Paleontology in the 21st Century
Conflicts of Interest
References
- Padian, K.; Chiappe, L.M. The origin and early evolution of birds. Biol. Rev. 1998, 73, 1–42. [Google Scholar] [CrossRef]
- Gauthier, J. Saurischian monophyly and the origin of birds. In The Origin of Birds and the Evolution of Flight; Padian, K., Ed.; Memoirs of the California Academy of Sciences; The Academy: San Francisco, CA, USA, 1986; Volume 8, pp. 1–56. [Google Scholar]
- Padian, K.; Lindberg, D.R.; Polly, P.D. Cladistics and the fossil record: The uses of history. Ann. Rev. Earth Planet. Sci. 1994, 22, 63–91. [Google Scholar] [CrossRef]
- Enlow, D.H.; Brown, S.O. A comparative histological study of fossil and recent bone tissues, Part I. Tex. J. Sci. 1958, 7, 187–230. [Google Scholar]
- Reid, R.E.H. On supposed Haversian bone from the hadrosaur Anatosaurus, and the nature of compact bone in dinosaurs. J. Paleontol. 1985, 59, 140–148. [Google Scholar]
- De Ricqles, A.J.; Squelettiques, E.F.; Ura, W.R.S.I.; Via, U.P.; Padian, K.; Horner, J.R.; Francillon-vieillot, H. Palaeohistology of the bones of pterosaurs and biomechanical implications. Zool. J. Linn. Soc. 2000, 129, 349–385. [Google Scholar] [CrossRef]
- Horner, J.R.; Padian, K.; de Ricqlès, A.; de Ricqles, A. Comparative osteohistology of some embryonic and perinatal archosaurs: Developmental and behavioral implications for dinosaurs. Paleobiology 2001, 27, 39–58. [Google Scholar] [CrossRef]
- De Ricqles, A. Some Remarks on Palaeohistology from a Comparative Evolutionary Point of View. In Histology of Ancient Human Bone; Grupe, G., Garland, A.N., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 37–77. [Google Scholar]
- De Ricqles, A.J. Tissue structures of dinosaur bone: Functional significance and possible relation to dinosaur physiology. In A Cold Look at the Warm-Blooded Dinosaurs; Thomas, D.K., Olson, E.C., Eds.; Westview Press: Boulder, CO, USA, 1980; pp. 104–140. [Google Scholar]
- Höss, M. Neanderthal population genetics. Nature 2000, 404, 453–454. [Google Scholar] [CrossRef]
- Noro, M.; Masuda, R.; Dubrovo, I.A.; Yoshida, M.C.; Kato, M. Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. J. Mol. Evol. 1998, 46, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Knapp, M.; Hofreiter, M. Ancient Human DNA: Phylogenetic Applications. eLS 2014, 1–4. [Google Scholar] [CrossRef]
- Hofreiter, M.; Collins, M.; Stewart, J.R. Ancient biomolecules in Quaternary palaeoecology. Quat. Sci. Rev. 2012, 33, 1–13. [Google Scholar] [CrossRef]
- Lindahl, T. Instability and Decay of the Primary Structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, T. Facts and artifacts of ancient DNA. Cell 1997, 90, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjaer, K.H.; Pedersen, M.W.; De Sanctis, B.; De Cahsan, B.; Michelsen, C.S.; Sand, K.K.; Jelavić, S.; Ruter, A.H.; Bonde, A.M.Z.; Kjeldsen, K.K.; et al. A 2-Million-year-old ecosystem in Greenland uncovered by Environmental DNA. Nature 2022, 612, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Demarchi, B.; Hall, S.; Roncal-Herrero, T.; Freeman, C.L.; Woolley, J.; Crisp, M.K.; Wilson, J.; Fotakis, A.; Fischer, R.; Kessler, B.M.; et al. Protein sequences bound to mineral surfaces persist into deep time. Elife 2016, 5, e17092. [Google Scholar] [CrossRef]
- Cleland, T.P.; Schroeter, E.R.; Zamdborg, L.; Zheng, W.; Lee, J.E.; Tran, J.C.; Bern, M.; Duncan, M.B.; Lebleu, V.S.; Schweitzer, M.H.; et al. Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J. Proteome Res. 2015, 14, 5252–5262. [Google Scholar]
- Schroeter, E.R.; Dehart, C.J.; Cleland, T.P.; Zheng, W.; Thomas, P.M.; Kelleher, N.L.; Bern, M.; Schweitzer, M.H. Expansion for the Brachylophosaurus canadensis Collagen i Sequence and Additional Evidence of the Preservation of Cretaceous Protein. J. Proteome Res. 2017, 16, 920–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abelson, P.H. Paleobiochemistry: Organic constituents of fossils. Carnegie Inst. Wash. Yearb. 1955, 54, 107–109. [Google Scholar]
- Abelson, P.H. Amino acids in fossils. Science 1954, 119, 576. [Google Scholar]
- Tihelka, E.; Howard, R.J.; Cai, C.; Lozano-Fernandez, J. Was There a Cambrian Explosion on Land? The Case of Arthropod Terrestrialization. Biology 2022, 11, 1516. [Google Scholar] [CrossRef]
- Monson, T.A.; Brasil, M.F.; Mahaney, M.C.; Schmitt, C.A.; Taylor, C.E.; Hlusko, L.J. Keeping 21st Century Paleontology Grounded: Quantitative Genetic Analyses and Ancestral State Reconstruction Re-Emphasize the Essentiality of Fossils. Biology 2022, 11, 1218. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.M.; Borja, C.; Gibert, L.; Ribot, F.; Olivares, E.G. Twentieth-Century Paleoproteomics: Lessons from Venta Micena Fossils. Biology 2022, 11, 1184. [Google Scholar] [CrossRef] [PubMed]
- Tahoun, M.; Engeser, M.; Namasivayam, V.; Sander, P.M.; Müller, C.E. Chemistry and Analysis of Organic Compounds in Dinosaurs. Biology 2022, 11, 670. [Google Scholar] [CrossRef] [PubMed]
- López-Antoñanzas, R.; Mitchell, J.; Simões, T.R.; Condamine, F.L.; Aguilée, R.; Peláez-Campomanes, P.; Renaud, S.; Rolland, J.; Donoghue, P.C.J. Integrative Phylogenetics: Tools for Palaeontologists to Explore the Tree of Life. Biology 2022, 11, 1185. [Google Scholar] [CrossRef] [PubMed]
- Tamborini, M. A Plea for a New Synthesis: From Twentieth-Century Paleobiology to Twenty-First-Century Paleontology and Back Again. Biology 2022, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z. The Rising of Paleontology in China: A Century-Long Road. Biology 2022, 11, 1104. [Google Scholar] [CrossRef]
- Churchill, S.E.; Keys, K.; Ross, A.H. Midfacial Morphology and Neandertal–Modern Human Interbreeding. Biology 2022, 11, 1163. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.; Briggs, A.W.; Kircher, M.; Maricic, T.; Zwyns, N.; Derevianko, A.; Pääbo, S. A Complete mtDNA Genome of an Early Modern Human from Kostenki, Russia. Curr. Biol. 2010, 20, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Gokcumen, O. Archaic hominin introgression into modern human genomes. Am. J. Phys. Anthr. 2019, 171, 60–73. [Google Scholar] [CrossRef]
- Unterberger, S.H.; Berger, C.; Schirmer, M.; Pallua, A.K.; Zelger, B.; Schäfer, G.; Kremser, C.; Degenhart, G.; Spiegl, H.; Erler, S.; et al. Morphological and Tissue Characterization with 3D Reconstruction of a 350-Year-Old Austrian Ardea purpurea Glacier Mummy. Biology 2023, 12, 114. [Google Scholar] [CrossRef]
- Tripp, M.; Wiemann, J.; Brocks, J.; Mayer, P.; Schwark, L.; Grice, K. Fossil Biomarkers and Biosignatures Preserved in Coprolites Reveal Carnivorous Diets in the Carboniferous Mazon Creek Ecosystem. Biology 2022, 11, 1289. [Google Scholar] [CrossRef]
- Anné, J.; Canoville, A.; Edwards, N.P.; Schweitzer, M.H.; Zanno, L.E. Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of Tyrannosaurus rex. Biology 2023, 12, 264. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Zheng, W.; Zanno, L.; Werning, S.; Sugiyama, T. Chemistry supports the identification of gender-specific reproductive tissue in Tyrannosaurus rex. Sci. Rep. 2016, 6, 23099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweitzer, M.H.; Wittmeyer, J.L.; Horner, J.R. Gender-specific reproductive tissue in ratites and Tyrannosaurus rex. Science 2005, 308, 1456–1460. [Google Scholar] [CrossRef] [Green Version]
- Pessoa-Lima, C.; Tostes-Figueiredo, J.; Macedo-Ribeiro, N.; Hsiou, A.S.; Muniz, F.P.; Maulin, J.A.; Franceschini-Santos, V.H.; de Sousa, F.B.; Barbosa, F.; Line, S.R.P.; et al. Structure and Chemical Composition of ca. 10-Million-Year-Old (Late Miocene of Western Amazon) and Present-Day Teeth of Related Species. Biology 2022, 11, 1636. [Google Scholar] [CrossRef] [PubMed]
- Pakhnevich, A.; Nikolayev, D.; Lychagina, T. Crystallographic Texture of the Mineral Matter in the Bivalve Shells of Gryphaea dilatata Sowerby, 1816. Biology 2022, 11, 1300. [Google Scholar] [CrossRef]
- Heingård, M.; Sjövall, P.; Schultz, B.P.; Sylvestersen, R.L.; Lindgren, J. Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark. Biology 2022, 11, 395. [Google Scholar] [CrossRef]
- Ullmann, P.V.; Ash, R.D.; Scannella, J.B. Taphonomic and Diagenetic Pathways to Protein Preservation, Part II: The Case of Brachylophosaurus canadensis Specimen MOR 2598. Biology 2022, 11, 1177. [Google Scholar] [CrossRef]
- Ullmann, P.V.; Macauley, K.; Ash, R.D.; Shoup, B.; Scannella, J.B. Taphonomic and diagenetic pathways to protein preservation, part I: The case of tyrannosaurus rex specimen mor 1125. Biology 2021, 10, 1193. [Google Scholar] [CrossRef]
- Voegele, K.K.; Boles, Z.M.; Ullmann, P.V.; Schroeter, E.R.; Zheng, W.; Lacovara, K.J. Soft Tissue and Biomolecular Preservation in Vertebrate Fossils from Glauconitic, Shallow Marine Sediments of the Hornerstown Formation, Edelman Fossil Park, New Jersey. Biology 2022, 11, 1161. [Google Scholar] [CrossRef]
- Schroeter, E.R.; Ullmann, P.V.; Macauley, K.; Ash, R.D.; Zheng, W.; Schweitzer, M.H.; Lacovara, K.J. Soft-Tissue, Rare Earth Element, and Molecular Analyses of Dreadnoughtus schrani, an Exceptionally Complete Titanosaur from Argentina. Biology 2022, 11, 1158. [Google Scholar] [CrossRef]
- Colleary, C.; O’Reilly, S.; Dolocan, A.; Toyoda, J.G.; Chu, R.K.; Tfaily, M.M.; Hochella, M.F.; Nesbitt, S.J. Using Macro- and Microscale Preservation in Vertebrate Fossils as Predictors for Molecular Preservation in Fluvial Environments. Biology 2022, 11, 1304. [Google Scholar] [CrossRef]
- Cirilli, O.; Machado, H.; Arroyo-cabrales, J.; Barr, C.I.; Davis, E.; Jass, C.N.; Jukar, A.M.; Landry, Z.; Mar, A.H.; Pandolfi, L.; et al. Evolution of the Family Equidae, Subfamily Equinae, in North, Central and South America, Eurasia and Africa during the Plio-Pleistocene. Biology 2022, 11, 1258. [Google Scholar] [CrossRef] [PubMed]
- Garralda, M.D.; Weiner, S.; Arensburg, B.; Maureille, B.; Vandermeersch, B. Dental Paleobiology in a Juvenile Neanderthal (Combe-Grenal, Southwestern France). Biology 2022, 11, 1352. [Google Scholar] [CrossRef] [PubMed]
- Cleland, T.P.; Schroeter, E.R.; Colleary, C. Diagenetiforms: A new term to explain protein changes as a result of diagenesis in paleoproteomics. J. Proteom. 2021, 230, 103992. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Zheng, W.; Equall, N. Environmental Factors Affecting Feather Taphonomy. Biology 2022, 11, 703. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schweitzer, M.H. Paleontology in the 21st Century. Biology 2023, 12, 487. https://doi.org/10.3390/biology12030487
Schweitzer MH. Paleontology in the 21st Century. Biology. 2023; 12(3):487. https://doi.org/10.3390/biology12030487
Chicago/Turabian StyleSchweitzer, Mary H. 2023. "Paleontology in the 21st Century" Biology 12, no. 3: 487. https://doi.org/10.3390/biology12030487
APA StyleSchweitzer, M. H. (2023). Paleontology in the 21st Century. Biology, 12(3), 487. https://doi.org/10.3390/biology12030487