Pollen as Bee Medicine: Is Prevention Better than Cure?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Prophylactic and Therapeutic Effects of Pollen
2.1.1. Experimental Design
2.1.2. Host Tolerance
2.1.3. Host Resistance
2.2. Self-Medicative Behaviour
2.2.1. Experimental Design
2.2.2. Pollen Preference and Infection Cure
3. Results
3.1. Prophylactic and Therapeutic Effects of Pollen
3.1.1. Host Tolerance
3.1.2. Host Resistance
3.2. Self-Medicative Behaviour
4. Discussion
4.1. Is Prevention Better Than Cure?
4.1.1. Pollen Diets Override Parasite Impacts
4.1.2. Specific Pollen Diets Hamper Parasite Establishment
4.2. Are Infected Bumble Bees Able to Self-Medicate?
4.2.1. The Importance of Parasite Virulence
4.2.2. The Neglected Role of Sociality
5. Conclusion and Future Directions
5.1. Designing an Adequate Control Diet
5.2. Giving Parasites a Chance
5.3. Mixing Behaviour, Narrow Diet and Self-Medication
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Model Species
Appendix B. Parasite Reservoirs and Inoculation
References
- Margalef, R. Stress in ecosystems: A future approach. In Stress on Natural Ecosystems; Barret, G.W., Rosenberg, R., Eds.; John Wiley & Sons: New York, NY, USA, 1981; pp. 281–289. [Google Scholar]
- Costanza, R.; Norton, B.G.; Haskell, B.D. Ecosystem Health: New Goals for Environmental Management; Island Press: Washington, DC, USA, 1992. [Google Scholar]
- Fenton, A.; Lello, J.; Bonsall, M.B. Pathogen responses to host immunity: The impact of time delays and memory on the evolution of virulence. Proc. Biol. Sci. 2006, 273, 2083–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWitt, T.; Wilson, D.S.; Sih, A. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 1998, 13, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.B.; Hertz, P.E.; Sinervo, B. Behavioural drive versus behavioural inertia in evolution: A null model approach. Am. Nat. 2003, 161, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu, M.; Gillen, E.; Hahn, S.; Pape, J.M.; Fischer, K. Behavioural antioxidant strategies to cope with high temperatures: A study in a tropical butterfly. Anim. Behav. 2015, 109, 89–99. [Google Scholar] [CrossRef]
- Forbey, J.S.; Harvey, A.L.; Huffman, M.A.; Provenza, F.D.; Sullivan, R.; Tasdemir, D. Exploitation of secondary metabolites by animals: A response to homeostatic challenges. Integr. Comp. Biol. 2009, 49, 314–328. [Google Scholar] [CrossRef]
- Bolser, J.A.; Alan, R.R.; Smith, A.D.; Li, L.; Seeram, N.P.; Mcwilliams, S.R.; Williams, S.R.M.C. Birds select fruits with more anthocyanins and phenolic compounds during autumn migration. Wilson J. Ornithol. 2013, 125, 97–108. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Povey, S.; Cotter, S.C.; Simpson, S.J.; Lee, K.P.; Wilson, K. Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J. Anim. Ecol. 2008, 78, 437–446. [Google Scholar] [CrossRef]
- Singer, M.S.; Mace, K.C.; Bernays, E.A. Self-medication as adaptive plasticity: Increased ingestion of plant toxins by parasitized caterpillars. PLoS ONE 2009, 4, e4796. [Google Scholar] [CrossRef]
- Hart, B.L. Behavioural defences in animals against pathogens and parasites: Parallels with the pillars of medicine in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 3406–3417. [Google Scholar] [CrossRef]
- Parker, B.J.; Barribeau, S.M.; Laughton, A.M.; de Roode, J.C.; Gerardo, N.M. Non-immunological defense in an evolutionary framework. Trends Ecol. Evol. 2011, 26, 242–248. [Google Scholar] [CrossRef]
- De Roode, J.C.; Lefèvre, T.; Hunter, M.D. Self-medication in animals. Science 2013, 340, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, M.; Schaefer, H.M. Rethinking the role of dietary antioxidants through the lens of self-medication. Anim. Behav. 2013, 86, 17–24. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Vanbergen, A.J.; Insect Pollinator Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michez, D.; Vanderplanck, M.; Engel, M.S. Chapter 5. Fossil bees and their plant associates. In Evolution of Plant-Pollinator Relationships; Patiny, S., Ed.; Cambridge University Press: Cambridge, UK, 2011; pp. 103–164. ISBN 9780521198929. [Google Scholar]
- Cardinal, C.; Danforth, B.N. Bees diversified in the age of eudicots. Proc. R. Soc. Biol. Sci. 2013, 280, 20122686. [Google Scholar] [CrossRef] [Green Version]
- Simone-Finstrom, M.D.; Spivak, M. Increased resin collection after parasite challenge: A case of self-medication in honey bees? PLoS ONE 2012, 7, e34601. [Google Scholar] [CrossRef] [Green Version]
- Spivak, M.; Goblirsch, M.; Simone-Finstrom, M. Social-medication in bees: The line between individual and social regulation. Curr. Opin. Insect Sci. 2019, 33, 49–55. [Google Scholar] [CrossRef]
- Gherman, B.I.; Denner, A.; Bobiș, O.; Dezmirean, D.S.; Mărghitas, L.A.; Schlüns, H.; Moritz, R.F.; Erler, S. Pathogen-associated self-medication behavior in the honeybee Apis mellifera. Behav. Ecol. Sociobiol. 2014, 68, 1777–1784. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.A.; Northfield, T.D.; Lach, L. Honey bee (Apis mellifera) pollen foraging reflects benefits dependent on individual infection status. Microb. Ecol. 2018, 76, 482–491. [Google Scholar] [CrossRef]
- Baracchi, D.; Brown, M.J.; Chittka, L. Behavioural evidence for self-medication in bumblebees? F1000Research 2015, 4, 73. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J. Self-medication in insects: Current evidence and future perspectives. Ecol. Entomol. 2014, 39, 273–280. [Google Scholar] [CrossRef]
- De Roode, J.C.; Hunter, M.D. Self-medication in insects: When altered behaviours of infected insects are a defense instead of a parasite manipulation. Curr. Opin. Insect Sci. 2019, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Regali, A.; Rasmont, P. Nouvelles méthodes de test pour l’évaluation du régime alimentaire chez des colonies orphelines de Bombus terrestris L. (Hymenoptera, Apidae). Apidologie 1995, 26, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Tasei, J.N.; Aupinel, P. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 2008, 39, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Pomeroy, N. Brood bionomics of Bombus ruderatus in New Zealand. Can. Entomol. 1979, 111, 865–874. [Google Scholar] [CrossRef]
- Tasei, J.N.; Lerin, J.; Ripault, G. Sub-lethal effects of imidacloprid on bumblebees, B. terrestris (Hymenoptera: Apidae), during a laboratory feeding test. Pest Manag. Sci. 2000, 56, 784–788. [Google Scholar] [CrossRef]
- Roger, N.; Michez, D.; Wattiez, R.; Sheridan, C.; Vanderplanck, M. Diet effects on bumblebee health. J. Insect Phys. 2017, 96, 128–133. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Ellers, J. Fat and eggs: An alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 1995, 46, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Vanderplanck, M.; Michez, D.; Albrecht, M.; Attridge, E.; Babin, A.; Bottero, I.; Breeze, T.; Brown, M.; Chauzat, M.-P.; Cini, E.; et al. Monitoring bee health in European agro-ecosystems using wing morphology and fat bodies. One Ecosyst. 2021, 6, e63653. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.; Rabe-Hesketh, S.; Dorie, V.; Gelman, A.; Liu, J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 2013, 78, 685–709. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means, R package version 1.8.1-1; R Foundation for Statistical Computing: Vienna, Austria, 2022.
- Logan, A.; Ruiz-González, M.X.; Brown, M.J.F. The impact of host starvation on parasite development and population dynamics in an intestinal trypanosome parasite of bumble bees. Parasitology 2005, 130, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gekière, A.; Semay, I.; Gérard, M.; Michez, D.; Gerbaux, P.; Vanderplanck, M. Poison or potion: Effects of sunflower phenolamides on bumble bees and their gut parasite. Biology 2022, 11, 545. [Google Scholar] [CrossRef]
- Nicolson, S.W.; Human, H. Chemical composition of the “low quality” pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie 2013, 44, 144–152. [Google Scholar] [CrossRef] [Green Version]
- McAulay, M.K.; Forrest, J.R.K. How do sunflower pollen mixtures affect survival of queenless microcolonies of bumblebees (Bombus impatiens)? Arthropod. Plant. Interact. 2019, 13, 517–529. [Google Scholar] [CrossRef]
- Shykoff, J.A.; Schmid-Hempel, P. Incidence and effects of four parasites in populations of bumble bees in Switzerland. Apidologie 1991, 22, 117–225. [Google Scholar] [CrossRef]
- Brown, M.J.F.; Loosli, R.; Schmid-Hempel, P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 2000, 91, 421–427. [Google Scholar] [CrossRef]
- Brown, M.J.F.; Schmid-Hempel, R.; Schmid-Hempel, P. Strong context-dependent virulence in a host-parasite system: Reconciling genetic evidence with theory. J. Anim. Ecol. 2003, 72, 994–1002. [Google Scholar] [CrossRef] [Green Version]
- Brunner, F.S.; Schmid-Hempel, P.; Barribeau, S.M. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris. Proc. Biol. Sci. 2014, 281, 20140128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer-Young, E.C.; Sadd, B.M.; Adler, L.S. Evolution of resistance to single and combined floral phytochemicals by a bumble bee parasite. J. Evol. Biol. 2017, 30, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Palmer-Young, E.C.; Calhoun, A.C.; Mirzayeva, A.; Sadd, B.M. Effects of the floral phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci. Rep. 2018, 8, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gekière, A.; Michez, D.; Vanderplanck, M. Bumble Bee Breeding on Artificial Pollen Substitutes. J. Econ. Entomol. 2022, 115, 1423–1431. [Google Scholar] [CrossRef]
- Weiner, C.N.; Hilpert, A.; Werner, M.; Linsenmair, K.E.; Blüthgen, N. Pollen amino acids and flower specialisation in solitary bees. Apidologie 2010, 41, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Vanderplanck, M.; Moerman, R.; Rasmont, P.; Lognay, G.; Wathelet, B.; Wattiez, R.; Michez, D. How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS ONE 2014, 9, e86209. [Google Scholar] [CrossRef]
- Vanderplanck, M.; Zerck, P.-L.; Lognay, G.; Michez, D. Sterol addition during pollen collection by bees: Another possible strategy to balance nutrient deficiencies? Apidologie 2020, 51, 826–843. [Google Scholar] [CrossRef]
- Giacomini, J.J.; Leslie, J.; Tarpy, D.R.; Palmer-Young, E.C.; Irwin, R.E.; Adler, L.S. Medicinal value of sunflower pollen against bee pathogens. Sci. Rep. 2018, 8, 14394. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, J.J.; Moore, N.; Adler, L.S.; Irwin, R.E. Sunflower pollen induces rapid excretion in bumble bees: Implications for host-pathogen interactions. J. Insect Physiol. 2022, 137, 104356. [Google Scholar] [CrossRef]
- Schmid-Hempel, P.; Schmid-Hempel, R. Transmission of a pathogen in Bombus terrestris, with a note on division of labour in social insects. Behav. Ecol. Sociobiol. 1993, 33, 319–327. [Google Scholar] [CrossRef]
- Otterstatter, M.C.; Thomson, J.D. Within-host dynamics of an intestinal pathogen of bumble bees. Parasitology 2006, 133, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.; Woodward, J.; Langat, M.K.; Brown, M.J.F.; Stevenson, P.C. Flagellum removal by a nectar metabolite inhibits infectivity of a bumblebee parasite. Curr. Biol. 2019, 29, 3494–3500.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, H.; Welcome, V.; Kendal-Smith, A.; Thursfield, L.; Farrell, I.W.; Langat, M.K.; Brown, M.J.F.; Stevenson, P.C. Host and gut microbiome modulate the antiparasitic activity of nectar metabolites in a bumblebee pollinator. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210162. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.J.; Palmer-Young, E.C.; Irwin, R.E.; Adler, L.S. Food limitation affects parasite load and survival of Bombus impatiens (Hymenoptera: Apidae) infected with Crithidia (Trypanosomatida: Trypanosomatidae). Environ. Entomol. 2016, 45, 1212–1219. [Google Scholar] [CrossRef]
- Ruedenauer, F.A.; Raubenheimer, D.; Kessner-Beierlein, D.; Grund-Mueller, N.; Noack, L.; Spaethe, J.; Leonhardt, S.D. Best be(e) on low fat: Linking nutrient perception, regulation and fitness. Ecol. Lett. 2020, 23, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Graystock, P.; Meeus, I.; Smagghe, G.; Goulson, D.; Hughes, W.O. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 2016, 143, 358–365. [Google Scholar] [CrossRef]
- Lee, K.P.; Cory, J.S.; Wilson, K.; Raubenheimer, D.; Simpson, S.J. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. R. Soc. Lond. B Biol. Sci. 2006, 273, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Clayton, D.H.; Wolfe, N.D. The adaptive significance of self-medication. Trends Ecol. Evol. 1993, 8, 60–63. [Google Scholar] [CrossRef]
- Christe, P.; Oppliger, A.; Bancala, F.; Castella, G.; Chapuisat, M. Evidence for collective medication in ants. Ecol. Lett. 2003, 6, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Rasmont, P.; Ghisbain, G.; Terzo, M. Bourdons d’Europe et des contrées voisines. In Hymenopètres d’Europe 3; NAP Editions: Paris, France, 2021; 632p. [Google Scholar]
- Van Oystaeyen, A.; Klatt, B.K.; Petit, C.; Lenaerts, N.; Wäckers, F. Short-term lab assessments and microcolonies are insufficient for the risk assessment of insecticides for bees. Chemosphere 2021, 273, 128518. [Google Scholar] [CrossRef]
- Wynants, E.; Wäckers, F.; Van Oystaeyen, A. Re-evaluation of a method used to study nutritional effects on bumble bees. Ecol. Entomol. 2022, 47, 959–966. [Google Scholar] [CrossRef]
- Kraus, S.; Gómez-Moracho, T.; Pasquaretta, C.; Latil, G.; Dussutour, A.; Lihoreau, M. Bumblebees adjust protein and lipid collection rules to the presence of brood. Curr. Zool. 2019, 65, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, L.; Pošćić, F.; Bogo, G. Comparison of different pollens substitutes for the feeding of laboratory reared bumble bee (Bombus terrestris) colonies. J. Apicult. Sci. 2020, 64, 91–104. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Thursfield, L. Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees. PeerJ 2017, 5, e3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid-Hempel, P.; Wilfert, L.; Schmid-Hempel, R. Pollinator diseases: The Bombus-Crithidia system. In Wildlife Disease Ecology: Linking Theory to Data and Application; Cambridge University Press: Cambridge, UK, 2019; pp. 3–31. [Google Scholar]
- Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A.; et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef]
- Wilfert, L.; Brown, M.J.F.; Doublet, V. OneHealth implications of infectious diseases of wild and managed bees. J. Invertebr. Pathol. 2021, 186, 107506. [Google Scholar] [CrossRef]
- Fitch, G.; Figueroa, L.L.; Koch, H.; Stevenson, P.C.; Adler, L.S. Understanding effects of floral products on bee parasites: Mechanisms, synergism, and ecological complexity. Int. J. Parasitol. Parasites Wildl. 2022, 17, 244–256. [Google Scholar] [CrossRef]
- Brown, M.J.F. Complex networks of parasites and pollinators: Moving towards a healthy balance. Phil. Trans. R. Soc. B 2022, 377, 20210161. [Google Scholar] [CrossRef]
- Hatcher, M.J.; Dick, J.T.A.; Dunn, A.M. How parasites affect interactions between competitors and predators. Ecol. Lett. 2006, 9, 1253–1271. [Google Scholar] [CrossRef]
- Sadd, B.M.; Schmid-Hempel, P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr. Biol. 2006, 16, 1206–1210. [Google Scholar] [CrossRef] [Green Version]
- Masri, L.; Cremer, S. Individual and social immunisation in insects. Trends Immunol. 2014, 35, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Meeus, I.; Pisman, M.; Smagghe, G.; Piot, N. Interaction effects of different drivers of wild bee decline and their influence on host-pathogen dynamics. Curr. Opin. Insect Sci. 2018, 26, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Folly, A.J.; Koch, H.; Farrell, I.W.; Stevenson, P.C.; Brown, M.J.F. Agri-environment scheme nectar chemistry can suppress the social epidemiology of parasites in an important pollinator. Proc. R. Soc. B 2021, 288, 20210363. [Google Scholar] [CrossRef] [PubMed]
- Rotchild, K.W.; Adler, L.S.; Irwin, R.E.; Sadd, B.M.; Stevenson, P.C.; Palmer-Young, E.C. Effects of short-term exposure to naturally occurring thymol concentrations on transmission of a bumble bee parasite. Ecol. Entomol. 2018, 43, 567–577. [Google Scholar] [CrossRef]
- Huffman, M.A. Current evidence for self-medication in primates: A multidisciplinary perspective. Am. J. Phys. Anthropol. 1997, 40, 171–200. [Google Scholar] [CrossRef]
- Eckhardt, M.; Haider, M.; Dorn, S.; Müller, A. Pollen mixing in pollen generalist solitary bees: A possible strategy to complement or mitigate unfavourable pollen properties? J. Anim. Ecol. 2014, 83, 588–597. [Google Scholar] [CrossRef]
- Rasmont, P.; Coppée, A.; Michez, D.; De Meulemeester, T. An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae). Ann. Soc. Entomol. Fr. 2008, 44, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Kleijn, D.; Raemakers, I. A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology 2008, 89, 1811–1823. [Google Scholar] [CrossRef]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef] [Green Version]
- Pendrel, B.A.; Plowright, R.C. Larval feeding by adult bumble bee workers (Hymenoptera: Apidae). Behav. Ecol. Sociobiol. 1981, 8, 71–76. [Google Scholar] [CrossRef]
- Goulson, D. Bumblebees: Behaviour, Ecology, and Conservation; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Durrer, S.; Schmid-Hempel, P. Shared use of flowers leads to horizontal pathogen transmission. Proc. R. Soc. Lond. B Biol. Sci. 1994, 258, 299–302. [Google Scholar]
- Otterstatter, M.C.; Thomson, J.D. Contact networks and transmission of an intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia 2007, 154, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Folly, A.J.; Koch, H.; Stevenson, P.C.; Brown, M.J.F. Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. J. Invertebr. Pathol. 2017, 148, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Lipa, J.J.; Triggiani, O. Crithidia bombi sp. n. a flagellated parasite of a bumble-bee Bombus terrestris L. (Hymenoptera, Apidae). Acta Protozool. 1988, 27, 287–290. [Google Scholar]
- Shykoff, J.A.; Schmid-Hempel, P. Parasites delay worker reproduction in the bumblebee: Consequences for eusociality. Behav. Ecol. 1992, 2, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Gegear, R.J.; Otterstatter, M.C.; Thomson, J.D. Does parasitic infection impair the ability of bumblebees to learn flower-handling techniques? Anim. Behav. 2005, 70, 209–215. [Google Scholar] [CrossRef]
- Gegear, R.J.; Otterstatter, M.C.; Thomson, J.D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B Biol. Sci. 2006, 273, 1073–1078. [Google Scholar] [CrossRef] [Green Version]
- Newsholme, C. The Genus Salix; B. T. Batsford Ltd.: London, UK, 1992. [Google Scholar]
- Faegri, K.; van der Pijl, L. The Principles of Pollination Ecology, 3rd ed.; Pergamon Press: Oxford, UK, 1979. [Google Scholar]
- Reagon, M.; Snow, A.A. Cultivated Helianthus annuus (Asteraceae) volunteers as a genetic “bridge” to weedy sunflower 1095 populations in North America. Am. J. Bot. 2006, 93, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Strange, K. USDA Foreign Agricultural Service Gain Report: Oilseeds and Products Annual 2016; USDA: Washington, DC, USA, 2016.
- Treanore, E.D.; Vaudo, A.D.; Grozinger, C.M.; Fleischer, S.J. Examining the nutritional value and effects of different floral resources in pumpkin agroecosystems on Bombus impatiens worker physiology. Apidologie 2019, 50, 542–552. [Google Scholar] [CrossRef]
- Manning, R. Fatty acids in pollen: A review of their importance for honey bees. Bee World 2001, 82, 60–75. [Google Scholar] [CrossRef]
- Hurd, P.D.; LeBerge, W.E.; Linsley, E.G. Principal sunflower bees of North America with emphasis on the Southwestern United States (Hymenoptera, Apoidea). Smithson. Contrib. Zool. 1980, 310, 1–158. [Google Scholar] [CrossRef]
- Meynié, S.; Bernard, R. Efficacité comparée de la pollinisation d’espèces sauvages d’Helianthus par plusieurs genres d’insectes. Agronomie 1997, 17, 43–51. [Google Scholar] [CrossRef]
- Murat Asla, M.; Yavuksuz, C. Effect of honey bee (Apis mellifera L.) and bumblebee (Bombus terrestris L.) pollinators on yield and yield factors in sunflower (Helianthus annuus L.) production areas. J. Anim. Vet. Adv. 2010, 9, 332–335. [Google Scholar] [CrossRef]
- Holm, L.G.; Pancho, J.V.; Herberger, J.P.; Plucknett, D.L. A Geographic Atlas of World Weeds; Krieger Publishing Co.: Malabar, FL, USA, 1991. [Google Scholar]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Hicks, D.M.; Ouvrard, P.; Baldock, K.C.; Baude, M.; Goddard, M.A.; Kunin, W.E.; Mitschunas, N.; Memmott, J.; Morse, H.; Nikolitsi, M.; et al. Food for pollinators: Quantifying the nectar and pollen resources of urban flower meadows. PLoS ONE 2016, 11, e0158117. [Google Scholar] [CrossRef] [Green Version]
- Proctor, M.; Yeo, P. The Pollination of Flowers; Willam Collins Sons: London, UK, 1993. [Google Scholar]
- Koster, A. Plantenvademecum voor Tuin, Park en Landschap; Fontaine Uitgevers: Amsterdam, The Netherlands, 2007; 416p. [Google Scholar]
- Bertille, G.A. Effect of Different Flowers Strips on the Numbers of Visits and the Diversity of Pollinators. Master’s Thesis, Wageningen University and ISARA, Lyon, France, 2010; 50p. [Google Scholar]
- Diemont, W.H.; Heijman, W.J.; Siepel, H.; Webb, N.R. (Eds.) Economy and Ecology of Heathlands: Heathland Ecology and Management; KNNV Publishing: Zeist, The Netherlands, 2013. [Google Scholar]
- Buchmann, S.L. Buzz Pollination in Angiosperms; Van Nostrand Reinhold Company: New York, NY, USA, 1983; pp. 73–113. [Google Scholar]
- Gimingham, C.H. Calluna Salisb. J. Ecol. 1960, 48, 455–483. [Google Scholar] [CrossRef]
- Schmid-Hempel, P.; Puhr, K.; Krüger, N.; Reber, C.; Schmid-Hempel, R. Dynamic and genetic consequences of variation in horizontal transmission for a microparasitic infection. Evolution 1999, 53, 426–434. [Google Scholar] [CrossRef]
- Schmid-Hempel, P.; Reber Funk, C. The distribution of genotypes of the trypanosome parasite, Crithidia bombi, in populations of its host, Bombus terrestris. Parasitology 2004, 129, 147–158. [Google Scholar] [CrossRef]
- Cole, R.J. The application of the “triangulation” method to the purification of Nosema spores from insect tissues. J. Invertebr. Pathol. 1970, 15, 193–195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanderplanck, M.; Marin, L.; Michez, D.; Gekière, A. Pollen as Bee Medicine: Is Prevention Better than Cure? Biology 2023, 12, 497. https://doi.org/10.3390/biology12040497
Vanderplanck M, Marin L, Michez D, Gekière A. Pollen as Bee Medicine: Is Prevention Better than Cure? Biology. 2023; 12(4):497. https://doi.org/10.3390/biology12040497
Chicago/Turabian StyleVanderplanck, Maryse, Lucie Marin, Denis Michez, and Antoine Gekière. 2023. "Pollen as Bee Medicine: Is Prevention Better than Cure?" Biology 12, no. 4: 497. https://doi.org/10.3390/biology12040497
APA StyleVanderplanck, M., Marin, L., Michez, D., & Gekière, A. (2023). Pollen as Bee Medicine: Is Prevention Better than Cure? Biology, 12(4), 497. https://doi.org/10.3390/biology12040497