Genetic Variation versus Morphological Variability in European Peatland Violets (Viola epipsila—V. palustris Group)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material Collection
2.2. Genome Size Assessment
2.3. DNA Extraction
2.4. Morphological Features of V. epipsila—V. palustris Group
2.5. ISSR Analysis
2.6. A Low-Copy Nuclear Gene GPI Analysis
2.7. RAD Sequencing and Bioinformatics Analysis
3. Results
3.1. Genome Size and Genetic Differentiation of V. pubifolia vs. V. palustris
3.2. RAD-Seq Analysis Confirmed the Genetic Similarity of V. pubifolia and V. palustris
3.3. Common Haplotypes of Studied Taxa
3.4. GPI Homoeologs of V. pubifolia
3.5. Phenotypic Plasticity of V. palustris vs. V. pubifolia Variability
4. Discussion
4.1. ISSR Markers and Rad-Seq Subsumed V. pubifolia into Genetic Variation of V. palustris
4.2. What Does the GPI Gene Add to Our View of the Origin of V. pubifolia
4.3. Viola palustris—A Highly Morphologically Variable Species
5. Conclusions
- (1)
- Morphological characters of V. pubifolia fall well within the range of variability of V. palustris.
- (2)
- Genetically, V. pubifolia is V. palustris, based on ISSR, GPI, and RAD-Seq.
- (3)
- The low genetic diversity and heterozygosity of selected Central and Northern European populations of V. epipsila confirmed by RAD-Seq might explain its low tolerance to changing environments and the risk of extinction.
- (4)
- The declining number of V. epipsila populations and the disappearance of its natural habitats suggest that in some areas it might require effective conservation strategies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcussen, T.; Ballard, H.E.; Danihelka, J.; Flores, A.R.; Nicola, M.V.; Watsonet, J.M. A revised phylogenetic classification for Viola (Violaceae). Plants 2022, 11, 2224. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.H. Regional variation patterns in the stemless white violets. Am. Midl. Nat. 1956, 56, 491–503. [Google Scholar] [CrossRef]
- Russell, N.H. The taxonomy of the North American acaulescent white violets. Am. Midl. Nat. 1955, 54, 481–494. [Google Scholar] [CrossRef]
- Moore, D.M.; Harvey, M.J. Cytogenetic relationships of Viola lactea Sm. and other west European arosulate violets. New Phytol. 1961, 60, 85–95. [Google Scholar] [CrossRef]
- Valentine, D.H. Viola L. In Hybridization and the Flora of the British Isles; Stace, C., Ed.; Academic Press: London, UK; Cambridge, MA, USA, 1975. [Google Scholar]
- Kuta, E. Cyto-embryological studies on the species of the Viola L. genus., Nomimium Ging. section from the territory of Poland. Fragm. Florist. Geobot. 1978, 24, 23–91. [Google Scholar]
- Kuta, E. Further cyto-embryological studies on Viola L. section Viola L. Acta Biol. Cracov. Bot. 1981, 23, 69–82. [Google Scholar]
- Kuta, E. Biosystematic studies on the genus Viola L.; section Plagiostigma Godr. I. Karyological analysis of V. epipsila Ledeb.; V. palustris L. and their hybrids from Poland. Acta Biol. Cracov. Bot. 1989, 31, 29–44. [Google Scholar]
- Kuta, E. Biosystematic studies on the genus Viola L.; section Plagiostigma Godr. II. Embryological analysis of V. epipsila Ledeb.; V. palustris L. and their hybrids from Poland. Acta Biol. Cracov. Bot. 1989, 31, 45–62. [Google Scholar]
- Kuta, E. Biosystematic studies on Viola sect. Plagiostigma: III. Biometrical analysis of the Polish populations of V. epipsila, V. palustris and their spontaneous hybrids. Fragm. Florist. Geobot. 1991, 35, 5–34. [Google Scholar]
- Wang, J.-C.; Huang, T.-C. A natural hybrid of Viola from Taiwan with cytological evidence. Bot. Bull. Acad. Sin. 1992, 33, 105–110. [Google Scholar]
- Erben, M. The significance of hybridization on the forming of species in the genus Viola. Bocconea 1996, 5, 113–118. [Google Scholar]
- Neuffer, B.; Auge, H.; Mesch, H.; Amarell, U.; Brandl, R. Spread of violets in polluted pine forests: Morphological and molecular evidence for the ecological importance of interspecific hybridization. Mol. Ecol. 1999, 8, 365–377. [Google Scholar] [CrossRef]
- Malécot, V.; Marcussen, T.; Munzinger, J.; Yockteng, R.; Henry, M. On the origin of the sweet-smelling Parma violet cultivars (Violaceae): Wide intraspecific hybridization, sterility, and sexual reproduction. Am. J. Bot. 2007, 94, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Conesa, M.À.; Mus, M.; Rosselló, J.A. Hybridization between insular endemic and widespread species of Viola in non-disturbed environments assessed by nuclear ribosomal and cpDNA sequences. Plant Syst. Evol. 2008, 273, 169–177. [Google Scholar] [CrossRef]
- van den Hof, K.; van den Berg, R.G.; Gravendeel, B. Chalcone synthase gene lineage diversification confirms allopolyploid evolutionary relationships of European rostrate violets. Mol. Biol. Evol. 2008, 25, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Marcussen, T. Violaceae. In Flora Nordica; Jonsell, B., Karlsson, T., Eds.; The Swedish Museum of Natural History: Stockholm, Sweden, 2010; Volume 6, pp. 12–52. [Google Scholar]
- Marcussen, T.; Jakobsen, K.S.; Danihelka, J.; Ballard, H.E.; Blaxland, K.; Brysting, A.K.; Oxelman, B. Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Syst. Biol. 2012, 61, 107–126. [Google Scholar] [CrossRef]
- Marcussen, T.; Heier, L.; Brysting, A.K.; Oxelman, B.; Jakobsen, K.S. From gene trees to a dated allopolyploid network: Insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 2015, 64, 84–101. [Google Scholar] [CrossRef]
- Toyama, H.; Kamiyama, T.; Yahara, T. A genome-wide AFLP replacement in a hybrid population derived from two closely related Viola species from contrasting habitats. Plant Syst. Evol. 2015, 301, 1073–1084. [Google Scholar] [CrossRef]
- Porter, M.; Foley, M. Violas of Britain & Ireland. Botanical Society of Britain and Ireland; BSBI: Durham, UK, 2017. [Google Scholar]
- Sorsa, M. Cytological and evolutionary studies on Palustres violets. Madroño 1968, 19, 165–179. [Google Scholar]
- Hegi, G. Viola L. In Illustrierte Flora von Mitteleuropa; J.F. Lehmann: München, Germany, 1925; Volume 5, pp. 586–656. [Google Scholar]
- Komarov, V.L. Flora URSS; Academia Scientiarum URSS: Leningrad, Moscow, 1949; Volume 15, p. 742. [Google Scholar]
- Anderson, J.P. Flora of Alaska and Adjacent Parts of Canada; University of Iowa Press: Iowa City, IA, USA, 1959; p. 543. [Google Scholar]
- Valentine, D.H.; Merxmüller, H.; Schmidt, A. Viola L. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Eds.; Cambridge University Press: Cambridge, UK, 1968; Volume 2, pp. 270–282. [Google Scholar]
- Meusel, H.; Jäger, E.; Weinert, E. Vergleichende Chorologie der Zentraleuropäischen Flora; G. Fischer: Jena, Germany, 1978; Volume 2, p. 418. [Google Scholar]
- Wąsowicz, P. Annotated checklist of vascularplants of Iceland. Fjölrit Náttúrufræistofnunar 2020, 57, 1–193. [Google Scholar] [CrossRef]
- Kuta, E.; Pliszko, A. Viola epipsila Ledeb. In Polska Czerwona Księga Roślin, Paprotniki i Rośliny Kwiatowe; Kazimierczakowa, R., Zarzycki, K., Mirek, Z., Eds.; Instytut Ochrony Przyrody PAN: Kraków, Polska, 2014; Volume 3, pp. 329–331. [Google Scholar]
- Żabicka, J.; Migdałek, G.; Słomka, A.; Sliwinska, E.; Mackiewicz, L.; Keczyński, A.; Kuta, E. Interspecific hybridization and introgression influence biodiversity—Based on genetic diversity of Central European Viola epipsila—V. palustris complex. Diversity 2020, 12, 321. [Google Scholar] [CrossRef]
- Loos, G.H. Taxonomische Neukombinationen zur Flora Mittel-und Osteuropas, insbesondere Nordrhein-Westfalens. Online-Veröff. Boch. Bot. Ver. 2010, 2, 1–20. [Google Scholar]
- Eklund, O. Was ist eigentlich Viola ‘epipsila × palustris’? Memo. Soc. Fauna Flora Fenn. 1934, 10, 35–40. [Google Scholar]
- Eklund, O. Die Gefässpflanzenflora beiderseitis Skifted im Schärenarchipel Südwestfinnlands. Bidr. känn. Finl. nat. folk 1958, 101, 1–324. [Google Scholar]
- Brandrud, K.H.; Borgen, L. Viola epipsila, V. palustris and their hybrid in SE Norway. Acta Univ. Upsaliensis. Symb. Bot. Ups. 1986, 27, 19–24. [Google Scholar]
- Jarašius, L.; Etzold, J.; Truus, L.; Purre, A.H.; Sendžikaitė, J.; Strazdiņa, L.; Zableckis, N.; Pakalne, M.; Bociąg, K.; Ilomets, M.; et al. Handbook for Assessment of Greenhouse Gas Emissions from Peatlands: Applications of direct and indirect methods by LIFE Peat Restore; Lithuanian Fund for Nature: Vilnius, Lithuania, 2022. [Google Scholar]
- Gupta, M.; Chyi, Y.S.; Romero-Severson, J.; Owen, J.L. Amplification of DNA markers from evolutionary diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 1994, 89, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Stepansky, A.; Kovalski, I.; Perl-Treves, R. Intraspecific classifcation of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 1999, 217, 313–332. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE. In Microsoft Windows Based Freeware for Population Genetic Analysis. Release 1.31; University of Alberta: Edmonton, AB, Canada, 1999; Available online: https://sites.ualberta.ca/~fyeh/popgene.html (accessed on 18 August 2020).
- Schlüter, P.M.; Harris, S.A. Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Notes 2006, 6, 569–572. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Blaxland, K.; Ballard, H.E.; Marcussen, T. Viola pluviae sp. nov. (Violaceae), a member of subsect. Stolonosae in the Pacific Northwest region of North America. Nord. J. Bot. 2018, 36, e01931. [Google Scholar] [CrossRef]
- Scheen, A.C.; Pfeil, B.E.; Petri, A.; Heidari, N.; Nylinder, S.; Oxelman, B. Use of allele-specific sequencing primers is an efficient alternative to PCR subcloning of low-copy nuclear genes. Mol. Ecol. Resour. 2012, 12, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Huang, X. A Contig Assembly Program Based on Sensitive Detection of Fragment Overlaps. Genomics 1992, 14, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Simmons, M.P.; Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 2000, 49, 369–381. [Google Scholar] [CrossRef]
- Müller, K. SeqState—Primer design and sequence statistics for phylogenetic DNA data sets. Appl. Bioinform. 2005, 4, 65–69. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Available online: https://github.com/rambaut/figtree/releases (accessed on 4 October 2016).
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.L.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. Edited by Justin C. Fay. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef] [PubMed]
- Catchen, J.M.; Amores, A.; Hohenlohe, P.; Cresko, W.; Postlethwait, J.H. Stacks: Building and Genotyping Loci De Novo from Short-Read Sequences. G3 2011, 1, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Gramlich, S.; Wagner, N.D.; Hörandl, E. RAD-seq reveals genetic structure of the F2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC Plant Biol. 2018, 18, 317. [Google Scholar] [CrossRef] [PubMed]
- Viricel, A.; Pante, E.; Dabin, W.; Simon-Bouhet, B. Applicability of RAD-Tag Genotyping for Interfamilial Comparisons: Empirical Data from Two Cetaceans. Mol. Ecol. Resour. 2013, 14, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Adamack, A.T.; Gruber, B. PopGenReport: Simplifying Basic Population Genetic Analyses in R. Edited by Stephane Dray. Methods Ecol. Evol. 2014, 5, 384–387. [Google Scholar] [CrossRef]
- Malinsky, M.; Trucchi, E.; Lawson, D.J.; Falush, D. RADpainter and fineRADstructure: Population Inference from RADseq Data. Mol. Biol. Evol. 2018, 35, 1284–1290. [Google Scholar] [CrossRef]
- Nei, M. Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Zabłocki, J. Dwuliścienne wolnopłatkowe: Dwuokwiatowe, rodzina: Violaceae, fiołkowate. In Flora Polska. Rośliny Naczyniowe Polski i Ziem Ościennych; Szafer, W., Ed.; Polska Akademia Umiejętności: Kraków, Polska, 1947; Volume 6, pp. 1–70. [Google Scholar]
- Seifert, B. The gene and gene expression (GAGE) species concept: An universal approach for all eukaryotic organisms. Syst. Biol. 2020, 69, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Rouhan, G.; Gaudeul, M. Plant taxonomy: A historical perspective, current challenges, and perspectives. In Molecular Plant Taxonomy. Methods in Molecular Biology; Humana: New York, NY, USA, 2021; p. 2222. [Google Scholar]
- Hamrick, J.L.; Godt, M.J.W. Allozyme diversity in plant species. In Plant Population Genetics, Breeding, and Genetic Resources; Brown, A.H.D., Clegg, M.T., Kahler, A.L., Weir, B.S., Eds.; Sinauer Associates: Sunderland, MA, USA, 1990; pp. 43–63. [Google Scholar]
- Auge, H.; Neuffer, B.; Erlinghagen, F.; Grupe, R.; Brandl, R. Demographic and random amplified polymorphic DNA analyses reveal high levels of genetic diversity in a clonal violet. Mol. Ecol. 2001, 10, 1811–1819. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, J.L.; Jimenez, J.F.; Mota, J.F.; Gomez, P.S. Genetic diversity of Viola cazorlensis Gand., an endemic species of Mediterranean dolomitic habitats: Implications for conservation. Syst. Biodivers. 2015, 13, 571–580. [Google Scholar] [CrossRef]
- Hatmaker, E.A.; Staton, M.E.; Dattilo, A.J.; Hadziabdic, D.; Rinehart, T.A.; Schilling, E.E.; Trigiano, R.N.; Wadl, P.A. Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae). Front. Plant Sci. 2018, 9, 943. [Google Scholar] [CrossRef]
- Sorsa, M. Hybridization of Palustres violets in Finland. Ann. Acad. Sci. Fenn. A 4 Biol. 1965, 86, 4–18. [Google Scholar]
- Tansley, S.A.; Brown, C.R. RAPD variation in the rare and endangered Leucadendron elimense (Proteaceae): Implications for their conservation. Biol. Conserv. 2000, 95, 39–48. [Google Scholar] [CrossRef]
- Fridman, E. Consequences of hybridization and heterozygosity on plant vigor and phenotypic stability. Plant Sci. 2015, 232, 35–40. [Google Scholar] [CrossRef]
- Doyle, J.J.; Egan, A.N. Dating the origins of polyploidy events. New Phyt. 2010, 18, 73–85. [Google Scholar] [CrossRef]
- Pikaard, C.S. Genomic change and gene silencing in polyploids. Trends Genet. 2001, 17, 675–677. [Google Scholar] [CrossRef]
- Liu, B.; Wendel, J.F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol. Phylogenet. Evol. 2003, 29, 365–379. [Google Scholar] [CrossRef]
- Adams, K.L.; Wendel, J.F. Novel patterns of gene expression in polyploid plants. Trends Genet. 2005, 21, 539–543. [Google Scholar] [CrossRef] [PubMed]
PCR Primers (5’-3’) * | Annealing Temperature °C | Sequencing Primers ** | Sequenced Gene Region | Homoeolog |
---|---|---|---|---|
Step 1 | ||||
Gpi C12Fpcr (TCCAATATGGTTTCTCCATG)/ and Gpi C16Rpcr (AAGTGGTAGACCATCAATAGAA)/ | 49 | Gpi C13Rseq (GCATACACATGCACTTATACC); Gpi cham15R (TAAGATGGCCTGTGAGCAC) | exon12–exon16 | - |
Gpi M12F (CTCTCCAATATGGTTTCTCCATT)/ and Gpi melvio16R (GAAGTGGTAGACCATCAATAGAT) | 58 | Gpi M12F; Gpi melvio16R | ||
Gpi C13Fpcr (CGACTTTAGGTAGATTAAAGTG) and Gpi cham17R (CAACTTCWTGAATCTAAATCTTG) | 49 | Gpi melvio13R (TTAAAAAACCATAAAGTGTGCATTCC); Gpi melvio15R (TAAGATGGCCTGTGAGCAT) | ||
Gpi melvio17R (AACTTMTKGAATCTAAAAYCCTC) and Gpi melvio13F (GTCGTGTGGAATTTGCAGG) | 49 | Gpi melvio17R; Gpi melvio13F | exon13–exon18 | - |
Step 2 | ||||
Gpi C12Fpcr and Gpi C16Rpcr | 62.5–49 | Cepi_0077F_T (TTCTGAAATTCAT); Cpal_0077F_C (TTCTGAAATTCAC); Cepi_1351R_A (AGAAAAGGAAGGAA); Cpal_1351R_G (AGAAAAGGAAGGCG) | exon12–exon16 | CHAM |
Gpi M12F and Gpi melvio16R | 62.5–49 | Mepi_0121F_C (TCATGAGACTAAGC); Mpal_0121F_G (TCATGAGAATAAGG); Mepi_1313R_T (CCTGTTGAATATGT); Mpal_1313R_C (CCTGTTGAATATGC) | MELVIO | |
Gpi C13Fpcr and Gpi cham17R | 62.5–49 | Cepi_1079F_G (ATCTTGTCTTATTG); Cpal_1079F_T (ATCTCGTCTTATTT); Cepi_2065R_C (AAATCGGAGGGAAC); Cpal_2065R_T (AAATCGGAGGGAAT) | exon13–exon17 | CHAM |
Gpi melvio17R and Gpi melvio13F | 62.5–49 | Mepi_1083F_G (TGTCGTATTGTTTG); Mpal_1083F_T (TGTCGTATTGTTTT); Mepi_2030R_G (AGATGCGTTAACCG); Mpal_2030R_A (AGATACGTTAACCA) | MELVIO |
Pop | N | Npoly | %poly | Hj | HT | HS | GST | |
---|---|---|---|---|---|---|---|---|
A | SPN | 20 | 36 | 17.91 | 0.05 | 0.09 | 0.07 | 0.21 |
PAL * | 15 | 54 | 26.87 | 0.09 | ||||
B | SPN | 62 | 62 | 30.85 | 0.06 |
Pop ID | Npriv | NIndv | Npoly | %poly | P | Ho | Obs. Hom. | He | Exp. Hom. | π | FIS |
---|---|---|---|---|---|---|---|---|---|---|---|
Vpub | 31 | 12.16 | 443 | 0.28 | 0.75 | 0.48 | 0.52 | 0.28 | 0.72 | 0.29 | −0.35 |
Vpal | 24 | 3.00 | 417 | 0.27 | 0.75 | 0.46 | 0.54 | 0.28 | 0.72 | 0.33 | −0.21 |
Vepi | 14 | 3.00 | 40 | 0.03 | 0.98 | 0.02 | 0.98 | 0.02 | 0.98 | 0.03 | 0.02 |
hybrid | 8 | 2.00 | 581 | 0.37 | 0.64 | 0.72 | 0.28 | 0.39 | 0.61 | 0.52 | −0.29 |
Vpub | Vpal | Vepi | Hybrids | |
---|---|---|---|---|
Vpub | - | 0.03 | 0.41 | 0.16 |
Vpal | 0.03 | - | 0.52 | 0.16 |
Vepi | 0.41 | 0.52 | - | 0.33 |
V. pubifolia Sample Name | No of Common Haplotypes with Selected Taxa or Sample | |||||||
---|---|---|---|---|---|---|---|---|
All V. epipsila Rs16–18 | V. epipsila from Poland Rs16 | V. epipsila from Poland Rs18 | V. epipsila from Lithuania Rs17 | V. palustris from Germany Rs14 | V. palustris from Lithuania Rs15 | All V. palustris Rs14,15,21 | All Hybrids Rs19,20 | |
Rs1 | 107 | 122 | 124 | 127 | 532 | 605 | 478 | 302 |
Rs2 | 110 | 126 | 126 | 130 | 536 | 608 | 481 | 307 |
Rs3 | 90 | 104 | 105 | 107 | 485 | 543 | 434 | 266 |
Rs4 | 102 | 118 | 118 | 122 | 520 | 587 | 471 | 288 |
Rs5 | 101 | 116 | 118 | 121 | 526 | 591 | 472 | 291 |
Rs6 | 87 | 100 | 105 | 107 | 502 | 560 | 454 | 277 |
Rs7 | 99 | 115 | 115 | 118 | 495 | 573 | 448 | 273 |
Rs8 | 92 | 105 | 110 | 113 | 511 | 572 | 459 | 287 |
Rs9 | 96 | 107 | 115 | 115 | 516 | 574 | 465 | 305 |
Rs10 | 108 | 121 | 125 | 127 | 502 | 569 | 450 | 277 |
Rs11 | 106 | 122 | 122 | 125 | 496 | 573 | 450 | 279 |
Rs12 | 99 | 113 | 115 | 118 | 515 | 572 | 463 | 279 |
Rs24 | 93 | 107 | 111 | 110 | 552 | 581 | 472 | 281 |
Mean | 99.23 | 113.54 | 116.08 | 118.46 | 514.46 | 577.54 | 461.31 | 285.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żabicka, J.; Kirschey, T.; Migdałek, G.; Słomka, A.; Kuta, E. Genetic Variation versus Morphological Variability in European Peatland Violets (Viola epipsila—V. palustris Group). Biology 2023, 12, 362. https://doi.org/10.3390/biology12030362
Żabicka J, Kirschey T, Migdałek G, Słomka A, Kuta E. Genetic Variation versus Morphological Variability in European Peatland Violets (Viola epipsila—V. palustris Group). Biology. 2023; 12(3):362. https://doi.org/10.3390/biology12030362
Chicago/Turabian StyleŻabicka, Justyna, Tom Kirschey, Grzegorz Migdałek, Aneta Słomka, and Elżbieta Kuta. 2023. "Genetic Variation versus Morphological Variability in European Peatland Violets (Viola epipsila—V. palustris Group)" Biology 12, no. 3: 362. https://doi.org/10.3390/biology12030362
APA StyleŻabicka, J., Kirschey, T., Migdałek, G., Słomka, A., & Kuta, E. (2023). Genetic Variation versus Morphological Variability in European Peatland Violets (Viola epipsila—V. palustris Group). Biology, 12(3), 362. https://doi.org/10.3390/biology12030362