COVID-19 in Adult Patients with Hematological Malignancies—Lessons Learned after Three Years of Pandemic
Abstract
:Simple Summary
Abstract
1. Introduction
2. SARS-CoV-2 Structure and Variants
- S (spike)—fusion protein or surface glycoprotein—responsible for interaction with the receptor on the surface of host cells;
- E (envelope)—coat protein—responsible for the formation of virions;
- M (membrane)—membrane or membrane glycoprotein—the main protein of the virus matrix;
- N (nucleocapsid)—a nucleocapsid protein—protecting a large RNA molecule and participating in the modification of cellular processes and virus replication.
3. Treatment of Patients with COVID-19
4. Convalescent Plasma
5. Glucocorticoids
6. Tocilizumab (RoActemra)
7. Remdesivir (Veklury)
8. Molnupiravir (Lagevrio)
9. Nirmatrelvir/Ritonavir (Paxlovid)
10. Sotrovimab (Xevudy)
11. Tixagevimab/Cilgavimab (Evusheld)
12. Prophylaxis of SARS-COV-2 Infection
12.1. Vaccines
12.2. Tixagevimab/Cilgavimab
12.3. COVID-19 in Patients with Hematological Malignancies during the First Phases of Pandemic (before Introduction of the Prophylaxis Strategies)
12.4. COVID-19 in Vaccinated Patients with Hematological Malignancies
12.5. Metal and Metal Complexes and COVID-19 in Patients with Hematological Malignancies
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allegra, A.; Tonacci, A.; Musolino, C.; Pioggia, G.; Gangemi, S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front. Immunol. 2021, 12, 738915. [Google Scholar] [CrossRef]
- Pawelec, G. Age and Immunity: What Is “Immunosenescence”? Exp. Gerontol. 2018, 105, 4–9. [Google Scholar] [CrossRef]
- Henig, O.; Kaye, K.S. Bacterial Pneumonia in Older Adults. Infect. Dis. Clin. N. Am. 2017, 31, 689–713. [Google Scholar] [CrossRef]
- Fuentes, E.; Fuentes, M.; Alarcón, M.; Palomo, I. Immune System Dysfunction in the Elderly. An. Da Acad. Bras. De Ciências 2017, 89, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Abu-Ashour, W.; Twells, L.; Valcour, J.; Randell, A.; Donnan, J.; Howse, P.; Gamble, J.-M. The Association between Diabetes Mellitus and Incident Infections: A Systematic Review and Meta-Analysis of Observational Studies. BMJ Open Diabetes Res. Care 2017, 5, e000336. [Google Scholar] [CrossRef]
- Chang, C.-H.; Fan, P.-C.; Kuo, G.; Lin, Y.-S.; Tsai, T.-Y.; Chang, S.-W.; Tian, Y.-C.; Lee, C.-C. Infection in Advanced Chronic Kidney Disease and Subsequent Adverse Outcomes after Dialysis Initiation: A Nationwide Cohort Study. Sci. Rep. 2020, 10, 2938. [Google Scholar] [CrossRef] [Green Version]
- Gafter-Gvili, A.; Ribakovsky, E.; Mizrahi, N.; Avigdor, A.; Aviv, A.; Vidal, L.; Ram, R.; Perry, C.; Avivi, I.; Kedmi, M.; et al. Infections Associated with Bendamustine Containing Regimens in Hematological Patients: A Retrospective Multi-Center Study. Leuk. Lymphoma 2016, 57, 63–69. [Google Scholar] [CrossRef]
- Perkins, J.G.; Flynn, J.M.; Howard, R.S.; Byrd, J.C. Frequency and Type of Serious Infections in Fludarabine-Refractory B-Cell Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma: Implications for Clinical Trials in This Patient Population. Cancer 2002, 94, 2033–2039. [Google Scholar] [CrossRef]
- Tadmor, T.; Welslau, M.; Hus, I. A Review of the Infection Pathogenesis and Prophylaxis Recommendations in Patients with Chronic Lymphocytic Leukemia. Expert Rev. Hematol. 2018, 11, 57–70. [Google Scholar] [CrossRef]
- Sacco, K.A.; Abraham, R.S. Consequences of B-Cell-Depleting Therapy: Hypogammaglobulinemia and Impaired B-Cell Reconstitution. Immunotherapy 2018, 10, 713–728. [Google Scholar] [CrossRef]
- Mikulska, M.; Lanini, S.; Gudiol, C.; Drgona, L.; Ippolito, G.; Fernández-Ruiz, M.; Salzberger, B. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the Safety of Targeted and Biological Therapies: An Infectious Diseases Perspective (Agents Targeting Lymphoid Cells Surface Antigens [I]: CD19, CD20 and CD52). Clin. Microbiol. Infect. 2018, 24 (Suppl. 2), S71–S82. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Camps, I.; Aguilar-Company, J. Risk of Infection Associated with Targeted Therapies for Solid Organ and Hematological Malignancies. Ther. Adv. Infect Dis. 2021, 8, 2049936121989548. [Google Scholar] [CrossRef]
- Maffei, R.; Maccaferri, M.; Arletti, L.; Fiorcari, S.; Benatti, S.; Potenza, L.; Luppi, M.; Marasca, R. Immunomodulatory Effect of Ibrutinib: Reducing the Barrier against Fungal Infections. Blood Rev. 2020, 40, 100635. [Google Scholar] [CrossRef]
- Bupha-Intr, O.; Haeusler, G.; Chee, L.; Thursky, K.; Slavin, M.; Teh, B. CAR-T Cell Therapy and Infection: A Review. Expert Rev. Anti-Infect. Ther. 2021, 19, 749–758. [Google Scholar] [CrossRef]
- Los-Arcos, I.; Iacoboni, G.; Aguilar-Guisado, M.; Alsina-Manrique, L.; Díaz de Heredia, C.; Fortuny-Guasch, C.; García-Cadenas, I.; García-Vidal, C.; González-Vicent, M.; Hernani, R.; et al. Recommendations for Screening, Monitoring, Prevention, and Prophylaxis of Infections in Adult and Pediatric Patients Receiving CAR T-Cell Therapy: A Position Paper. Infection 2021, 49, 215–231. [Google Scholar] [CrossRef]
- Spanjaart, A.M.; Ljungman, P.; de La Camara, R.; Tridello, G.; Ortiz-Maldonado, V.; Urbano-Ispizua, A.; Barba, P.; Kwon, M.; Caballero, D.; Sesques, P.; et al. Poor Outcome of Patients with COVID-19 after CAR T-Cell Therapy for B-Cell Malignancies: Results of a Multicenter Study on Behalf of the European Society for Blood and Marrow Transplantation (EBMT) Infectious Diseases Working Party and the European Hematology Association (EHA) Lymphoma Group. Leukemia 2021, 35, 3585–3588. [Google Scholar] [CrossRef]
- Kin, A.; Schiffer, C.A. Infectious Complications of Tyrosine Kinase Inhibitors in Hematological Malignancies. Infect Dis. Clin. N. Am. 2020, 34, 245–256. [Google Scholar] [CrossRef]
- Burden of Infections among Chronic Myeloid Leukemia Patients Receiving Dasatinib or Nilotinib: A Real-World Retrospective Healthcare Claims Study in the United States—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30155792/ (accessed on 3 February 2023).
- Cattaneo, D.; Iurlo, A. Immune Dysregulation and Infectious Complications in MPN Patients Treated with JAK Inhibitors. Front. Immunol. 2021, 12, 750346. [Google Scholar] [CrossRef]
- Tremblay, D.; King, A.; Li, L.; Moshier, E.; Coltoff, A.; Koshy, A.; Kremyanskaya, M.; Hoffman, R.; Mauro, M.J.; Rampal, R.K.; et al. Risk Factors for Infections and Secondary Malignancies in Patients with a Myeloproliferative Neoplasm Treated with Ruxolitinib: A Dual-Center, Propensity Score-Matched Analysis. Leuk. Lymphoma 2020, 61, 660–667. [Google Scholar] [CrossRef]
- Frequency of Infections in 948 MPN Patients: A Prospective Multicenter Patient-Reported Pilot Study—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32474573/ (accessed on 3 February 2023).
- Logan, C.; Koura, D.; Taplitz, R. Updates in Infection Risk and Management in Acute Leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 135–139. [Google Scholar] [CrossRef]
- Maschmeyer, G.; Bullinger, L.; Garcia-Vidal, C.; Herbrecht, R.; Maertens, J.; Menna, P.; Pagano, L.; Thiebaut-Bertrand, A.; Calandra, T. Correction: Infectious Complications of Targeted Drugs and Biotherapies in Acute Leukemia. Clinical Practice Guidelines by the European Conference on Infections in Leukemia (ECIL), a Joint Venture of the European Group for Blood and Marrow Transplantation (EBMT), the European Organization for Research and Treatment of Cancer (EORTC), the International Immunocompromised Host Society (ICHS) and the European Leukemia Net (ELN). Leukemia 2022, 36, 1450. [Google Scholar] [CrossRef]
- Sahin, U.; Toprak, S.K.; Atilla, P.A.; Atilla, E.; Demirer, T. An Overview of Infectious Complications after Allogeneic Hematopoietic Stem Cell Transplantation. J. Infect. Chemother. 2016, 22, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Wójtowicz, A.; Bochud, P.-Y. Risk Stratification and Immunogenetic Risk for Infections Following Stem Cell Transplantation. Virulence 2016, 7, 917–929. [Google Scholar] [CrossRef] [Green Version]
- Mauro, F.R.; Giannarelli, D.; Galluzzo, C.M.; Vitale, C.; Visentin, A.; Riemma, C.; Rosati, S.; Porrazzo, M.; Pepe, S.; Coscia, M.; et al. Response to the Conjugate Pneumococcal Vaccine (PCV13) in Patients with Chronic Lymphocytic Leukemia (CLL). Leukemia 2021, 35, 737–746. [Google Scholar] [CrossRef]
- Lindström, V.; Aittoniemi, J.; Salmenniemi, U.; Käyhty, H.; Huhtala, H.; Sinisalo, M. Antibody Response to the 23-Valent Pneumococcal Polysaccharide Vaccine after Conjugate Vaccine in Patients with Chronic Lymphocytic Leukemia. Hum. Vaccines Immunother. 2019, 15, 2910–2913. [Google Scholar] [CrossRef]
- Whitaker, J.A.; Parikh, S.A.; Shanafelt, T.D.; Kay, N.E.; Kennedy, R.B.; Grill, D.E.; Goergen, K.M.; Call, T.G.; Kendarian, S.S.; Ding, W.; et al. The Humoral Immune Response to High-Dose Influenza Vaccine in Persons with Monoclonal B-Cell Lymphocytosis (MBL) and Chronic Lymphocytic Leukemia (CLL). Vaccine 2021, 39, 1122–1130. [Google Scholar] [CrossRef]
- Cordonnier, C.; Einarsdottir, S.; Cesaro, S.; Di Blasi, R.; Mikulska, M.; Rieger, C.; de Lavallade, H.; Gallo, G.; Lehrnbecher, T.; Engelhard, D.; et al. Vaccination of Haemopoietic Stem Cell Transplant Recipients: Guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect. Dis. 2019, 19, e200–e212. [Google Scholar] [CrossRef]
- Ludwig, H.; Boccadoro, M.; Moreau, P.; San-Miguel, J.; Cavo, M.; Pawlyn, C.; Zweegman, S.; Facon, T.; Driessen, C.; Hajek, R.; et al. Recommendations for Vaccination in Multiple Myeloma: A Consensus of the European Myeloma Network. Leukemia 2021, 35, 31–44. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 4 February 2023).
- Chen, R.; Liang, W.; Jiang, M.; Guan, W.; Zhan, C.; Wang, T.; Tang, C.; Sang, L.; Liu, J.; Ni, Z.; et al. Risk Factors of Fatal Outcome in Hospitalized Subjects with Coronavirus Disease 2019 From a Nationwide Analysis in China. Chest 2020, 158, 97–105. [Google Scholar] [CrossRef]
- Gao, Y.-D.; Ding, M.; Dong, X.; Zhang, J.-J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.-L.; Fu, W.; Li, W.; et al. Risk Factors for Severe and Critically Ill COVID-19 Patients: A Review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef]
- Bhogal, T.; Khan, U.T.; Lee, R.; Stockdale, A.; Hesford, C.; Potti-Dhananjaya, V.; Jathanna, A.; Rahman, S.; Tivey, A.; Shotton, R.; et al. Haematological Malignancy and Nosocomial Transmission Are Associated with an Increased Risk of Death from COVID-19: Results of a Multi-Center UK Cohort. Leuk. Lymphoma 2021, 62, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Ustianowski, A. Tixagevimab/Cilgavimab for Prevention and Treatment of COVID-19: A Review. Expert Rev. Anti-Infect. Ther. 2022, 20, 1517–1527. [Google Scholar] [CrossRef]
- Murakami, N.; Hayden, R.; Hills, T.; Al-Samkari, H.; Casey, J.; Del Sorbo, L.; Lawler, P.R.; Sise, M.E.; Leaf, D.E. Therapeutic Advances in COVID-19. Nat. Rev. Nephrol. 2023, 19, 38–52. [Google Scholar] [CrossRef]
- Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 4 February 2023).
- Fernandes, Q.; Inchakalody, V.P.; Merhi, M.; Mestiri, S.; Taib, N.; Moustafa Abo El-Ella, D.; Bedhiafi, T.; Raza, A.; Al-Zaidan, L.; Mohsen, M.O.; et al. Emerging COVID-19 Variants and Their Impact on SARS-CoV-2 Diagnosis, Therapeutics and Vaccines. Ann. Med. 2022, 54, 524–540. [Google Scholar] [CrossRef] [PubMed]
- SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32142651/ (accessed on 4 February 2023).
- Kumar, A.; Narayan, R.K.; Prasoon, P.; Kumari, C.; Kaur, G.; Kumar, S.; Kulandhasamy, M.; Sesham, K.; Pareek, V.; Faiq, M.A.; et al. COVID-19 Mechanisms in the Human Body-What We Know So Far. Front. Immunol. 2021, 12, 693938. [Google Scholar] [CrossRef] [PubMed]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 Facilitates SARS-CoV-2 Cell Entry and Infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-Year Outcomes in Hospital Survivors with COVID-19: A Longitudinal Cohort Study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Lippi, G.; Henry, B.M. Chronic Obstructive Pulmonary Disease Is Associated with Severe Coronavirus Disease 2019 (COVID-19). Respir. Med. 2020, 167, 105941. [Google Scholar] [CrossRef]
- Flisiak, R.; Horban, A.; Jaroszewicz, J.; Kozielewicz, D.; Mastalerz-Migas, A.; Owczuk, R.; Parczewski, M.; Pawłowska, M.; Piekarska, A.; Simon, K.; et al. Management of SARS-CoV-2 Infection: Recommendations of the Polish Association of Epidemiologists and Infectiologists as of February 23, 2022. Pol. Arch. Intern. Med. 2022, 132, 16230. [Google Scholar] [CrossRef]
- Goldman, J.D.; Robinson, P.C.; Uldrick, T.S.; Ljungman, P. COVID-19 in Immunocompromised Populations: Implications for Prognosis and Repurposing of Immunotherapies. J. Immunother. Cancer 2021, 9, e002630. [Google Scholar] [CrossRef] [PubMed]
- Langerbeins, P.; Hallek, M. COVID-19 in Patients with Hematologic Malignancy. Blood 2022, 140, 236–252. [Google Scholar] [CrossRef]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Przybyciński, J.; Lorzadeh, S.; Kotfis, K.; Ghavami, S.; Łos, M.J. An Update on Drugs with Therapeutic Potential for SARS-CoV-2 (COVID-19) Treatment. Drug. Resist. Updates 2021, 59, 100794. [Google Scholar] [CrossRef]
- EMA COVID-19 Treatments. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/covid-19-treatments (accessed on 4 February 2023).
- Oliva, A.; Cancelli, F.; Brogi, A.; Curtolo, A.; Savelloni, G.; Siccardi, G.; Marcelli, G.; Mazzuti, L.; Ricci, P.; Turriziani, O.; et al. Convalescent Plasma for Haematological Patients with SARS-CoV-2 Pneumonia and Severe Depletion of B-Cell Lymphocytes Following Anti-CD20 Therapy: A Single-Centre Experience and Review of the Literature. New Microbiol. 2022, 45, 62–72. [Google Scholar]
- Ljungquist, O.; Lundgren, M.; Iliachenko, E.; Månsson, F.; Böttiger, B.; Landin-Olsson, M.; Wikén, C.; Rosendal, E.; Överby, A.K.; Wigren, B.J.; et al. Convalescent Plasma Treatment in Severely Immunosuppressed Patients Hospitalized with COVID-19: An Observational Study of 28 Cases. Infect. Dis. 2022, 54, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, P.; Agrawal, N.; Bhargava, R.; Bansal, D.; Ahmed, R.; Bhurani, D.; Bansal, S.; Rastogi, N.; Borah, P.; Naithani, R.; et al. Convalescent Plasma Therapy for Severe COVID-19 in Patients with Hematological Malignancies. Transfus. Apher. Sci. 2021, 60, 103075. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Caprioli, C.; Weber, A.; Rambaldi, A.; Lussana, F. Convalescent Hyperimmune Plasma for Chemo-Immunotherapy Induced Immunodeficiency in COVID-19 Patients with Hematological Malignancies. Leuk. Lymphoma 2021, 62, 1490–1496. [Google Scholar] [CrossRef]
- Martin-Onraët, A.; Barrientos-Flores, C.; Vilar-Compte, D.; Pérez-Jimenez, C.; Alatorre-Fernandez, P. Use of Remdesivir for COVID-19 in Patients with Hematologic Cancer. Clin. Exp. Med. 2022, 1–8. [Google Scholar] [CrossRef]
- Magyari, F.; Pinczés, L.I.; Páyer, E.; Farkas, K.; Ujfalusi, S.; Diószegi, Á.; Sik, M.; Simon, Z.; Nagy, G.; Hevessy, Z.; et al. Early Administration of Remdesivir plus Convalescent Plasma Therapy Is Effective to Treat COVID-19 Pneumonia in B-Cell Depleted Patients with Hematological Malignancies. Ann. Hematol. 2022, 101, 2337–2345. [Google Scholar] [CrossRef]
- Dioverti, M.V.; Gaston, D.C.; Morris, C.P.; Huff, C.A.; Jain, T.; Jones, R.; Anders, V.; Lederman, H.; Saunders, J.; Mostafa, H.H.; et al. Combination Therapy with Casirivimab/Imdevimab and Remdesivir for Protracted SARS-CoV-2 Infection in B-Cell-Depleted Patients. Open Forum. Infect Dis. 2022, 9, ofac064. [Google Scholar] [CrossRef]
- Weinbergerova, B.; Mayer, J.; Kabut, T.; Hrabovsky, S.; Prochazkova, J.; Kral, Z.; Herout, V.; Pacasova, R.; Zdrazilova-Dubska, L.; Husa, P.; et al. Successful Early Treatment Combining Remdesivir with High-Titer Convalescent Plasma among COVID-19-Infected Hematological Patients. Hematol. Oncol. 2021, 39, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Bołkun, Ł.; Pula, B.; Kołkowska-Leśniak, A.; Morawska, M.; Cichocka, E.; Charlinski, G.; Garus, B.; Giebel, S.; Piszcz, J.; Drozd-Sokolowska, J.; et al. Molnupiravir Is Effective in Patients with Haematological Malignancies. Int. J. Cancer 2023. [Google Scholar] [CrossRef] [PubMed]
- Stuver, R.; Shah, G.L.; Korde, N.S.; Roeker, L.E.; Mato, A.R.; Batlevi, C.L.; Chung, D.J.; Doddi, S.; Falchi, L.; Gyurkocza, B.; et al. Activity of AZD7442 (Tixagevimab-Cilgavimab) against Omicron SARS-CoV-2 in Patients with Hematologic Malignancies. Cancer Cell 2022, 40, 590–591. [Google Scholar] [CrossRef]
- Majumder, J.; Minko, T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. 2021, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Carter, R.E.; Fairweather, D.; Wright, R.S. Convalescent Plasma and COVID-19: Time for a Second-Second Look? Transfus. Med. 2022, 33, 16–20. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Ortega, C.D.; Sánchez-Serrano, N.; Beddar Chaib, F.; Jerves Donoso, D.; Jiménez-Callejo, E.; Rodríguez-García, S. Convalescent Plasma Therapy, Therapeutic Formulations of Repurposed Drugs in 20th Century Epidemics against COVID-19: A Systematic Review. Pharmaceutics 2022, 14, 1020. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Convalescent Plasma in Patients Admitted to Hospital with COVID-19 (RECOVERY): A Randomised Controlled, Open-Label, Platform Trial. Lancet 2021, 397, 2049–2059. [Google Scholar] [CrossRef]
- Writing Committee for the REMAP-CAP Investigators; Estcourt, L.J.; Turgeon, A.F.; McQuilten, Z.K.; McVerry, B.J.; Al-Beidh, F.; Annane, D.; Arabi, Y.M.; Arnold, D.M.; Beane, A.; et al. Effect of Convalescent Plasma on Organ Support-Free Days in Critically Ill Patients With COVID-19: A Randomized Clinical Trial. JAMA 2021, 326, 1690–1702. [Google Scholar] [CrossRef]
- Bégin, P.; Callum, J.; Jamula, E.; Cook, R.; Heddle, N.M.; Tinmouth, A.; Zeller, M.P.; Beaudoin-Bussières, G.; Amorim, L.; Bazin, R.; et al. Convalescent Plasma for Hospitalized Patients with COVID-19: An Open-Label, Randomized Controlled Trial. Nat. Med. 2021, 27, 2012–2024. [Google Scholar] [CrossRef]
- Rehman, S.U.; Rehman, S.U.; Yoo, H.H. COVID-19 Challenges and Its Therapeutics. Biomed Pharmacother. 2021, 142, 112015. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Amponsah, S.K.; Tagoe, B.; Adams, I.; Bugyei, K.A. Efficacy and Safety Profile of Corticosteroids and Non-Steroidal Anti-Inflammatory Drugs in COVID-19 Management: A Narrative Review. Front. Pharmacol. 2022, 13, 1063246. [Google Scholar] [CrossRef] [PubMed]
- Lester, M.; Sahin, A.; Pasyar, A. The Use of Dexamethasone in the Treatment of COVID-19. Ann. Med. Surg. 2020, 56, 218–219. [Google Scholar] [CrossRef] [PubMed]
- Grygiel-Górniak, B.; Shaikh, O.; Kumar, N.N.; Hsu, S.H.; Samborski, W. Use of the Rheumatic Drug Tocilizumab for Treatment of SARS-CoV-2 Patients. Reumatologia 2021, 59, 252–259. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Tocilizumab in Patients Admitted to Hospital with COVID-19 (RECOVERY): A Randomised, Controlled, Open-Label, Platform Trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- REMAP-CAP Investigators; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef]
- Veiga, V.C.; Prats, J.A.G.G.; Farias, D.L.C.; Rosa, R.G.; Dourado, L.K.; Zampieri, F.G.; Machado, F.R.; Lopes, R.D.; Berwanger, O.; Azevedo, L.C.P.; et al. Effect of Tocilizumab on Clinical Outcomes at 15 Days in Patients with Severe or Critical Coronavirus Disease 2019: Randomised Controlled Trial. BMJ 2021, 372, n84. [Google Scholar] [CrossRef]
- Hermine, O.; Mariette, X.; Tharaux, P.-L.; Resche-Rigon, M.; Porcher, R.; Ravaud, P.; CORIMUNO-19 Collaborative Group. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern. Med. 2021, 181, 32–40. [Google Scholar] [CrossRef]
- García-Lledó, A.; Gómez-Pavón, J.; González Del Castillo, J.; Hernández-Sampelayo, T.; Martín-Delgado, M.C.; Martín Sánchez, F.J.; Martínez-Sellés, M.; Molero García, J.M.; Moreno Guillén, S.; Rodríguez-Artalejo, F.J.; et al. Pharmacological Treatment of COVID-19: An Opinion Paper. Rev. Esp. Quimioter. 2022, 35, 115–130. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; et al. Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Sci. Transl. Med. 2017, 9, eaal3653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef]
- Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.-X.; et al. Compassionate Use of Remdesivir for Patients with Severe COVID-19. N. Engl. J. Med. 2020, 382, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Antinori, S.; Cossu, M.V.; Ridolfo, A.L.; Rech, R.; Bonazzetti, C.; Pagani, G.; Gubertini, G.; Coen, M.; Magni, C.; Castelli, A.; et al. Compassionate Remdesivir Treatment of Severe COVID-19 Pneumonia in Intensive Care Unit (ICU) and Non-ICU Patients: Clinical Outcome and Differences in Post-Treatment Hospitalisation Status. Pharmacol. Res. 2020, 158, 104899. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M.-Y.; Nahass, R.G.; et al. Remdesivir for 5 or 10 Days in Patients with Severe COVID-19. N. Engl. J. Med. 2020, 383, 1827–1837. [Google Scholar] [CrossRef]
- WHO Solidarity Trial Consortium. Remdesivir and Three Other Drugs for Hospitalised Patients with COVID-19: Final Results of the WHO Solidarity Randomised Trial and Updated Meta-Analyses. Lancet 2022, 399, 1941–1953. [Google Scholar] [CrossRef]
- Ader, F.; Bouscambert-Duchamp, M.; Hites, M.; Peiffer-Smadja, N.; Poissy, J.; Belhadi, D.; Diallo, A.; Lê, M.-P.; Peytavin, G.; Staub, T.; et al. Remdesivir plus Standard of Care versus Standard of Care Alone for the Treatment of Patients Admitted to Hospital with COVID-19 (DisCoVeRy): A Phase 3, Randomised, Controlled, Open-Label Trial. Lancet Infect. Dis. 2022, 22, 209–221. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Jaroszewicz, J.; Kowalska, J.; Pawłowska, M.; Rogalska, M.; Zarębska-Michaluk, D.; Rorat, M.; Lorenc, B.; Czupryna, P.; Sikorska, K.; Piekarska, A.; et al. Remdesivir Decreases Mortality in COVID-19 Patients with Active Malignancy. Cancers 2022, 14, 4720. [Google Scholar] [CrossRef]
- Kajova, M.; Kekäläinen, E.; Anttila, V.-J.; Paajanen, J. Successful Treatment with a Short Course of Remdesivir in a Case of Prolonged COVID-19 in a Lymphoma Patient. Infect. Dis. 2022, 54, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Pang, Z.; Li, M.; Lou, F.; An, X.; Zhu, S.; Song, L.; Tong, Y.; Fan, H.; Fan, J. Molnupiravir and Its Antiviral Activity Against COVID-19. Front. Immunol. 2022, 13, 855496. [Google Scholar] [CrossRef] [PubMed]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Fischer, W.A.; Eron, J.J.; Holman, W.; Cohen, M.S.; Fang, L.; Szewczyk, L.J.; Sheahan, T.P.; Baric, R.; Mollan, K.R.; Wolfe, C.R.; et al. A Phase 2a Clinical Trial of Molnupiravir in Patients with COVID-19 Shows Accelerated SARS-CoV-2 RNA Clearance and Elimination of Infectious Virus. Sci. Transl. Med. 2022, 14, eabl7430. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, A.; Singh, R.; Misra, A. Molnupiravir in COVID-19: A Systematic Review of Literature. Diabetes Metab. Syndr. 2021, 15, 102329. [Google Scholar] [CrossRef]
- Coronavirus (COVID-19) Update: FDA Authorizes Additional Oral Antiviral for Treatment of COVID-19 in Certain Adults. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain (accessed on 4 February 2023).
- Akinosoglou, K.; Schinas, G.; Gogos, C. Oral Antiviral Treatment for COVID-19: A Comprehensive Review on Nirmatrelvir/Ritonavir. Viruses 2022, 14, 2540. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Rodrigues Falci, D.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Effect of Sotrovimab on Hospitalization or Death Among High-Risk Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2022, 327, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Cassin, R.; Rampi, N.; Fidanza, C.; Muscatello, A.; Mariani, B.; Noto, A.; Rossi, F.G.; Baldini, L. Reply to “Successful Early Use of Anti-SARS-CoV-2 Monoclonal Neutralizing Antibodies in SARS-CoV-2 Infected Hematological Patients-A Czech Multicenter Experience”: A Case Series of SARS-CoV-2 Omicron Infection and Aggressive Lymphoma in the Sotrovimab Era. Hematol. Oncol. 2023, 41, 213–217. [Google Scholar] [CrossRef] [PubMed]
- FDA Updates Sotrovimab Emergency Use Authorization. 2022. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-sotrovimab-emergency-use-authorization#:~:text=%5B2%2F25%2F2022%5D,not%20susceptible%20to%20this%20treatment (accessed on 26 March 2023).
- Dean, E.A.; Brown, R.A.; Kaur, P.; Casaus, D.V. Viral Clearance with Neutrophil Recovery in a Patient with Active COVID-19 Infection and Refractory Acute Myeloid Leukemia Who Underwent Successful Reinduction with Cytarabine/Idarubicin. Case Rep. Oncol. 2022, 15, 705–712. [Google Scholar] [CrossRef]
- Keam, S.J. Tixagevimab + Cilgavimab: First Approval. Drugs 2022, 82, 1001–1010. [Google Scholar] [CrossRef]
- Montgomery, H.; Hobbs, F.D.R.; Padilla, F.; Arbetter, D.; Templeton, A.; Seegobin, S.; Kim, K.; Campos, J.A.S.; Arends, R.H.; Brodek, B.H.; et al. Efficacy and Safety of Intramuscular Administration of Tixagevimab-Cilgavimab for Early Outpatient Treatment of COVID-19 (TACKLE): A Phase 3, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Respir. Med. 2022, 10, 985–996. [Google Scholar] [CrossRef] [PubMed]
- FDA Announces Evusheld Is Not Currently Authorized for Emergency Use in the U.S. 2023. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-evusheld-not-currently-authorized-emergency-use-us#:~:text=Update%20%5B1%2F26%2F2023,than%20or%20equal%20to%2090%25 (accessed on 26 March 2023).
- Interim Clinical Considerations for Use of COVID-19 Vaccines|CDC. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html (accessed on 4 February 2023).
- Mascellino, M.T.; Di Timoteo, F.; De Angelis, M.; Oliva, A. Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety. Infect. Drug Resist. 2021, 14, 3459–3476. [Google Scholar] [CrossRef]
- Ura, T.; Yamashita, A.; Mizuki, N.; Okuda, K.; Shimada, M. New Vaccine Production Platforms Used in Developing SARS-CoV-2 Vaccine Candidates. Vaccine 2021, 39, 197–201. [Google Scholar] [CrossRef]
- EMA COVID-19 Vaccines: Authorised. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/covid-19-vaccines-authorised (accessed on 4 February 2023).
- Pagano, L.; Salmanton-García, J.; Marchesi, F.; López-García, A.; Lamure, S.; Itri, F.; Gomes-Silva, M.; Dragonetti, G.; Falces-Romero, I.; van Doesum, J.; et al. COVID-19 in Vaccinated Adult Patients with Hematological Malignancies: Preliminary Results from EPICOVIDEHA. Blood 2022, 139, 1588–1592. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-García, J.; Marchesi, F.; Blennow, O.; Gomes da Silva, M.; Glenthøj, A.; van Doesum, J.; Bilgin, Y.M.; López-García, A.; Itri, F.; et al. Breakthrough COVID-19 in Vaccinated Patients with Hematologic Malignancies: Results from the EPICOVIDEHA Survey. Blood 2022, 140, 2773–2787. [Google Scholar] [CrossRef]
- Salmanton-García, J.; Marchesi, F.; Glenthøj, A.; Bilgin, Y.M.; van Praet, J.; Dávila-Valls, J.; Martín-Pérez, S.; Labrador, J.; van Doesum, J.; Falces-Romero, I.; et al. Improved Clinical Outcome of COVID-19 in Hematologic Malignancy Patients Receiving a Fourth Dose of Anti-SARS-CoV-2 Vaccine: An EPICOVIDEHA Report. Hemasphere 2022, 6, e789. [Google Scholar] [CrossRef]
- Wang, L.; Kaelber, D.C.; Xu, R.; Berger, N.A. COVID-19 Breakthrough Infections, Hospitalizations and Mortality in Fully Vaccinated Patients with Hematologic Malignancies: A Clarion Call for Maintaining Mitigation and Ramping-up Research. Blood Rev. 2022, 54, 100931. [Google Scholar] [CrossRef]
- DeVoe, C.; Pandey, S.; Shariff, D.; Arora, S.; Henrich, T.J.; Yokoe, D.S.; Langelier, C.R.; Servellita, V.; Chiu, C.; Miller, S.; et al. COVID-19 in Vaccinated versus Unvaccinated Hematologic Malignancy Patients. Transpl. Infect. Dis. 2022, 24, e13835. [Google Scholar] [CrossRef]
- Schmidt, A.L.; Labaki, C.; Hsu, C.-Y.; Bakouny, Z.; Balanchivadze, N.; Berg, S.A.; Blau, S.; Daher, A.; El Zarif, T.; Friese, C.R.; et al. COVID-19 Vaccination and Breakthrough Infections in Patients with Cancer. Ann. Oncol. 2022, 33, 340–346. [Google Scholar] [CrossRef]
- Casetti, I.C.; Borsani, O.; Rumi, E. COVID-19 in Patients with Hematologic Diseases. Biomedicines 2022, 10, 3069. [Google Scholar] [CrossRef]
- Guven, D.C.; Sahin, T.K.; Akın, S.; Uckun, F.M. Impact of Therapy in Patients with Hematologic Malignancies on Seroconversion Rates After SARS-CoV-2 Vaccination. Oncologist 2022, 27, e357–e361. [Google Scholar] [CrossRef]
- Lim, S.H.; Stuart, B.; Joseph-Pietras, D.; Johnson, M.; Campbell, N.; Kelly, A.; Jeffrey, D.; Turaj, A.H.; Rolfvondenbaumen, K.; Galloway, C.; et al. Immune Responses against SARS-CoV-2 Variants after Two and Three Doses of Vaccine in B-Cell Malignancies: UK PROSECO Study. Nat. Cancer 2022, 3, 552–564. [Google Scholar] [CrossRef]
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- Ocon, A.J.; Ocon, K.E.; Battaglia, J.; Low, S.K.; Neupane, N.; Saeed, H.; Jamshed, S.; Mustafa, S.S. Real-World Effectiveness of Tixagevimab and Cilgavimab (Evusheld) in Patients with Hematological Malignancies. J. Hematol. 2022, 11, 210–215. [Google Scholar] [CrossRef]
- He, W.; Chen, L.; Chen, L.; Yuan, G.; Fang, Y.; Chen, W.; Wu, D.; Liang, B.; Lu, X.; Ma, Y.; et al. COVID-19 in Persons with Haematological Cancers. Leukemia 2020, 34, 1637–1645. [Google Scholar] [CrossRef]
- Ho, M.; Zanwar, S.; Buadi, F.K.; Ailawadhi, S.; Larsen, J.; Bergsagel, L.; Binder, M.; Chanan-Khan, A.; Dingli, D.; Dispenzieri, A.; et al. Risk Factors for Severe Infection and Mortality in Patients with COVID-19 in Patients with Multiple Myeloma and AL Amyloidosis. Am. J. Hematol. 2023, 98, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Aries, J.A.; Davies, J.K.; Auer, R.L.; Hallam, S.L.; Montoto, S.; Smith, M.; Sevillano, B.; Foggo, V.; Wrench, B.; Zegocki, K.; et al. Clinical Outcome of Coronavirus Disease 2019 in Haemato-Oncology Patients. Br. J. Haematol. 2020, 190, e64–e67. [Google Scholar] [CrossRef]
- Martín-Moro, F.; Marquet, J.; Piris, M.; Michael, B.M.; Sáez, A.J.; Corona, M.; Jiménez, C.; Astibia, B.; García, I.; Rodríguez, E.; et al. Survival Study of Hospitalised Patients with Concurrent COVID-19 and Haematological Malignancies. Br. J. Haematol. 2020, 190, e16–e20. [Google Scholar] [CrossRef]
- Sanchez-Pina, J.M.; Rodríguez Rodriguez, M.; Castro Quismondo, N.; Gil Manso, R.; Colmenares, R.; Gil Alos, D.; Paciello, M.L.; Zafra, D.; Garcia-Sanchez, C.; Villegas, C.; et al. Clinical Course and Risk Factors for Mortality from COVID-19 in Patients with Haematological Malignancies. Eur. J. Haematol. 2020, 105, 597–607. [Google Scholar] [CrossRef]
- Infante, M.-S.; González-Gascón Y Marín, I.; Muñoz-Novas, C.; Churruca, J.; Foncillas, M.-Á.; Landete, E.; Marín, K.; Ryan, P.; Hernández-Rivas, J.-Á. COVID-19 in Patients with Hematological Malignancies: A Retrospective Case Series. Int. J. Lab. Hematol. 2020, 42, e256–e259. [Google Scholar] [CrossRef]
- Piñana, J.L.; Martino, R.; García-García, I.; Parody, R.; Morales, M.D.; Benzo, G.; Gómez-Catalan, I.; Coll, R.; De La Fuente, I.; Luna, A.; et al. Risk Factors and Outcome of COVID-19 in Patients with Hematological Malignancies. Exp. Hematol. Oncol. 2020, 9, 21. [Google Scholar] [CrossRef]
- Passamonti, F.; Cattaneo, C.; Arcaini, L.; Bruna, R.; Cavo, M.; Merli, F.; Angelucci, E.; Krampera, M.; Cairoli, R.; Della Porta, M.G.; et al. Clinical Characteristics and Risk Factors Associated with COVID-19 Severity in Patients with Haematological Malignancies in Italy: A Retrospective, Multicentre, Cohort Study. Lancet Haematol. 2020, 7, e737–e745. [Google Scholar] [CrossRef]
- García-Suárez, J.; de la Cruz, J.; Cedillo, Á.; Llamas, P.; Duarte, R.; Jiménez-Yuste, V.; Hernández-Rivas, J.Á.; Gil-Manso, R.; Kwon, M.; Sánchez-Godoy, P.; et al. Impact of Hematologic Malignancy and Type of Cancer Therapy on COVID-19 Severity and Mortality: Lessons from a Large Population-Based Registry Study. J. Hematol. Oncol. 2020, 13, 133. [Google Scholar] [CrossRef]
- Tığlıoğlu, P.; Albayrak, M.; Tığlıoğlu, M.; Öztürk, H.B.A.; Aras, M.R.; Sağlam, B.; Maral, S. The Outcome of COVID-19 in Patients with Hematological Malignancy. Memo 2022, 15, 83–89. [Google Scholar] [CrossRef]
- Naimi, A.; Yashmi, I.; Jebeleh, R.; Imani Mofrad, M.; Azimian Abhar, S.; Jannesar, Y.; Heidary, M.; Pakzad, R. Comorbidities and Mortality Rate in COVID-19 Patients with Hematological Malignancies: A Systematic Review and Meta-Analysis. J. Clin. Lab. Anal. 2022, 36, e24387. [Google Scholar] [CrossRef]
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of Patients with Hematologic Malignancies and COVID-19: A Systematic Review and Meta-Analysis of 3377 Patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-García, J.; Marchesi, F.; Busca, A.; Corradini, P.; Hoenigl, M.; Klimko, N.; Koehler, P.; Pagliuca, A.; Passamonti, F.; et al. COVID-19 Infection in Adult Patients with Hematological Malignancies: A European Hematology Association Survey (EPICOVIDEHA). J. Hematol. Oncol. 2021, 14, 168. [Google Scholar] [CrossRef]
- Regalado-Artamendi, I.; Jiménez-Ubieto, A.; Hernández-Rivas, J.Á.; Navarro, B.; Núñez, L.; Alaez, C.; Córdoba, R.; Peñalver, F.J.; Cannata, J.; Estival, P.; et al. Risk Factors and Mortality of COVID-19 in Patients With Lymphoma: A Multicenter Study. Hemasphere 2021, 5, e538. [Google Scholar] [CrossRef]
- Visco, C.; Marcheselli, L.; Mina, R.; Sassone, M.; Guidetti, A.; Penna, D.; Cattaneo, C.; Bonuomo, V.; Busca, A.; Ferreri, A.J.M.; et al. A Prognostic Model for Patients with Lymphoma and COVID-19: A Multicentre Cohort Study. Blood Adv. 2022, 6, 327–338. [Google Scholar] [CrossRef]
- Cook, G.; John Ashcroft, A.; Pratt, G.; Popat, R.; Ramasamy, K.; Kaiser, M.; Jenner, M.; Henshaw, S.; Hall, R.; Sive, J.; et al. Real-World Assessment of the Clinical Impact of Symptomatic Infection with Severe Acute Respiratory Syndrome Coronavirus (COVID-19 Disease) in Patients with Multiple Myeloma Receiving Systemic Anti-Cancer Therapy. Br. J. Haematol. 2020, 190, e83–e86. [Google Scholar] [CrossRef]
- Cuneo, A.; Rigolin, G.M.; Coscia, M.; Quaresmini, G.; Scarfò, L.; Mauro, F.R.; Motta, M.; Quaglia, F.M.; Trentin, L.; Ferrario, A.; et al. Management of Chronic Lymphocytic Leukemia in Italy during a One Year of the COVID-19 Pandemic and at the Start of the Vaccination Program. A Campus CLL Report. Hematol. Oncol. 2021, 39, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Chatzikonstantinou, T.; Kapetanakis, A.; Scarfò, L.; Karakatsoulis, G.; Allsup, D.; Cabrero, A.A.; Andres, M.; Antic, D.; Baile, M.; Baliakas, P.; et al. COVID-19 Severity and Mortality in Patients with CLL: An Update of the International ERIC and Campus CLL Study. Leukemia 2021, 35, 3444–3454. [Google Scholar] [CrossRef] [PubMed]
- Puła, B.; Pruszczyk, K.; Pietrusza, E.; Morawska, M.; Piszczek, W.; Kalicińska, E.; Szeremet, A.; Tryc-Szponder, J.; Wąsik-Szczepanek, E.; Drozd-Sokołowska, J.; et al. Outcome of SARS-CoV-2-Infected Polish Patients with Chronic Lymphocytic Leukemia. Cancers 2022, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, S.; Bonifacio, M.; Agrippino, R.; Giglio, F.; Annunziata, M.; Curti, A.; Principe, M.I.D.; Salutari, P.; Sciumè, M.; Delia, M.; et al. COVID-19 Infection in Acute Lymphoblastic Leukemia over 15 Months of the Pandemic. A Campus ALL Report. Haematologica 2022, 107, 1955–1959. [Google Scholar] [CrossRef]
- Ribera, J.-M.; Morgades, M.; Coll, R.; Barba, P.; López-Lorenzo, J.-L.; Montesinos, P.; Foncillas, M.-A.; Cabrero, M.; Gómez-Centurión, I.; Morales, M.-D.; et al. Frequency, Clinical Characteristics and Outcome of Adults with Acute Lymphoblastic Leukemia and COVID 19 Infection in the First vs. Second Pandemic Wave in Spain. Clin. Lymphoma Myeloma Leuk. 2021, 21, e801–e809. [Google Scholar] [CrossRef]
- Palanques-Pastor, T.; Megías-Vericat, J.E.; Martínez, P.; López Lorenzo, J.L.; Cornago Navascués, J.; Rodriguez Macias, G.; Cano, I.; Arnan Sangerman, M.; Vidriales Vicente, M.B.; Algarra Algarra, J.L.; et al. Characteristics, Clinical Outcomes, and Risk Factors of SARS-COV-2 Infection in Adult Acute Myeloid Leukemia Patients: Experience of the PETHEMA Group. Leuk. Lymphoma 2021, 62, 2928–2938. [Google Scholar] [CrossRef]
- Lee, C.Y.; Shah, M.K.; Hoyos, D.; Solovyov, A.; Douglas, M.; Taur, Y.; Maslak, P.; Babady, N.E.; Greenbaum, B.; Kamboj, M.; et al. Prolonged SARS-CoV-2 Infection in Patients with Lymphoid Malignancies. Cancer Discov. 2022, 12, 62–73. [Google Scholar] [CrossRef]
- Başcı, S.; Ata, N.; Altuntaş, F.; Yiğenoğlu, T.N.; Dal, M.S.; Korkmaz, S.; Namdaroğlu, S.; Baştürk, A.; Hacıbekiroğlu, T.; Doğu, M.H.; et al. Patients with Hematologic Cancers Are More Vulnerable to COVID-19 Compared to Patients with Solid Cancers. Intern. Emerg. Med. 2022, 17, 135–139. [Google Scholar] [CrossRef]
- Sharafeldin, N.; Bates, B.; Song, Q.; Madhira, V.; Yan, Y.; Dong, S.; Lee, E.; Kuhrt, N.; Shao, Y.R.; Liu, F.; et al. Outcomes of COVID-19 in Patients with Cancer: Report From the National COVID Cohort Collaborative (N3C). J. Clin. Oncol. 2021, 39, 2232–2246. [Google Scholar] [CrossRef]
- Roeker, L.E.; Eyre, T.A.; Thompson, M.C.; Lamanna, N.; Coltoff, A.R.; Davids, M.S.; Baker, P.O.; Leslie, L.; Rogers, K.A.; Allan, J.N.; et al. COVID-19 in Patients with CLL: Improved Survival Outcomes and Update on Management Strategies. Blood 2021, 138, 1768–1773. [Google Scholar] [CrossRef]
- Gaitzsch, E.; Passerini, V.; Khatamzas, E.; Strobl, C.D.; Muenchhoff, M.; Scherer, C.; Osterman, A.; Heide, M.; Reischer, A.; Subklewe, M.; et al. COVID-19 in Patients Receiving CD20-Depleting Immunochemotherapy for B-Cell Lymphoma. Hemasphere 2021, 5, e603. [Google Scholar] [CrossRef] [PubMed]
- Duléry, R.; Lamure, S.; Delord, M.; Di Blasi, R.; Chauchet, A.; Hueso, T.; Rossi, C.; Drenou, B.; Deau Fischer, B.; Soussain, C.; et al. Prolonged In-Hospital Stay and Higher Mortality after COVID-19 among Patients with Non-Hodgkin Lymphoma Treated with B-Cell Depleting Immunotherapy. Am. J. Hematol. 2021, 96, 934–944. [Google Scholar] [CrossRef]
- Shah, V.; Ko Ko, T.; Zuckerman, M.; Vidler, J.; Sharif, S.; Mehra, V.; Gandhi, S.; Kuhnl, A.; Yallop, D.; Avenoso, D.; et al. Poor Outcome and Prolonged Persistence of SARS-CoV-2 RNA in COVID-19 Patients with Haematological Malignancies; King’s College Hospital Experience. Br. J. Haematol. 2020, 190, e279–e282. [Google Scholar] [CrossRef]
- Ueda, Y.; Asakura, S.; Wada, S.; Saito, T.; Yano, T. Prolonged COVID-19 in an Immunocompromised Patient Treated with Obinutuzumab and Bendamustine for Follicular Lymphoma. Intern. Med. 2022, 61, 2523–2526. [Google Scholar] [CrossRef]
- Terpos, E.; Engelhardt, M.; Cook, G.; Gay, F.; Mateos, M.-V.; Ntanasis-Stathopoulos, I.; van de Donk, N.W.C.J.; Avet-Loiseau, H.; Hajek, R.; Vangsted, A.J.; et al. Management of Patients with Multiple Myeloma in the Era of COVID-19 Pandemic: A Consensus Paper from the European Myeloma Network (EMN). Leukemia 2020, 34, 2000–2011. [Google Scholar] [CrossRef]
- Rossi, D.; Shadman, M.; Condoluci, A.; Brown, J.R.; Byrd, J.C.; Gaidano, G.; Hallek, M.; Hillmen, P.; Mato, A.; Montserrat, E.; et al. How We Manage Patients with Chronic Lymphocytic Leukemia During the SARS-CoV-2 Pandemic. Hemasphere 2020, 4, e432. [Google Scholar] [CrossRef] [PubMed]
- Cuneo, A.; Scarfò, L.; Reda, G.; Varettoni, M.; Quaglia, F.M.; Marchetti, M.; De Paoli, L.; Re, F.; Pietrasanta, D.; Rigolin, G.M.; et al. Chronic Lymphocytic Leukemia Management in Italy during the COVID-19 Pandemic: A Campus CLL Report. Blood 2020, 136, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Lavi, A.; Zimran, E.; Grisariu, S.; Aumann, S.; Itchaki, G.; Berger, T.; Raanani, P.; Harel, R.; Aviv, A.; et al. COVID-19 among Patients with Hematological Malignancies: A National Israeli Retrospective Analysis with Special Emphasis on Treatment and Outcome. Leuk. Lymphoma 2021, 62, 3384–3393. [Google Scholar] [CrossRef]
- Eskazan, A.E.; Ozmen, D. Tyrosine Kinase Inhibitor (TKI) Therapy for Newly-Diagnosed Patients with Chronic Myeloid Leukemia: Focusing on TKI Discontinuation Due to Adverse Events—Is Better Always Good? Expert Rev. Hematol. 2017, 10, 583–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breccia, M.; Abruzzese, E.; Bocchia, M.; Bonifacio, M.; Castagnetti, F.; Fava, C.; Galimberti, S.; Gozzini, A.; Gugliotta, G.; Iurlo, A.; et al. Chronic Myeloid Leukemia Management at the Time of the COVID-19 Pandemic in Italy. A Campus CML Survey. Leukemia 2020, 34, 2260–2261. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, D.; Guo, J.; Yuan, G.; Yang, Z.; Gale, R.P.; You, Y.; Chen, Z.; Chen, S.; Wan, C.; et al. COVID-19 in Persons with Chronic Myeloid Leukaemia. Leukemia 2020, 34, 1799–1804. [Google Scholar] [CrossRef] [PubMed]
- Mori, A.; Onozawa, M.; Tsukamoto, S.; Ishio, T.; Yokoyama, E.; Izumiyama, K.; Saito, M.; Muraki, H.; Morioka, M.; Teshima, T.; et al. Humoral Response to MRNA-Based COVID-19 Vaccine in Patients with Myeloid Malignancies. Br. J. Haematol. 2022, 197, 691–696. [Google Scholar] [CrossRef]
- Ścibior, A.; Wnuk, E. Elements and COVID-19: A Comprehensive Overview of Studies on Their Blood/Urinary Levels and Supplementation with an Update on Clinical Trials. Biology 2022, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdallah, S.; Mhalla, Y.; Trabelsi, I.; Sekma, A.; Youssef, R.; Bel Haj Ali, K.; Ben Soltane, H.; Yacoubi, H.; Msolli, M.A.; Stambouli, N.; et al. Twice-Daily Oral Zinc in the Treatment of Patients with Coronavirus Disease 2019: A Randomized Double-Blind Controlled Trial. Clin. Infect. Dis. 2023, 76, 185–191. [Google Scholar] [CrossRef]
- Olczak-Pruc, M.; Szarpak, L.; Navolokina, A.; Chmielewski, J.; Panasiuk, L.; Juárez-Vela, R.; Pruc, M.; Swieczkowski, D.; Majer, R.; Rafique, Z.; et al. The Effect of Zinc Supplementation on the Course of COVID-19—A Systematic Review and Meta-Analysis. Ann. Agric. Environ. Med. 2022, 29, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Demircan, K.; Chillon, T.S.; Bracken, T.; Bulgarelli, I.; Campi, I.; Du Laing, G.; Fafi-Kremer, S.; Fugazzola, L.; Garcia, A.A.; Heller, R.; et al. Association of COVID-19 Mortality with Serum Selenium, Zinc and Copper: Six Observational Studies across Europe. Front. Immunol. 2022, 13, 1022673. [Google Scholar] [CrossRef]
Drug | Diagnosis | Number of Patients/Country | Time Period Analyzed | Median/Mean Age (Years) | Mortality Rate (%) | Risk Factors for Severe Clinical Course of COVID-19 | Reference |
---|---|---|---|---|---|---|---|
Convalescent plasma | Non-Hodgkin lymphoma | 6/Italy | October 2020–May 2021 | 59.5 | 16.7 | anti-CD20 therapy | Oliva et al. [50] |
Hematological malignancies | 13/Sweden | May 2020–March 2021 | 60.3 | 38.5 | anti-CD20 therapy | Ljungquist et al. [51] | |
Hematological malignancies | 33/India | May 2020–November 2020 | 62 | 45.5 | active therapy (24 cases) | Jeyaraman et al. [52] | |
Hematological malignancies | 7/Italy | March 2020–June 2020 | 58.6 | 0 | patient after immunochemotherapy/alloHSCT < 1 year (6 cases) | Ferrari et al. [53] | |
Remdesivir | Hematological malignancies | 115/Mexico | December 2021–March 2022 | 50 | 8 | chemotherapy < 30 days, anti-CD20 therapy, progression of the disease and other | Martin-Onraët et al. [54] |
Hematological malignancies | 20/Hungary | December 2020 and May 2021 | 56 | 0 | anti-CD20 therapy, progression of the disease, stem cell transplantation | Magyari et al. [55] | |
Follicular lymphoma, diffuse large B-cell lymphoma | 3/USA | No data | 53 | 0 | haploidentical bone marrow transplantation, common variable immunodeficiency, chimeric antigen receptor (CAR) T-cell therapy (after fludarabine and cyclophosphamide) | Dioverti et al. [56] | |
Acute leukemia, lymphoma, multiple myeloma | 32/Czech Republic | December 2020– March 2021 | 57.7 | 9 | active hematological disease, active therapy | Weinbergerova et al. [57] | |
Molnupiravir | Hematological malignancies (lymphomas (45%), multiple myelomas (21%) and acute leukaemias or myelodysplastic syndrome (35%)) | 175/Poland | January 2022–April 2022 | 56 | 4 | no data | Bołkun et al. [58] |
Tixagevimab/cilgavimab | Hematological malignancies | 52/USA | 62 | 0 | chimeric antigen receptor (CAR) T-cell therapy, alloHSCT, autoHSCT | Stuver et al. [59] |
Diagnosis | Number of Patients/ Country | Time Period Analyzed | Median Age; Years (IQR) | Vaccination | Number of Doses | n (%) | Incidence | Clinical Course | n (%) | Death Number (%) | Hospitalization; n (%)/ICU Admission; n (%) | Risk Factors | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hematological malignancies | 113/14 countries | 1 January 2021–31 August 2021 | 66 (58–78) | BioNTech/Pfizer | 79 (69.9%) | 1 | 25 (22.1%) | not reported | Asymptomatic | 22 (19.5%) | 14 (12.4%) | 75 (66.4%)/16 (21.3%) | MVA: | Pagano et al. [106] |
Moderna COVE | 20 (17.7%) | Mild | 12 (10.6%) | higher mortality: age | ||||||||||
AstraZeneca Oxford | 10 (8.8%) | 2 | 88 (77.8%) | Severe | 63 (55.8%) | |||||||||
CoronaVac/Sinovac | 4 (3.5%) | Critical | 16 (14.2%) | |||||||||||
Hematological malignancies | 1548/26 countries | 1 January 2021–10 March 2022 | 66 (55–75) | BioNTech/Pfizer | 1121 (72.4%) | 1 | 129 (8.3%) | not reported | Asymptomatic | 306 (19.8%) | 30-day: 143 (9.2%) | 823 (53.2%)/152 (18.1%) | UVA: | Pagano et al. [107] |
Moderna COVE | 256 (72.4%) | higher mortality: older age, active HM disease, presence of two to three comorbidities | ||||||||||||
AstraZeneca Oxford | 99 (6.4%) | 2 (or J&J) | 770 (49.7%) | Mild | 604 (39%) | lower mortality: anti-SARS-CoV2-treatment with monoclonal antibodies | ||||||||
Sputnik | 13 (0.8%) | 3 | 639 (41.3%) | Severe | 509 (32.9%) | MVA: | ||||||||
J&J (Janssen) | 21 (1.4%) | higher mortality: older age, active HM disease, presence of two to three comorbidities | ||||||||||||
CoronaVac/Sinovac | 21 (1.4%) | 4 | 10 (0.6%) | Critical | 152 (9.8%) | lower mortality: anti-SARS-CoV2-treatment with monoclonal antibodies | ||||||||
Sinopharm | 17 (1.1%) | |||||||||||||
Hematological malignancies | 102/12 countries | until August 2022 | 69 (62–75) | mRNA | 101 (99%) | 4 | 102 (100%) | not reported | Asymptomatic | 10 (6.9%) | 4 (3.9%) | 39 (38.2%)/0 (0%) | not reported | Salmanton-García et al. [108] |
Mild | 49 (48%) | |||||||||||||
Inactivated | 1 (1%) | Severe | 39 (38.2%) | |||||||||||
Critical | 4 (3.9%) | |||||||||||||
Hematological malignancies | 5956 patients with a diagnosis of HM, 508,457 patients without malignancies/US | December 2020–October 2021 | Mean + SD: 65.4 ± 15.8 | BioNTech/Pfizer | 78.2% | 2 | 90% | 13.4% | not reported | not reported | Overall mortality risk: 5.7% | 37.8% | not reported | Wang et al. [109] |
Moderna COVE | 20.8% | 1 | 1% | |||||||||||
J&J (Janssen) | 1.0% | |||||||||||||
Hematological malignancies | 16/USA | 1 December 2020–15 August 2021 | 35.5 (27.5–44) | mRNA | 16 (100.0) | 2 | 15 (3.7%) | not reported | not reported | not reported | 1 (6.3%) | 5 (31.3%) | not reported | DeVoe et al. [110] |
1 | 1 (6.3%) | |||||||||||||
Solid organ tumors; hematological malignancies | 131 (37 HM) out of all 1787 reported/ multinational | 1 November 2020–31 May 2021 | Fully vaccinated: 65.5 (57.0–72.8); partially vaccinated: 68.0 (58.0–78.0) | BioNTech/Pfizer | 77 (58.8%) | not reported | not reported | not reported | not reported | not reported | Fully vaccinated patients; 30-day mortality: 7 (13%) | Fully vaccinated patients: 35 (65%)/10 (19%) | 30-day mortality: lymphopenia, the presence of comorbid conditions, worse PS, baseline cancer status (active and progressing versus not active and progressing) | Schmidt et al. [111] |
Moderna COVE | 22 (16.8%) | higher ICU/MV and hospitalization rates: lymphopenia, the presence of comorbid conditions, poor ECOG PS, hematologic as opposed to solid cancers | ||||||||||||
J&J (Janssen) | 15 (11.6%) |
Diagnosis/Type of Study | Number of Patients/Country | Median Age (Years) | Time Period Analyzed | Hospitalization Rate (%) | Mortality (%) | Risk Factors for Severe Clinical Course of COVID-19 | Reference |
---|---|---|---|---|---|---|---|
Hematological malignancies/cohort study | 13 (hospitalized)/China | 49 | 23.01.2020–14.02.2020 | NA | 62 | ND | Ho et al. [118] |
Hematological malignancies/retrospective study | 35/UK | 69 | 11.03.2020–11.05.2020 | ND | 40 (vs. 14.4 in general population) | age, number of comorbidities, no correlation with active treatment | Aries et al. [119] |
Hematological malignancies/retrospective study | 34 (hospitalized)/Spain | 72 | 09.03.2020–17.04.2020 | NA | 33 | age, active cancer, AL, MPN/MDS | Martin-Moro et al. [120] |
Hematological malignancies/retrospective study | 39/Spain | 64.7 | 07.03.2020–07.04.2020 | 88 | 35 (vs. 8.5 in general population in Spain) | advanced age (>70), hematological malignancy | Sanchez-Pina et al. [121] |
Hematological malignancies/retrospective study | 41/Spain | 76 | 08.03.2020–08.04.2020 | 70 | 36.6 | progressive disease | Infante et al. [122] |
Hematological malignancies/retrospective study | 367/Spain | 64 | 01.03.2020–15.05.2020 | ND | 27% (nonSCT: 31%, ASCT: 17%, allo-SCT: 18%) | severe course: hypertension, baseline lymphopenia, CRP > 20 mg/dL mortality: age > 70 years, uncontrolled hematological disease, ECOG 3–4, neutropenia, CRP > 20 mg/dL | Piñana et al. [123] |
Hematological malignancies/retrospective study | 536 (hospitalized)/Italy | 68 | 25.02.2020–18.05.2020 | NA | 37 | advanced age, progressive disease, AML, NHL, PCN | Passamonti et al. [124] |
Hematological malignancies/registry study | 697/Spain | 72 | 28.02.2020–25.05.2020 | 86.5 | 33 | age ≥ 60 years, more than two comorbidities, AML, active MoAbs treatment (Ph’ MPN and HMA were associated with lower mortality) | Garcia-Suarez et al. [125] |
Hematological malignancies/retrospective study | 740/Turkey | 56 | 11.03.2020–22.06.2020 | 61.1 | 13.8 (vs. 6.8 in control group) | hematological malignancies, diagnosis of HCL, AML, MM | Tığlıoğlu et al. [126] |
Hematological malignancies | 2395 (hospitalized) | ND | 01.01.2019–10.03.2021 | NA | 21.34 | ND | Naimi et al. [127] |
Hematological malignancies/meta-analysis | 3377 | 01.01.2019–20.08.2020 | 77 | 34 (39 in hospitalized) | age > 60 years | Vijenthira et al. [128] | |
Hematological malignancies/meta-analysis | 3801 | 65 | March–December 2020 | 73 | 31.2% | diagnosis of AML, MDS, age, active malignancy, chronic cardiac disease, renal impairment, liver disease, ICU stay | Pagano et al. [129] |
Lymphoma/prospective observational | 177/Spain | 70 | 01.03.2020–30.05. 2020 | 86.3 | 34.5 | age > 70, heart disease, chronic kidney disease, active lymphoma | Regalado-Artamendi et al. [130] |
Lymphoma/retrospective/prospective | 237/619/Italy | 63 | 25.02.2020–23.06.2020/23.06.2020–01.02.2021 | 54.7 | 19.5 | age > 65, male gender, low lymphocyte, low platelet count | Visco et al. [131] |
Multiple myeloma/prospective clinical audit | 75/UK | 73 | 31.01. 2020–18.05.2020 | 96 | 54.6 (vs. 14.5 mortality for COVID-19 in UK) | advanced age | Cook et al. [132] |
Chronic lymphocytic leukemia/survey | 47/Italy | 75 | 01.04. 2020–15.04.2020 | ND | 30.4 (vs. 13.4 in general population in Italy and 25.5 in 70–79 years old) | - | Cuneo et al. [133] |
Chronic lymphocytic leukemia/retrospective | 941/Europe | 69 | 12.2019–03.2021 | 74.7 | 27.4 (whole cohort), 38.4 (patients with severe COVID-19) | older age, hypogammaglobulinemia, anticancer treatment, treatment with anti-CD20 antibodies, cardiac failure | Chatzikonstantinou et al. [134] |
Chronic lymphocytic leukemia/retrospective study | 188/Poland | 67.9 | 25.03.2020–07.03.2021 | 59 | 26.6 (38.7 in hospitalized) | age> 65, low PLT, low Hb | Puła et al. [135] |
Acute lymphoblastic leukemia/observational study survey | 63/Italy | 02.2020–04.2021 | 44.4 | 11.1 | Chiaretti et al. [136] | ||
Acute lymphoblastic leukemia/observational study survey | 52/Spain | 46.5 | 01.03.2020–12.01.2021 | ND | 33 | comorbidities | Ribera et al. [137] |
Acute myeloid leukemia/observational study | 108/Spain | 66 | 13.03.2020–31.05.2020 | 89.8 | 43.5 | age > 60, gender, active leukemia | Palanques-Pastor et al. [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hus, I.; Szymczyk, A.; Mańko, J.; Drozd-Sokołowska, J. COVID-19 in Adult Patients with Hematological Malignancies—Lessons Learned after Three Years of Pandemic. Biology 2023, 12, 545. https://doi.org/10.3390/biology12040545
Hus I, Szymczyk A, Mańko J, Drozd-Sokołowska J. COVID-19 in Adult Patients with Hematological Malignancies—Lessons Learned after Three Years of Pandemic. Biology. 2023; 12(4):545. https://doi.org/10.3390/biology12040545
Chicago/Turabian StyleHus, Iwona, Agnieszka Szymczyk, Joanna Mańko, and Joanna Drozd-Sokołowska. 2023. "COVID-19 in Adult Patients with Hematological Malignancies—Lessons Learned after Three Years of Pandemic" Biology 12, no. 4: 545. https://doi.org/10.3390/biology12040545
APA StyleHus, I., Szymczyk, A., Mańko, J., & Drozd-Sokołowska, J. (2023). COVID-19 in Adult Patients with Hematological Malignancies—Lessons Learned after Three Years of Pandemic. Biology, 12(4), 545. https://doi.org/10.3390/biology12040545