Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Recruitment
2.2. DNA Extraction and Library Preparation
2.3. Bioinformatics and Data Filtering Pipeline
2.4. Biological Functional Analysis
3. Results
3.1. Demographic Factors
3.2. De Novo Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Todd, J.A. Etiology of type 1 diabetes. Immunity 2010, 32, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Katsarou, A.; Gudbjornsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, A. Type 1 diabetes mellitus. Nat. Rev. Dis. Prim. 2017, 3, 17016. [Google Scholar] [CrossRef]
- Haller, M.J.; Atkinson, M.A.; Schatz, D. Type 1 diabetes mellitus: Etiology, presentation, and management. Pediatric. Clin. 2005, 52, 1553–1578. [Google Scholar] [CrossRef]
- Craig, M.E.; Kim, K.W.; Isaacs, S.R.; Penno, M.A.; Hamilton-Williams, E.E.; Couper, J.J.; Rawlinson, W.D. Early-life factors contributing to type 1 diabetes. Diabetologia 2019, 62, 1823–1834. [Google Scholar] [CrossRef] [Green Version]
- Olmos, P.; A’hern, R.; Heaton, D.; Millward, B.; Risley, D.; Pyke, D.; Leslie, R. The significance of the concordance rate for type 1 (insulin-dependent) diabetes in identical twins. Diabetologia 1988, 31, 747–750. [Google Scholar] [CrossRef] [Green Version]
- Levitsky, L.L.; Misra, M. Epidemiology, Presentation, and Diagnosis of Type 1 Diabetes Mellitus in Children and Adolescents; UpToDate: Waltham, MA, USA, 2007. [Google Scholar]
- Redondo, M.J.; Steck, A.K.; Pugliese, A. Genetics of type 1 diabetes. Pediatric. Diabetes 2018, 19, 346–353. [Google Scholar] [CrossRef]
- Nyaga, D.M.; Vickers, M.H.; Jefferies, C.; Perry, J.K.; O’Sullivan, J.M. The genetic architecture of type 1 diabetes mellitus. Mol. Cell. Endocrinol. 2018, 477, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Hwang, J.S. Genetic aspects of type 1 diabetes. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Fujita, P.A.; Rhead, B.; Zweig, A.S.; Hinrichs, A.S.; Karolchik, D.; Cline, M.S.; Goldman, M.; Barber, G.P.; Clawson, H.; Coelho, A. The UCSC genome browser database: Update 2011. Nucleic Acids Res. 2010, 39 (Suppl. S1), D876–D882. [Google Scholar] [CrossRef] [Green Version]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-J.; Kwon, T.; Kim, C.-K.; Seol, Y.-J.; Park, D.-S.; Lee, T.-H.; Ahn, B.-O. NGS_SNPAnalyzer: A desktop software supporting genome projects by identifying and visualizing sequence variations from next-generation sequencing data. Genes Genom. 2020, 42, 1311–1317. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- GATK Team. BaseRecalibrator. 2020. Available online: https://gatk.broadinstitute.org/hc/en-us/articles/360036898312-BaseRecalibrator (accessed on 1 January 2021).
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennell, T.J.; Carneiro, M.O.; Van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv, 2017; bioRxiv:201178. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 2011, 32, 894–899. [Google Scholar] [CrossRef]
- Paila, U.; Chapman, B.A.; Kirchner, R.; Quinlan, A.R. GEMINI: Integrative exploration of genetic variation and genome annotations. PLoS Comput. Biol. 2013, 9, e1003153. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef]
- Barrett, J.C.; Clayton, D.G.; Concannon, P.; Akolkar, B.; Cooper, J.D.; Erlich, H.A.; Julier, C.; Morahan, G.; Nerup, J.; Nierras, C.; et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 2009, 41, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Ardestani, A.; Paroni, F.; Azizi, Z.; Kaur, S.; Khobragade, V.; Yuan, T.; Frogne, T.; Tao, W.; Oberholzer, J.; Pattou, F. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat. Med. 2014, 20, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Burrack, A.L.; Martinov, T.; Fife, B.T. T cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes. Front. Endocrinol. 2017, 8, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saevarsdottir, S.; Olafsdottir, T.A.; Ivarsdottir, E.V.; Halldorsson, G.H.; Gunnarsdottir, K.; Sigurdsson, A.; Johannesson, A.; Sigurdsson, J.K.; Juliusdottir, T.; Lund, S.H. FLT3 stop mutation increases FLT3 ligand level and risk of autoimmune thyroid disease. Nature 2020, 584, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Philip Schumm, L.; Sharma, Y.; Anderson, C.A. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellinghaus, D.; Jostins, L.; Spain, S.L.; Cortes, A.; Bethune, J.; Han, B.; Park, Y.R.; Raychaudhuri, S.; Pouget, J.G.; Hübenthal, M. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 2016, 48, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Andersen, G.; Yorgov, D.; Ferrara, T.M.; Ben, S.; Brownson, K.M.; Holland, P.J.; Birlea, S.A.; Siebert, J.; Hartmann, A. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat. Genet. 2016, 48, 1418–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentham, J.; Morris, D.L.; Cunninghame Graham, D.S.; Pinder, C.L.; Tombleson, P.; Behrens, T.W.; Martín, J.; Fairfax, B.P.; Knight, J.C.; Chen, L. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 2015, 47, 1457–1464. [Google Scholar] [CrossRef]
- Langefeld, C.D.; Ainsworth, H.C.; Graham, D.S.C.; Kelly, J.A.; Comeau, M.E.; Marion, M.C.; Howard, T.D.; Ramos, P.S.; Croker, J.A.; Morris, D.L. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 2017, 8, 16021. [Google Scholar] [CrossRef] [Green Version]
- Onengut-Gumuscu, S.; Chen, W.-M.; Burren, O.; Cooper, N.J.; Quinlan, A.R.; Mychaleckyj, J.C.; Farber, E.; Bonnie, J.K.; Szpak, M.; Schofield, E. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 2015, 47, 381–386. [Google Scholar] [CrossRef]
- Tsoi, L.C.; Spain, S.L.; Knight, J.; Ellinghaus, E.; Stuart, P.E.; Capon, F.; Ding, J.; Li, Y.; Tejasvi, T.; Gudjonsson, J.E. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 2012, 44, 1341–1348. [Google Scholar] [CrossRef] [Green Version]
- Plagnol, V.; Howson, J.M.; Smyth, D.J.; Walker, N.; Hafler, J.P.; Wallace, C.; Stevens, H.; Jackson, L.; Simmonds, M.J.; Consortium, T.D.G. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet. 2011, 7, e1002216. [Google Scholar] [CrossRef]
- Yin, X.; Low, H.Q.; Wang, L.; Li, Y.; Ellinghaus, E.; Han, J.; Estivill, X.; Sun, L.; Zuo, X.; Shen, C. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat. Commun. 2015, 6, 6916. [Google Scholar] [CrossRef] [Green Version]
- Patrick, M.T.; Stuart, P.E.; Zhang, H.; Zhao, Q.; Yin, X.; He, K.; Zhou, X.-J.; Mehta, N.N.; Voorhees, J.J.; Boehnke, M. Causal relationship and shared genetic loci between psoriasis and type 2 diabetes through trans-disease meta-analysis. J. Investig. Dermatol. 2021, 141, 1493–1502. [Google Scholar] [CrossRef]
- Christakoudi, S.; Evangelou, E.; Riboli, E.; Tsilidis, K.K. GWAS of allometric body-shape indices in UK Biobank identifies loci suggesting associations with morphogenesis, organogenesis, adrenal cell renewal and cancer. Sci. Rep. 2021, 11, 10688. [Google Scholar] [CrossRef]
- Gorlova, O.Y.; Li, Y.; Gorlov, I.; Ying, J.; Chen, W.V.; Assassi, S.; Reveille, J.D.; Arnett, F.C.; Zhou, X.; Bossini-Castillo, L. Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations. PLoS ONE 2018, 13, e0189498. [Google Scholar] [CrossRef] [Green Version]
- Bellacosa, A. Role of MED1 (MBD4) gene in DNA repair and human cancer. J. Cell. Physiol. 2001, 187, 137–144. [Google Scholar] [CrossRef]
- Liao, W.; Li, M.; Wu, H.; Jia, S.; Zhang, N.; Dai, Y.; Zhao, M.; Lu, Q. Down-regulation of MBD4 contributes to hypomethylation and overexpression of CD70 in CD4+ T cells in systemic lupus erythematosus. Clin. Epigenetics 2017, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Gudjonsson, A.; Gudmundsdottir, V.; Axelsson, G.T.; Gudmundsson, E.F.; Jonsson, B.G.; Launer, L.J.; Lamb, J.R.; Jennings, L.L.; Aspelund, T.; Emilsson, V. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat. Commun. 2022, 13, 480. [Google Scholar] [CrossRef]
- Sivaskandarajah, G.A.; Jeansson, M.; Maezawa, Y.; Eremina, V.; Baelde, H.J.; Quaggin, S.E. Vegfa protects the glomerular microvasculature in diabetes. Diabetes 2012, 61, 2958–2966. [Google Scholar] [CrossRef] [Green Version]
- Al-Kateb, H.; Mirea, L.; Xie, X.; Sun, L.; Liu, M.; Chen, H.; Bull, S.B.; Boright, A.P.; Paterson, A.D.; Group, D.E.R. Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: The DCCT/EDIC genetics study. Diabetes 2007, 56, 2161–2168. [Google Scholar] [CrossRef] [Green Version]
- Staels, W.; Heremans, Y.; Heimberg, H.; De Leu, N. VEGF-A and blood vessels: A beta cell perspective. Diabetologia 2019, 62, 1961–1968. [Google Scholar] [CrossRef] [Green Version]
- Stupfler, B.; Birck, C.; Séraphin, B.; Mauxion, F. BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat. Commun. 2016, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- Takashima, N.; Ishiguro, H.; Kuwabara, Y.; Kimura, M.; Haruki, N.; Ando, T.; Kurehara, H.; Sugito, N.; Mori, R.; Fujii, Y. Expression and prognostic roles of PABPC1 in esophageal cancer: Correlation with tumor progression and postoperative survival. Oncol. Rep. 2006, 15, 667–671. [Google Scholar] [CrossRef]
- Chi, C.; Shao, X.; Rhead, B.; Gonzales, E.; Smith, J.B.; Xiang, A.H.; Graves, J.; Waldman, A.; Lotze, T.; Schreiner, T. Admixture mapping reveals evidence of differential multiple sclerosis risk by genetic ancestry. PLoS Genet. 2019, 15, e1007808. [Google Scholar] [CrossRef]
- Grigoriadis, N.; Van Pesch, V. A basic overview of multiple sclerosis immunopathology. Eur. J. Neurol. 2015, 22, 3–13. [Google Scholar] [CrossRef]
- Ventura, R.E.; Antezana, A.O.; Bacon, T.; Kister, I. Hispanic Americans and African Americans with multiple sclerosis have more severe disease course than Caucasian Americans. Mult. Scler. J. 2017, 23, 1554–1557. [Google Scholar] [CrossRef]
- Yang, S.-N.; Berggren, P.-O. The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr. Rev. 2006, 27, 621–676. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, C.A.; Smith, C.; Yang, W.; Mullighan, C.G.; Qu, C.; Larsen, E.; Bowman, W.P.; Liu, C.; Ramsey, L.B.; Chang, T. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood J. Am. Soc. Hematol. 2015, 126, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Zhang, M.; Shang, Z.; Li, J.; Zhang, S.; Lian, D.; Zhang, R. Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia. Oncotarget 2017, 8, 7891. [Google Scholar] [CrossRef] [Green Version]
- Grant, S.F.; Qu, H.-Q.; Bradfield, J.P.; Marchand, L.; Kim, C.E.; Glessner, J.T.; Grabs, R.; Taback, S.P.; Frackelton, E.C.; Eckert, A.W. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes 2009, 58, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Wessel, J.; Chu, A.Y.; Willems, S.M.; Wang, S.; Yaghootkar, H.; Brody, J.A.; Dauriz, M.; Hivert, M.-F.; Raghavan, S.; Lipovich, L. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat. Commun. 2015, 6, 5897. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Gan, W.; Lu, L.; Dong, X.; Han, X.; Hu, C.; Yang, Z.; Sun, L.; Bao, W.; Li, P. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 2013, 62, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jia, J.; Huang, T. Shared genetic architecture and casual relationship between leptin levels and type 2 diabetes: Large-scale cross-trait meta-analysis and Mendelian randomization analysis. BMJ Open Diabetes Res. Care 2020, 8, e001140. [Google Scholar] [CrossRef]
- Nogueira, T.C.; Paula, F.M.; Villate, O.; Colli, M.L.; Moura, R.F.; Cunha, D.A.; Marselli, L.; Marchetti, P.; Cnop, M.; Julier, C. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet. 2013, 9, e1003532. [Google Scholar] [CrossRef]
- Harper, A.R.; Goel, A.; Grace, C.; Thomson, K.L.; Petersen, S.E.; Xu, X.; Waring, A.; Ormondroyd, E.; Kramer, C.M.; Ho, C.Y. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat. Genet. 2021, 53, 135–142. [Google Scholar] [CrossRef]
- Honkanen, J.; Nieminen, J.K.; Gao, R.; Luopajarvi, K.; Salo, H.M.; Ilonen, J.; Knip, M.; Otonkoski, T.; Vaarala, O. IL-17 immunity in human type 1 diabetes. J. Immunol. 2010, 185, 1959–1967. [Google Scholar] [CrossRef] [Green Version]
- Sliz, E.; Kalaoja, M.; Ahola-Olli, A.; Raitakari, O.; Perola, M.; Salomaa, V.; Lehtimäki, T.; Karhu, T.; Viinamäki, H.; Salmi, M. Genome-wide association study identifies seven novel loci associating with circulating cytokines and cell adhesion molecules in Finns. J. Med. Genet. 2019, 56, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.-H.; Zou, Y.-F.; Feng, X.-L.; Li, J.; Wang, F.; Pan, F.-M.; Ye, D.-Q. Meta-analysis of TYK2 gene polymorphisms association with susceptibility to autoimmune and inflammatory diseases. Mol. Biol. Rep. 2011, 38, 4663–4672. [Google Scholar] [CrossRef]
- Marroqui, L.; Dos Santos, R.S.; Fløyel, T.; Grieco, F.A.; Santin, I.; Op de Beeck, A.; Marselli, L.; Marchetti, P.; Pociot, F.; Eizirik, D.L. TYK2, a candidate gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes 2015, 64, 3808–3817. [Google Scholar] [CrossRef] [Green Version]
- Mori, H.; Takahashi, H.; Mine, K.; Higashimoto, K.; Inoue, K.; Kojima, M.; Kuroki, S.; Eguchi, T.; Ono, Y.; Inuzuka, S. TYK2 Promoter Variant Is Associated with Impaired Insulin Secretion and Lower Insulin Resistance in Japanese Type 2 Diabetes Patients. Genes 2021, 12, 400. [Google Scholar] [CrossRef]
- Izumi, K.; Mine, K.; Inoue, Y.; Teshima, M.; Ogawa, S.; Kai, Y.; Kurafuji, T.; Hirakawa, K.; Miyakawa, D.; Ikeda, H. Reduced Tyk2 gene expression in β-cells due to natural mutation determines susceptibility to virus-induced diabetes. Nat. Commun. 2015, 6, 6748. [Google Scholar] [CrossRef] [Green Version]
- Størling, J.; Pociot, F. Type 1 diabetes candidate genes linked to pancreatic islet cell inflammation and beta-cell apoptosis. Genes 2017, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Almgren, P.; Lindqvist, A.; Krus, U.; Hakaste, L.; Ottosson-Laakso, E.; Asplund, O.; Sonestedt, E.; Prasad, R.B.; Laurila, E.; Orho-Melander, M. Genetic determinants of circulating GIP and GLP-1 concentrations. JCI Insight 2017, 2, e93306. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Xia, Y.; Yang, J. Systemic inflammation and chronic kidney disease in a patient due to the RNASEH2B defect. Pediatr. Rheumatol. 2021, 19, 9. [Google Scholar] [CrossRef]
- Ji, R.; Meng, L.; Li, Q.; Lu, Q. TAM receptor deficiency affects adult hippocampal neurogenesis. Metab. Brain Dis. 2015, 30, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Paolino, M.; Penninger, J.M. The role of TAM family receptors in immune cell function: Implications for cancer therapy. Cancers 2016, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Bissa, B.; Brecht, L.; Allers, L.; Choi, S.W.; Gu, Y.; Zbinden, M.; Burge, M.R.; Timmins, G.; Hallows, K. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol. Cell 2020, 77, 951–969.e959. [Google Scholar] [CrossRef]
- Sakuishi, K.; Apetoh, L.; Sullivan, J.M.; Blazar, B.R.; Kuchroo, V.K.; Anderson, A.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 2010, 207, 2187–2194. [Google Scholar] [CrossRef]
- Silva, I.G.; Yasinska, I.M.; Sakhnevych, S.S.; Fiedler, W.; Wellbrock, J.; Bardelli, M.; Varani, L.; Hussain, R.; Siligardi, G.; Ceccone, G. The Tim-3-galectin-9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine 2017, 22, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, S.; Sveinbjornsson, G.; de Lapuente Portilla, A.L.; Swaminathan, B.; Plomp, R.; Dekkers, G.; Ajore, R.; Ali, M.; Bentlage, A.E.; Elmer, E. Identification of sequence variants influencing immunoglobulin levels. Nat. Genet. 2017, 49, 1182–1191. [Google Scholar] [CrossRef]
- Phelan, C.M.; Kuchenbaecker, K.B.; Tyrer, J.P.; Kar, S.P.; Lawrenson, K.; Winham, S.J.; Dennis, J.; Pirie, A.; Riggan, M.J.; Chornokur, G. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 2017, 49, 680–691. [Google Scholar] [CrossRef] [Green Version]
- Astle, W.J.; Elding, H.; Jiang, T.; Allen, D.; Ruklisa, D.; Mann, A.L.; Mead, D.; Bouman, H.; Riveros-Mckay, F.; Kostadima, M.A. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 2016, 167, 1415–1429.e1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.-H.; Raffield, L.M.; Mousas, A.; Sakaue, S.; Huffman, J.E.; Moscati, A.; Trivedi, B.; Jiang, T.; Akbari, P.; Vuckovic, D. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 2020, 182, 1198–1213.e1114. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, S.; Schneeberger, S.; Koyama, N.; Yokochi, K.; Ohmura, K.; Shiina, M.; Mori, H.; Koshimizu, E.; Imagawa, E.; Uchiyama, Y. Biallelic COLGALT1 variants are associated with cerebral small vessel disease. Ann. Neurol. 2018, 84, 843–853. [Google Scholar] [CrossRef]
- Geister, K.A.; Lopez-Jimenez, A.J.; Houghtaling, S.; Ho, T.-H.; Vanacore, R.; Beier, D.R. Loss of function of Colgalt1 disrupts collagen post-translational modification and causes musculoskeletal defects. Dis. Model. Mech. 2019, 12, dmm037176. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, M.W.; Kamsteeg, E.-J.; Sallevelt, S.C.; Pennings, M.; Bauer, N.J.; Vermeulen, R.J.; Nicolai, J. Biallelic variants in the COLGALT1 gene causes severe congenital porencephaly: A case report. Neurol. Genet. 2021, 7, e564. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liu, S.; Xing, Q.; Yu, Y.; Wang, Y. COLGALT1 is a Prognostic Biomarker in Clear Renal Cell Carcinoma Correlated with Immune Infiltrates: A Study Based on TCGA Data. Res. Sq. 2020, 1–24. [Google Scholar] [CrossRef]
- Vuckovic, D.; Bao, E.L.; Akbari, P.; Lareau, C.A.; Mousas, A.; Jiang, T.; Chen, M.-H.; Raffield, L.M.; Tardaguila, M.; Huffman, J.E. The polygenic and monogenic basis of blood traits and diseases. Cell 2020, 182, 1214–1231.e1211. [Google Scholar] [CrossRef]
- Cooper, M.D.; Alder, M.N. The evolution of adaptive immune systems. Cell 2006, 124, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Repo, P.; Jäntti, J.; Järvinen, R.S.; Täll, M.; Raivio, V.; Kivelä, T.; Turunen, J. Germline variants in the MBD4 gene are rare in patients with uveal melanoma. Acta Ophthalmol. 2019, 97, 343. [Google Scholar] [CrossRef]
- Daw Elbait, G.; Henschel, A.; Tay, G.K.; Al Safar, H.S. A population-specific major allele reference genome from the United Arab Emirates population. Front. Genet. 2021, 12, 660428. [Google Scholar] [CrossRef]
- Liu, B.-H.; Liu, G.-B.; Zhang, B.-B.; Shen, J.; Xie, L.-L.; Liu, X.-Q.; Yao, W.; Dong, R.; Bi, Y.-L.; Dong, K.-R. Tumor Suppressive Role of MUC6 in Wilms Tumor via Autophagy-Dependent β-Catenin Degradation. Front. Oncol. 2022, 12, 756117. [Google Scholar] [CrossRef]
- Biswas, S.; Chakrabarti, S. Increased extracellular matrix protein production in chronic diabetic complications: Implications of non-coding RNAs. Non-Coding RNA 2019, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- De Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.-G. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Warren, H.R.; Evangelou, E.; Cabrera, C.P.; Gao, H.; Ren, M.; Mifsud, B.; Ntalla, I.; Surendran, P.; Liu, C.; Cook, J.P. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat. Genet. 2017, 49, 403–415. [Google Scholar] [CrossRef]
- Lind, L. Genome-wide association study of the metabolic syndrome in UK biobank. Metab. Syndr. Relat. Disord. 2019, 17, 505–511. [Google Scholar] [CrossRef]
- Teumer, A.; Li, Y.; Ghasemi, S.; Prins, B.P.; Wuttke, M.; Hermle, T.; Giri, A.; Sieber, K.B.; Qiu, C.; Kirsten, H. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat. Commun. 2019, 10, 4130. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.S.; Chen, C.-H.; Hu, C.; Long, J.; Hee Ong, R.T.; Sim, X.; Takeuchi, F.; Wu, Y.; Go, M.J.; Yamauchi, T. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 2012, 44, 67–72. [Google Scholar] [CrossRef]
- Kim, W.; Prokopenko, D.; Sakornsakolpat, P.; Hobbs, B.D.; Lutz, S.M.; Hokanson, J.E.; Wain, L.V.; Melbourne, C.A.; Shrine, N.; Tobin, M.D. Genome-wide gene-by-smoking interaction study of chronic obstructive pulmonary disease. Am. J. Epidemiol. 2021, 190, 875–885. [Google Scholar] [CrossRef]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef]
- Acosta-Herrera, M.; Kerick, M.; González-Serna, D.; Wijmenga, C.; Franke, A.; Gregersen, P.K.; Padyukov, L.; Worthington, J.; Vyse, T.J.; Alarcón-Riquelme, M.E. Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann. Rheum. Dis. 2019, 78, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Murray, G.K.; Byrne, E.M.; Sidorenko, J.; Visscher, P.M.; Wray, N.R. GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression. Nat. Commun. 2021, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, J.; Sigurdsson, J.K.; Stefansdottir, L.; Agnarsson, B.A.; Isaksson, H.J.; Stefansson, O.A.; Gudjonsson, S.A.; Gudbjartsson, D.F.; Masson, G.; Frigge, M.L. Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat. Commun. 2018, 9, 4568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossini-Castillo, L.; De Kovel, C.; Kallberg, H.; van‘t Slot, R.; Italiaander, A.; Coenen, M.; Tak, P.; Posthumus, M.; Wijmenga, C.; Huizinga, T. A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides. Ann. Rheum. Dis. 2015, 74, e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, J.M. Type 1 diabetes-associated autoimmunity: Natural history, genetic associations, and screening. J. Clin. Endocrinol. Metab. 2006, 91, 1210–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, E.; Smyth, D.J.; Howson, J.M.; Cooper, J.D.; Walker, N.M.; Stevens, H.; Wicker, L.S.; Todd, J.A. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun. 2009, 10, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.G. Comparative genetics of type 1 diabetes and autoimmune disease: Common loci, common pathways? Diabetes 1999, 48, 1353–1358. [Google Scholar] [CrossRef]
Variable | T1DM (N = 14) | Healthy Family Members (N = 36) |
---|---|---|
Age (years) | 11.86 ± 5.08 | 31.46 ± 14.85 |
Gender | ||
Male | 9 (64.29%) | 19 (52.78%) |
Female | 5 (35.71%) | 17 (47.22) |
BMI (kg/m2) | 16.94 ± 2.77 | 27.46 ± 5.52 |
Waist circumference (cm) | 64.92 ± 8.41 | 87.82 ± 16.48 |
Systolic blood pressure (mmHg) | 108.43 ± 10.89 | 119.29 ± 14.15 |
Diastolic blood pressure (mmHg) | 69.79 ± 7.85 | 74.14 ± 10.17 |
Chr | Gene | Impact | rs-ID | Family ID | AF | Family Genotype | Link to T1DM | Link to Auto-Immune Diseases |
---|---|---|---|---|---|---|---|---|
1 | MST1L | Stop Gained | rs11260920 | Family 1 + 12 | 5.51 × 10−2 | G/A,G/G,G/G,G/G,G/G | No | Yes |
2 | IFIH1 | Intron Variant | rs141469634 | Family 8 + 9 | 7.79 × 10−3 | CA/C,CA/CA,CA/CA,CA/CA | Yes | Yes |
3 | MBD4 | Frameshift Variant | rs747480541 | Family 2 + 7 + 11 | 3.11 × 10−3 | CT/C,CT/CT,CT/CT | No | Yes |
3 | MST1 | Splice Acceptor Variant | rs201139286 | Family 3 + 13 | 8.15 × 10−3 | T/G,T/T,T/T,T/T | Yes | No |
6 | VEGFA | Intron Variant | rs750060813 | Family 5 + 7 | 7.24 × 10−4 | T/C,T/T,T/T | Yes | Yes |
8 | PABPC1 | Frameshift Variant | rs140822921 | Family 3 + 9 | 1.15 × 10−3 | C/CA,C/C,C/C | No | Yes |
8 | ZNF596 | Stop Gained | rs756701581 | Family 2 + 7 | 3.98 × 10−5 | C/A,C/C,C/C,C/C | No | Yes |
9 | CACNA1B | Splice Donor Variant | None | Family 1 + 9 + 10 | 9.04 × 10−3 | G/GACGACACGGAGCCCTATTTCATCGGGATCTT,G/G,G/G,G/G | No | Yes |
9 | GLIS3 | Synonymous Variant | rs113076411 | Family 8 + 10 | 4.80 × 10−3 | CT/C,CT/CT,CT/CT,CT/CT | Yes | Yes |
11 | MUC6 | Frameshift Variant | rs368342230 | Family 3 + 7 + 8 | 4.11 × 10−6 | TG/T,TG/TG,TG/TG,TG/TG | No | Yes |
rs376177791 | Family 3 + 7 + 8 | 1.01 × 10−5 | G/GT,G/G,G/G,G/G | |||||
rs754249101 | Family 6 + 9 | 1.87 × 10−4 | T/TGC,T/T,T/T,T/T | |||||
rs761220536 | Family 1 + 2 + 7 + 13 | 4.08 × 10−6 | G/GTGACGGT,G/G,G/G,G/G | |||||
rs766751467 | Family 6 + 9 | 7.30 × 10−5 | GCA/G,GCA/GCA,GCA/.,GCA/GCA | |||||
rs766833662 | Family 1 + 2 + 7 + 13 | 0.00 | CTGGTGCG/C,CTGGTGCG/CTGGTGCG,CTGGTGCG/CTGGTGCG,CTGGTGCG/CTGGTGCG | |||||
rs776466780 | Family 8 + 12 | 1.51 × 10−4 | G/GTA,G/G,G/G,G/G | |||||
11 | TYK2 | Protein Structural International Locus | None | Family 5 + 6 | 2.20 × 10−4 | TA/T,TA/TA,TA/TA,TA/TA | Yes | Yes |
12 | TDG | Splice Donor Variant | rs760400700 | Family 2 + 10 | 3.63 × 10−2 | T/G,T/T,T/T,T/T | Yes | No |
rs764159587 | Family 2 + 10 | 4.11 × 10−2 | G/GA,G/G,G/.,G/G | |||||
13 | RNASEH2B | Frameshift Variant | rs200320729 | Family 2 + 5 | 3.95 × 10−2 | T/TA,T/T,T/T,T/T | No | Yes |
15 | TYRO3 | Splice Donor Variant | rs746533465 | Family 5 + 13 | 7.81 × 10−5 | G/GAGAGTTTGGTTCAGTGCGGGAGGCCCAGC,G/G,G/G,G/G | Yes | Yes |
rs750893216 | Family 1 + 6 | 1.37 × 10−3 | G/GGAGA,G/G,G/G,G/G | |||||
rs757748573 | Family 5 + 7 + 13 | 4.82 × 10−4 | G/C,G/G,G/G,G/G | |||||
17 | LGALS9C | Frameshift Variant | rs376412531 | Family 8 + 12 | 5.89 × 10−2 | GGA/G,GGA/GGA,GGA/GGA,GGA/GGA | No | Yes |
18 | LAMA3 | Splice Donor Variant | None | Family 1 + 7 | NA | T/G,T/T,T/T | No | Yes |
19 | CNN2 | Stop Gained | None | Family 3 + 8 | NA | C/A,C/C,C/C,C/C | No | Yes |
19 | COLGALT1 | Stop Gained | None | Family 5 + 11 | NA | G/A,G/G,G/G,G/G | No | Yes |
22 | BCR | Frameshift Variant | rs372013175 | Family 5 + 12 | 2.79 × 10−3 | T/TCCGG,T/T,T/T,T/T,T/T | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousa, M.; Albarguthi, S.; Albreiki, M.; Farooq, Z.; Sajid, S.; El Hajj Chehadeh, S.; ElBait, G.D.; Tay, G.; Deeb, A.A.; Alsafar, H. Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus. Biology 2023, 12, 413. https://doi.org/10.3390/biology12030413
Mousa M, Albarguthi S, Albreiki M, Farooq Z, Sajid S, El Hajj Chehadeh S, ElBait GD, Tay G, Deeb AA, Alsafar H. Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus. Biology. 2023; 12(3):413. https://doi.org/10.3390/biology12030413
Chicago/Turabian StyleMousa, Mira, Sara Albarguthi, Mohammed Albreiki, Zenab Farooq, Sameeha Sajid, Sarah El Hajj Chehadeh, Gihan Daw ElBait, Guan Tay, Asma Al Deeb, and Habiba Alsafar. 2023. "Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus" Biology 12, no. 3: 413. https://doi.org/10.3390/biology12030413
APA StyleMousa, M., Albarguthi, S., Albreiki, M., Farooq, Z., Sajid, S., El Hajj Chehadeh, S., ElBait, G. D., Tay, G., Deeb, A. A., & Alsafar, H. (2023). Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus. Biology, 12(3), 413. https://doi.org/10.3390/biology12030413