.0) | 1 (24) | 3.54 |
K1 | 15.68 | 17.36 | 17.36 | 11.17 | |
K2 | 16.90 | 17.10 | 16.56 | 17.52 | |
K3 | 17.35 | 15.46 | 16.00 | 21.23 | |
k1 | 5.23 | 5.79 | 5.79 | 3.72 | |
k2 | 5.63 | 5.70 | 5.52 | 5.84 | |
k3 | 5.78 | 5.15 | 5.33 | 7.08 | |
R | 0.56 | 0.63 | 0.46 | 3.35 | |
Factor order | D > B > A > C | ||||
Optimal level | A3 | B1 | C1 | D3 | |
Optimum combination | D3B1A3C1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Zheng, W.; Shi, X.; Guo, Y.; Wang, Q.; Lv, P.; Chen, J. Pilot-Scale Fermentation of Pseudoalteromonas sp. Strain FDHY-MZ2: An Effective Strategy for Increasing Algicidal Activity. Biology 2023, 12, 1447. https://doi.org/10.3390/biology12111447
Zhong Y, Zheng W, Shi X, Guo Y, Wang Q, Lv P, Chen J. Pilot-Scale Fermentation of Pseudoalteromonas sp. Strain FDHY-MZ2: An Effective Strategy for Increasing Algicidal Activity. Biology. 2023; 12(11):1447. https://doi.org/10.3390/biology12111447
Chicago/Turabian StyleZhong, Yuying, Wenhuang Zheng, Xinguo Shi, Yisong Guo, Qianqian Wang, Pin Lv, and Jianfeng Chen. 2023. "Pilot-Scale Fermentation of Pseudoalteromonas sp. Strain FDHY-MZ2: An Effective Strategy for Increasing Algicidal Activity" Biology 12, no. 11: 1447. https://doi.org/10.3390/biology12111447
APA StyleZhong, Y., Zheng, W., Shi, X., Guo, Y., Wang, Q., Lv, P., & Chen, J. (2023). Pilot-Scale Fermentation of Pseudoalteromonas sp. Strain FDHY-MZ2: An Effective Strategy for Increasing Algicidal Activity. Biology, 12(11), 1447. https://doi.org/10.3390/biology12111447