The Effects of Nordic Walking with Poles with an Integrated Resistance Shock Absorber on Red Blood Cell Distribution and Cardiorespiratory Efficiency in Postmenopausal Women—A Randomized Controlled Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Exercise Test
2.4. Pulmonary Function Test
2.5. Resting Transthoracic Echocardiogram
2.6. Morphological Blood Test
2.7. Training Programme
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karavidas, A.; Lazaros, G.; Tsiachris, D.; Pyrgakis, V. Aging and the cardiovascular system. Hell. J. Cardiol. 2010, 51, 421–427. [Google Scholar]
- de Almeida, A.J.P.O.; Ribeiro, T.P.; de Medeiros, I.A. Aging: Molecular Pathways and Implications on the Cardiovascular System. Oxid. Med. Cell. Longev. 2017, 2017, e7941563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassel, E.; Stensvold, D.; Halvorsen, T.; Wisløff, U.; Langhammer, A.; Steinshamn, S. Association between Pulmonary Function and Peak Oxygen Uptake in Elderly: The Generation 100 Study. Respir. Res. 2015, 16, 156. [Google Scholar] [CrossRef] [Green Version]
- Janssens, J.P.; Pache, J.C.; Nicod, L.P. Physiological Changes in Respiratory Function Associated with Ageing. Eur. Respir. J. 1999, 13, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Ganassini, A.; Tantucci, C.; Grassi, V. Aging and the Respiratory System. Aging Clin. Exp. Res. 1996, 8, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Copley, S.; Wells, A.; Hawtin, K.; Gibson, D.; Hodson, J.; Jacques, A.; Hansell, D. Lung Morphology in the Elderly: Comparative CT Study of Subjects over 75 Years Old versus Those under 55 Years Old 1. Radiology 2009, 251, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the Impact of Heart Failure in the United States. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Czech, M.; Opolski, G.; Zdrojewski, T.; Dubiel, J.S.; Wizner, B.; Bolisęga, D.; Fedyk-Lukasik, M.; Grodzicki, T. The Costs of Heart Failure in Poland from the Public Payer’s Perspective. Polish Programme Assessing Diagnostic Procedures, Treatment and Costs in Patients with Heart Failure in Randomly Selected Outpatient Clinics and Hospitals at Different Levels of Car. Kardiologia Pol. Pol. Heart J. 2013, 71, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, K.; Bennett, D.; Conrad, N.; Williams, T.M.; Basu, J.; Dwight, J.; Woodward, M.; Patel, A.; McMurray, J.; MacMahon, S. Risk Prediction in Patients With Heart Failure: A Systematic Review and Analysis. JACC Heart Fail. 2014, 2, 440–446. [Google Scholar] [CrossRef]
- Bui, A.L.; Horwich, T.B.; Fonarow, G.C. Epidemiology and Risk Profile of Heart Failure. Nat. Rev. Cardiol. 2011, 8, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Felker, G.M.; Allen, L.A.; Pocock, S.J.; Shaw, L.K.; McMurray, J.J.V.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; et al. Red Cell Distribution Width as a Novel Prognostic Marker in Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Nowinka, P.; Korab-Karpinski, E.; Guzik, P. A Thousand Words about the Link between Red Blood Cell Distribution Width and Heart Failure. J. Med. Sci. 2019, 88, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Makhoul, B.F.; Khourieh, A.; Kaplan, M.; Bahouth, F.; Aronson, D.; Azzam, Z.S. Relation between Changes in Red Cell Distribution Width and Clinical Outcomes in Acute Decompensated Heart Failure. Int. J. Cardiol. 2013, 167, 1412–1416. [Google Scholar] [CrossRef] [PubMed]
- Rigolli, M.; Rossi, A.; Quintana, M.; Klein, A.L.; Yu, C.-M.; Ghio, S.; Dini, F.L.; Prior, D.; Troughton, R.W.; Temporelli, P.L.; et al. The Prognostic Impact of Diastolic Dysfunction in Patients with Chronic Heart Failure and Post-Acute Myocardial Infarction: Can Age-Stratified E/A Ratio Alone Predict Survival? Int. J. Cardiol. 2015, 181, 362–368. [Google Scholar] [CrossRef]
- Nagula, P.; Karumuri, S.; Otikunta, A.N.; Yerrabandi, S.R.V. Correlation of Red Blood Cell Distribution Width with the Severity of Coronary Artery Disease—A Single Center Study. Indian Heart J. 2017, 69, 757–761. [Google Scholar] [CrossRef]
- Tonelli, M.; Sacks, F.; Arnold, M.; Moye, L.; Davis, B.; Pfeffer, M. Relation Between Red Blood Cell Distribution Width and Cardiovascular Event Rate in People With Coronary Disease. Circulation 2008, 117, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Azab, B.; Torbey, E.; Hatoum, H.; Singh, J.; Khoueiry, G.; Bachir, R.; McGinn, J.J.T.; McCord, D.; Lafferty, J. Usefulness of Red Cell Distribution Width in Predicting All-Cause Long-Term Mortality after Non-ST-Elevation Myocardial Infarction. Cardiology 2011, 119, 72–80. [Google Scholar] [CrossRef]
- Dabbah, S.; Hammerman, H.; Markiewicz, W.; Aronson, D. Relation Between Red Cell Distribution Width and Clinical Outcomes After Acute Myocardial Infarction. Am. J. Cardiol. 2010, 105, 312–317. [Google Scholar] [CrossRef]
- Feng, G.H.; Li, H.P.; Li, Q.L.; Fu, Y.; Huang, R.B. Red Blood Cell Distribution Width and Ischaemic Stroke. Stroke Vasc. Neurol. 2017, 2, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, Y.D.; Song, T.-J.; Park, J.H.; Lee, H.S.; Nam, C.M.; Nam, H.S.; Heo, J.H. Red Blood Cell Distribution Width Is Associated with Poor Clinical Outcome in Acute Cerebral Infarction. Thromb. Haemost. 2012, 108, 349–356. [Google Scholar] [CrossRef]
- Yčas, J.W. Chapter Four—Toward a Blood-Borne Biomarker of Chronic Hypoxemia: Red Cell Distribution Width and Respiratory Disease. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 82, pp. 105–197. [Google Scholar] [CrossRef]
- Kalemci, S.; Akin, F.; Sarihan, A.; Sahin, C.; Zeybek, A.; Yilmaz, N. The Relationship between Hematological Parameters and the Severity Level of Chronic Obstructive Lung Disease. Pol. Arch. Intern. Med. 2018, 128, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvagno, G.L.; Sanchis-Gomar, F.; Picanza, A.; Lippi, G. Red Blood Cell Distribution Width: A Simple Parameter with Multiple Clinical Applications. Crit. Rev. Clin. Lab. Sci. 2015, 52, 86–105. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-P.; Chang, C.-C.; Kor, C.-T.; Yang, Y.; Wen, Y.-K.; Chiu, P.-F. The Predictive Role of Red Cell Distribution Width in Mortality among Chronic Kidney Disease Patients. PLoS ONE 2016, 11, e0162025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, R.; Yang, S.; Yao, B.; Wang, H.; Zhang, J.; Shang, H. Complete Blood Count Reference Intervals and Age- and Sex-Related Trends of North China Han Population. Clin. Chem. Lab. Med. 2014, 52, 1025–1032. [Google Scholar] [CrossRef]
- Saxena, S.; Wong, E.T. Heterogeneity of Common Hematologic Parameters among Racial, Ethnic, and Gender Subgroups. Arch. Pathol. Lab. Med. 1990, 114, 715–719. [Google Scholar]
- Ananthaseshan, S.; Bojakowski, K.; Sacharczuk, M.; Poznanski, P.; Skiba, D.S.; Prahl Wittberg, L.; McKenzie, J.; Szkulmowska, A.; Berg, N.; Andziak, P.; et al. Red Blood Cell Distribution Width Is Associated with Increased Interactions of Blood Cells with Vascular Wall. Sci. Rep. 2022, 12, 13676. [Google Scholar] [CrossRef]
- Lippi, G.; Targher, G.; Montagnana, M.; Salvagno, G.L.; Zoppini, G.; Guidi, G.C. Relationship between Red Blood Cell Distribution Width and Kidney Function Tests in a Large Cohort of Unselected Outpatients. Scand. J. Clin. Lab. Investig. 2008, 68, 745–748. [Google Scholar] [CrossRef]
- Wise, J. Number of Older People with Four or More Diseases Will Double by 2035, Study Warns. Br. Med. J. 2018, 360, k371. [Google Scholar] [CrossRef]
- Dunbar, S.B.; Khavjou, O.A.; Bakas, T.; Hunt, G.; Kirch, R.A.; Leib, A.R.; Morrison, R.S.; Poehler, D.C.; Roger, V.L.; Whitsel, L.P. Projected Costs of Informal Caregiving for Cardiovascular Disease: 2015 to 2035: A Policy Statement From the American Heart Association. Circulation 2018, 137, e558–e577. [Google Scholar] [CrossRef]
- Ekblom-Bak, E.; Ekblom, B.; Vikström, M.; de Faire, U.; Hellénius, M.-L. The Importance of Non-Exercise Physical Activity for Cardiovascular Health and Longevity. Br. J. Sports Med. 2014, 48, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Domaszewska, K.; Boraczyński, M.; Tang, Y.-Y.; Gronek, J.; Wochna, K.; Boraczyński, T.; Wieliński, D.; Gronek, P. Protective Effects of Exercise Become Especially Important for the Aging Immune System in The Covid-19 Era. Aging Dis. 2022, 13, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Fahlman, M.; Boardley, D.; Flynn, M.G.; Braun, W.A.; Lambert, C.P.; Bouillon, L.E. Effects of Endurance Training on Selected Parameters of Immune Function in Elderly Women. Gerontology 2000, 46, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Tayebi, S.M.; Safari, H. Single and Concurrent Effects of Endurance and Resistance Training on Pulmonary Function. Iran. J. Basic Med. Sci. 2013, 16, 628–634. [Google Scholar] [PubMed]
- Domaszewska, K.; Koper, M.; Wochna, K.; Czerniak, U.; Marciniak, K.; Wilski, M.; Bukowska, D. The Effects of Nordic Walking With Poles With an Integrated Resistance Shock Absorber on Cognitive Abilities and Cardiopulmonary Efficiency in Postmenopausal Women. Front. Aging Neurosci. 2020, 12, 586286. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, K.; Maciaszek, J.; Cyma-Wejchenig, M.; Szeklicki, R.; Maćkowiak, Z.; Sadowska, D.; Stemplewski, R. The Effect of Nordic Walking Training with Poles with an Integrated Resistance Shock Absorber on the Functional Fitness of Women over the Age of 60. Int. J. Environ. Res. Public. Health 2020, 17, 2197. [Google Scholar] [CrossRef] [Green Version]
- Gillett, P.A. Senior Women’s Fitness Project: A Pilot Study. J. Women Aging 1993, 5, 49–66. [Google Scholar] [CrossRef]
- Åstrand, P.-O.; Ryhming, I. A Nomogram for Calculation of Aerobic Capacity (Physical Fitness) From Pulse Rate During Submaximal Work. J. Appl. Physiol. 1954, 7, 218–221. [Google Scholar] [CrossRef]
- Laszlo, G. Standardisation of Lung Function Testing: Helpful Guidance from the ATS/ERS Task Force. Thorax 2006, 61, 744–746. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.A.C.; Barreto, S.P.; Simões, J.G.; Pereira, F.W.L.; Gerstler, J.G.; Nakatani, J. Valores de referência para a espirometria em uma amostra da populaçäo brasileira adulta. J. Pneumol. 1992, 18, 10–22. [Google Scholar]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.; et al. Recommendations for Chamber Quantification. Eur. J. Echocardiogr. 2006, 7, 79–108. [Google Scholar] [CrossRef]
- Madden, K.M.; Levy, W.C.; Stratton, J.R. Exercise Training and Heart Rate Variability in Older Adult Female Subjects. Clin. Investig. Med. 2006, 29, 20–28. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Emans, M.E.; Gaillard, C.A.J.M.; Pfister, R.; Tanck, M.W.; Boekholdt, S.M.; Wareham, N.J.; Khaw, K.-T. Red Cell Distribution Width Is Associated with Physical Inactivity and Heart Failure, Independent of Established Risk Factors, Inflammation or Iron Metabolism; the EPIC-Norfolk Study. Int. J. Cardiol. 2013, 168, 3550–3555. [Google Scholar] [CrossRef] [PubMed]
- Veeranna, V.; Zalawadiya, S.K.; Panaich, S.; Patel, K.V.; Afonso, L. Comparative Analysis of Red Cell Distribution Width and High Sensitivity C-Reactive Protein for Coronary Heart Disease Mortality Prediction in Multi-Ethnic Population: Findings from the 1999–2004 NHANES. Int. J. Cardiol. 2013, 168, 5156–5161. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Perna, S.; Alalwan, T.A.; Cazzola, R.; Gasparri, C.; Infantino, V.; Perdoni, F.; Iannello, G.; Pepe, D.; Guido, D. A Structural Equation Model to Assess the Pathways of Body Adiposity and Inflammation Status on Dysmetabolic Biomarkers via Red Cell Distribution Width and Mean Corpuscular Volume: A Cross-Sectional Study in Overweight and Obese Subjects. Lipids Health Dis. 2020, 19, 154. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.R.; de Oliveira, R.J.; Dutra, M.T.; Pardono, E.; Terra, D.F.; Lima, R.M.; Simões, H.G.; da Silva, F.M. Acute and Chronic Effects of Resistive Exercise on Blood Pressure in Hypertensive Elderly Women. J. Strength Cond. Res. 2013, 27, 3475–3480. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Loenneke, J.P.; Abe, T. The Association between Muscle Strengthening Activities and Red Blood Cell Distribution Width among a National Sample of U.S. Adults. Prev. Med. 2015, 73, 130–132. [Google Scholar] [CrossRef]
- Ghaffari, S. Oxidative Stress in the Regulation of Normal and Neoplastic Hematopoiesis. Antioxid. Redox Signal. 2008, 10, 1923–1940. [Google Scholar] [CrossRef] [Green Version]
- van der Putten, K.; Braam, B.; Jie, K.E.; Gaillard, C.A. Mechanisms of Disease: Erythropoietin Resistance in Patients with Both Heart and Kidney Failure. Nat. Clin. Pract. Nephrol. 2008, 4, 47–57. [Google Scholar] [CrossRef]
- Van Craenenbroeck, E.M.; Pelle, A.J.; Beckers, P.J.; Possemiers, N.M.; Ramakers, C.; Vrints, C.J.; Van Hoof, V.; Denollet, J.; Conraads, V.M. Red Cell Distribution Width as a Marker of Impaired Exercise Tolerance in Patients with Chronic Heart Failure. Eur. J. Heart Fail. 2012, 14, 54–60. [Google Scholar] [CrossRef]
- Sugie, M.; Harada, K.; Takahashi, T.; Nara, M.; Fujimoto, H.; Kyo, S.; Ito, H. Peak Oxygen Uptake Correlates with Indices of Sarcopenia, Frailty, and Cachexia in Older Japanese Outpatients. JCSM Rapid Commun. 2021, 4, 141–149. [Google Scholar] [CrossRef]
- de Melo Coelho, F.G.; Gobbi, S.; Andreatto, C.A.A.; Corazza, D.I.; Pedroso, R.V.; Santos-Galduróz, R.F. Physical Exercise Modulates Peripheral Levels of Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review of Experimental Studies in the Elderly. Arch. Gerontol. Geriatr. 2013, 56, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.D.; Dempsey, J.A. 5 Demand vs. Capacity in the Aging Pulmonary System. Exerc. Sport Sci. Rev. 1991, 19, 171–210. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Lawler, J.; Dempsey, J.A.; Dodd, S.; Landry, G. Effects of Incomplete Pulmonary Gas Exchange on VO2 Max. J. Appl. Physiol. 1989, 66, 2491–2495. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Pinto, R.S.; Bottaro, M.; Izquierdo, M. Strength and Endurance Training Prescription in Healthy and Frail Elderly. Aging Dis. 2014, 5, 183–195. [Google Scholar] [CrossRef]
NW (n = 16) | NW with RSA (n = 16) | |||||
---|---|---|---|---|---|---|
Baseline | 9 Weeks | p-Value | Baseline | 9 Weeks | p-Value | |
Age (year) | 65.04 (4.01) | 67.62 (4.29) | ||||
Age of menopause (year) | 51.06 (4.68) | 49.25 (4.34) | ||||
Body weight (kg) | 66.61 (10.42) | 67.23 (11.04) | 0.3636 | 74.49 (11.18) | 73.59 (10.95) | 0.0083 (ES: 0.981) |
Body height (cm) | 160.93 (6.00) | 162.19 (4.14) | ||||
BMI (kg/m2) | 25.68 (3.37) | 25.92 (3.70) | 0.3823 | 28.31 (3.96) | 27.97 (3.36) | 0.0124 (ES: 0.167) |
FAT (%) | 35.32 (4.51) | 34.66 (4.07) | 0.7563 | 37.97 (4.52) | 37.85 (4.66) | 0.5407 |
WC (cm) | 82.66 (9.22) | 81.67 (8.71) | 0.0504 | 87.82 (9.53) | 84.86 (8.82) | 0.0052 (ES: 0.322) |
VO2max (mL/kg/min) | 28.19 (4.79) | 32.77 (5.04) | 0.0011 (ES: 0.932) | 28.20 (4.44) | 30.57 (4.45) | 0.0262 (ES: 0.533) |
NW (n = 16) | NW with RSA (n = 16) | |||||
---|---|---|---|---|---|---|
Baseline | 9 Weeks | p-Value | Baseline | 9 Weeks | p-Value | |
E (cm/s) | 0.64 (0.13) | 0.64 (0.10) | 0.9499 | 0.69 (0.16) | 0.64 (0.17) | 0.3343 |
A (cm/s) | 0.83 (0.16) | 0.77 (0.18) | 0.0144 (ES: 0.352) | 0.81 (0.18) | 0.78 (0.15) | 0.2343 |
E/A | 0.81 (0.29) | 0.91 (0.37) | 0.0328 (ES: 0.301) | 0.89 (0.32) | 0.83 (0.26) | 0.4432 |
E′ (cm/s) | 0.08 (0.02) | 0.08 (0.03) | 0.6121 | 0.08 (0.02) | 0.08 (0.02) | 0.1423 |
E/E′ | 8.09 (2.26) | 8.09 (2.31) | 0.8261 | 9.02 (2.26) | 8.79 (2.65) | 0.9547 |
SBP (mmHg) | 127.81 (9.83) | 126.67 (6.99) | 0.5563 | 128.44 (8.11) | 133.12 (9.29) | 0.0559 |
DBP (mmHg) | 77.50 (5.48) | 78.00 (4.93) | 0.6378 | 78.12 (5.12) | 80.31 (2.87) | 0.1925 |
NW (n = 16) | NW with RSA (n = 16) | |||||
---|---|---|---|---|---|---|
Baseline | 9 Weeks | p-Value | Baseline | 9 Weeks | p-Value | |
WBC (109/L) | 6.46 (1.43) | 5.56 (1.26) | 0.0002 (ES: 0.668) | 6.09 (1.09) | 5.54 (1.15) | 0.0199 (ES: 0.491) |
RBC (1012/L) | 4.37 (0.23) | 4.34 (0.24) | 0.5321 | 4.60 (0.42) | 4.51 (0.42) | 0.0121 (ES: 0.214) |
HGB (mmol/L) | 8.52 (0.39) | 8.59 (0.36) | 0.3635 | 8.64 (0.57) | 8.59 (0.61) | 0.2213 |
HCT (%) | 39.34 (1.80) | 38.41 (1.66) | 0.0309 (ES: 0.537) | 39.94 (2.69) | 38.51 (2.88) | 0.0019 (ES: 0.513) |
RDW-CV (%) | 12.41 (0.54) | 12.33 (0.47) | 0.7174 | 13.09 (0.55) | 12.70 (0.62) | 0.0146 (ES: 0.665) |
RDW-SD (fl) | 40.87 (1.77) | 39.78 (2.18) | 0.0787 | 41.14 (1.61) | 38.46 (1.69) | 0.0008 (ES: 1.624) |
NW (n = 16) | NW with RSA (n = 16) | |||||
---|---|---|---|---|---|---|
Baseline | 9 Weeks | p-Value | Baseline | 9 Weeks | p-Value | |
%VC (%) | 102.88 (18.43) | 109.91 (19.75) | 0.8509 | 112.97 (12.92) | 115.92 (16.44) | 0.0619 |
FEV1/VC (%) | 106.67 (11.87) | 110.04 (6.77) | 0.1961 | 105.51 (8.59) | 110.81 (6.67) | 0.0019 (ES: 0.679) |
%MFE 75 (%) | 92.24 (23.37) | 93.42 (27.03) | 0.9749 | 94.24 (21.64) | 93.71 (19.28) | 0.6949 |
%MFE 50 (%) | 96.12 (27.08) | 96.85 (26.38) | 0.7298 | 93.87 (30.67) | 93.25 (26.43) | 0.6949 |
%MFE 25 (%) | 98.06 (38.15) | 107.79 (32.81) | 0.1401 | 96.31 (28.16) | 106.83 (30.72) | 0.0843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczak, K.; Nowinka, P.; Wochna, K.; Domaszewska, K. The Effects of Nordic Walking with Poles with an Integrated Resistance Shock Absorber on Red Blood Cell Distribution and Cardiorespiratory Efficiency in Postmenopausal Women—A Randomized Controlled Trial. Biology 2023, 12, 179. https://doi.org/10.3390/biology12020179
Sobczak K, Nowinka P, Wochna K, Domaszewska K. The Effects of Nordic Walking with Poles with an Integrated Resistance Shock Absorber on Red Blood Cell Distribution and Cardiorespiratory Efficiency in Postmenopausal Women—A Randomized Controlled Trial. Biology. 2023; 12(2):179. https://doi.org/10.3390/biology12020179
Chicago/Turabian StyleSobczak, Katarzyna, Paweł Nowinka, Krystian Wochna, and Katarzyna Domaszewska. 2023. "The Effects of Nordic Walking with Poles with an Integrated Resistance Shock Absorber on Red Blood Cell Distribution and Cardiorespiratory Efficiency in Postmenopausal Women—A Randomized Controlled Trial" Biology 12, no. 2: 179. https://doi.org/10.3390/biology12020179
APA StyleSobczak, K., Nowinka, P., Wochna, K., & Domaszewska, K. (2023). The Effects of Nordic Walking with Poles with an Integrated Resistance Shock Absorber on Red Blood Cell Distribution and Cardiorespiratory Efficiency in Postmenopausal Women—A Randomized Controlled Trial. Biology, 12(2), 179. https://doi.org/10.3390/biology12020179