Long-Term Effect of Diet Consistency on Mandibular Growth within Three Generations: A Longitudinal Cephalometric Study in Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Length Measurement
3.2. Posterior Height Measurement
3.3. Geometric Morphometric Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dias, G.J.; Cook, R.B.; Mirhosseini, M. Influence of food consistency on growth and morphology of the mandibular condyle. Clin. Anat. 2011, 24, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Yang, L.Y.; Chen, K.T.; Chiu, W.C. The influence of masticatory hypofunction on developing rat craniofacial structure. Int. J. Oral Maxillofac. Surg. 2010, 39, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Rabey, K.N.; Green, D.J.; Taylor, A.B.; Begun, D.R.; Richmond, B.G.; McFarlin, S.C. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology. J. Hum. Evol. 2015, 78, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M. Contemporary orthodontic appliances. In Contemporary Orthodontics; Elsiever: St. Louis, MO, USA, 2012; pp. 348–350. [Google Scholar]
- Moss, M.L. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.L. The functional matrix hypothesis revisited. 3. The genomic thesis. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 338–342. [Google Scholar] [CrossRef]
- Rose, J.C.; Roblee, R.D. Origins of dental crowding and malocclusions: An anthropological perspective. Compend. Contin. Educ. Dent. 2009, 30, 292–300. [Google Scholar]
- Evensen, J.P.; Øgaard, B. Are malocclusions more prevalent and severe now? A comparative study of medieval skulls from Norway. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 710–716. [Google Scholar] [CrossRef]
- Toro-Ibacache, V.; Muñoz, V.Z.; O’Higgins, P. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting. Ann. Anat.-Anat. Anz. 2016, 203, 59–68. [Google Scholar] [CrossRef]
- Sella-Tunis, T.; Pokhojaev, A.; Sarig, R.; O’Higgins, P.; May, H. Human mandibular shape is associated with masticatory muscle force. Sci. Rep. 2018, 8, 6042. [Google Scholar] [CrossRef] [Green Version]
- Eyquem, A.P.; Kuzminsky, S.C.; Aguilera, J.; Astudillo, W.; Toro-Ibacache, V. Normal and altered masticatory load impact on the range of craniofacial shape variation: An analysis of pre-Hispanic and modern populations of the American Southern Cone. PLoS ONE 2019, 14, e0225369. [Google Scholar] [CrossRef] [Green Version]
- Enlow, D.H.; McNamara, J.A., Jr. The neurocranial basis for facial form and pattern. Angle Orthod. 1973, 43, 256–270. [Google Scholar] [PubMed]
- Herring, S.W. TMJ anatomy and animal models. J. Musculoskelet. Neuronal Interact. 2003, 3, 391–394. [Google Scholar]
- Suzuki, A.; Iwata, J. Mouse genetic models for temporomandibular joint development and disorders. Oral Dis. 2015, 22, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jee, W.S.; Yao, W. Overview: Animal models of osteopenia and osteoporosis. J. Musculoskelet. Neuronal Interact. 2001, 1, 193–207. [Google Scholar] [PubMed]
- Sengupta, P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013, 4, 624–630. [Google Scholar]
- Roach, H.I.; Mehta, G.; Oreffo, R.O.C.; Clarke, N.M.P.; Cooper, C. Cooper Temporal Analysis of Rat Growth Plates: Cessation of Growth with Age Despite Presence of a Physis. J. Histochem. Cytochem. 2003, 3, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Gomes, P.S.; Fernandes, M.H. Rodent models in bone-related research: The relevance of calvarial defects in the assessment of bone regeneration strategies. Lab. Anim. 2011, 45, 14–24. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Verikokos, C.; Perrea, D.; Bitsanis, E.; Tsolakis, A.I. Effects of diet consistency on mandibular growth. A review. J. Hell. Vet. Med. Soc. 2019, 70, 1603–1610. [Google Scholar] [CrossRef] [Green Version]
- Dontas, I.; Tsolakis, A.I.; Khaldi, L.; Patra, E.; Lyriritis, G.P. Malocclusion in Aging Wistar Rats. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 22–26. [Google Scholar]
- Karamani, I.I.; Tsolakis, I.A.; Makrygiannakis, M.A.; Georgaki, M.; Tsolakis, A.I. Impact of Diet Consistency on the Mandibular Morphology: A Systematic Review of Studies on Rat Models. Int. J. Environ. Res. Public Health 2022, 19, 2706. [Google Scholar] [CrossRef]
- Nicholson, E.K.; Stock, S.R.; Hamrick, M.W.; Ravosa, M.J. Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice. Arch. Oral Biol. 2006, 51, 37–49. [Google Scholar] [CrossRef]
- Kufley, S.; Scott, J.E.; Ramirez-Yanez, G. The effect of the physical consistency of the diet on the bone quality of the mandibular condyle in rats. Arch. Oral Biol. 2017, 77, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Ohnuki, Y.; Yamane, A.; Saeki, Y. Effects of diet consistency on the myosin heavy chain mRNAs of rat masseter muscle during postnatal development. Arch. Oral Biol. 2002, 47, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P. Epigenetic consequences of a changing human diet. Proc. Nutr. Soc. 2013, 72, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enlow, D.H. Functions of the haversian system. Am. J. Anat. 1962, 110, 269–305. [Google Scholar] [CrossRef] [Green Version]
- Burr, D. Targeted and nontargeted remodeling. Bone 2002, 30, 2–4. [Google Scholar] [CrossRef]
- Bouvier, M.; Hylander, W.L. The mechanical or metabolic function of secondary osteonal bone in the monkey Macaca fascicularis. Arch. Oral Biol. 1996, 41, 941–950. [Google Scholar] [CrossRef]
- Lad, S.E.; Pampush, J.D.; McGraw, W.S.; Daegling, D.J. The influence of leaping frequency on secondary bone in cercopithecid primates. Anat. Rec. 2019, 302, 1116–1126. [Google Scholar] [CrossRef]
- Terhune, C.E.; Sylvester, A.D.; Scott, J.E.; Ravosa, M.J. Trabecular architecture of the mandibular condyle of rabbits is related to dietary resistance during growth. J. Exp. Biol. 2020, 223, jeb220988s. [Google Scholar] [CrossRef]
- Mitchell, D.R.; Wroe, S.; Ravosa, M.J.; A Menegaz, R. More Challenging Diets Sustain Feeding Performance: Applications toward the Captive Rearing of Wildlife. Integr. Org. Biol. 2021, 3, obab030. [Google Scholar] [CrossRef]
- Lad, S.E.; Anderson, R.J.; Cortese, S.A.; Alvarez, C.E.; Danison, A.D.; Morris, H.M.; Ravosa, M.J. Bone remodeling and cyclical loading in maxillae of New Zealand white rabbits (Oryctolagus cuniculus). Anat. Rec. 2021, 304, 1927–1936. [Google Scholar] [CrossRef] [PubMed]
- Puck, T.T.; Krystosek, A. Role of the Cytoskeleton in Genome Regulation and Cancer. Int. Rev. Cytol. 1992, 132, 75–108. [Google Scholar] [PubMed]
- Murshid, S.A. The role of osteocytes during experimental orthodontic tooth movement: A review. Arch. Oral Biol. 2017, 73, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Matyas, J.; Edwards, P.; Miniaci, A.; Shrive, N.; Wilson, J.; Bray, R.; Frank, C. Ligament Tension Affects Nuclear Shape in Situ: An In Vitro Study. Connect. Tissue Res. 1994, 31, 45–53. [Google Scholar] [CrossRef]
- Odman, A.; Mavropoulos, A.; Kiliaridis, S. Do masticatory functional changes influence the mandibular morphology in adult rats. Arch. Oral Biol. 2008, 53, 1149–1154. [Google Scholar] [CrossRef]
- Tanaka, E.; Sano, R.; Kawai, N.; Langenbach, C.E.J.A.; Brugman, P.; Tanne, K.; Theo, M.G.J.; Van Eijden, T.M.G.J. Effect of Food Consistency on the Degree of Mineralization in the Rat Mandible. Ann. Biomed. Eng. 2007, 35, 1617–1621. [Google Scholar] [CrossRef]
- Grünheid, T.; Langenbach, G.E.J.; Brugman, P.; Everts, V.; Zentner, A. The masticatory system under varying functionalload. Part 2: Effect of reduced masticatory load on the degree and distribution of mineralization in the rabbit mandible. Eur. J. Orthod. 2011, 33, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Tsolakis, I.A.; Verikokos, C.; Perrea, D.; Alexiou, K.; Gizani, S.; Tsolakis, A.I. Effect of Diet Consistency on Rat Mandibular Growth: A Geometric Morphometric and Linear Cephalometric Study. Biology 2022, 11, 901. [Google Scholar] [CrossRef]
- Tonni, I.; Riccardi, G.; Piancino, M.G.; Stretti, C.; Costantinides, F.; Paganelli, C. The influence of food hardness on the physiological parameters of mastication: A systematic review. Arch. Oral Biol. 2020, 120, 104903. [Google Scholar] [CrossRef]
- Tsolakis, A.I.; Spyropoulos, M.N.; Katsavrias, E.; Alexandridis, K. Effects of altered mandibular function on mandibular growth after condylectomy. Eur. J. Orthod. 1997, 19, 9–19. [Google Scholar] [CrossRef]
- Kiliaridis, S.; Engstrdm, C.; Thilander, B. The relationship between masticatory function and craniofacial morphology I. A cephalometric longitudinal analysis in the growing rat fed a soft diet. Eur. J. Orthod. 1985, 7, 273–283. [Google Scholar] [CrossRef]
- Hichijo, N.; Kawai, N.; Mori, H.; Sano, R.; Ohnuki, Y.; Okumura, S.; Langenbach GE, J.; Tanaka, E. Effects of the masticatory demand on the rat mandibular development. J. Oral Rehabil. 2014, 41, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, M.; Zimny, M.L. Effects of mechanical loads on surface morphology of the condylar cartilage of the mandible in rats. Cells Tissues Organs 1987, 129, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.; Nishioka, T.; Shioiri, E.; Takahashi, T.; Kimura, M. Effects of Dietary Consistency on the Mandible of Rats at the Growth Stage: Computed X-ray Densitometric and Cephalometric Analysis. Angle Orthod. 2002, 72, 468–475. [Google Scholar]
- Tiilikainen, P.; Raustia, A.; Pirttiniemi, P. Effect of diet hardness on mandibular condylar cartilage metabolism. J. Orofac. Pain 2011, 25, 68–74. [Google Scholar]
- da Silva, G.F.; Diniz, P.; Guedes, C.P.E.; Cargnin, F.E.; Paulon, A.S.R.; RíveaInês, F.-S. Effects of masticatory hypofunction on mandibular morphology, mineral density and basal bone area. Braz. J. Oral Sci. 2013, 12, 205–211. [Google Scholar]
- Kiliaridis, S.; Thilander, B.; Kjellberg, H.; Topouzelis, N.; Zafiriadis, A. Effect of low masticatory function on condylar growth: A morphometric study in the rat. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 121–125. [Google Scholar] [CrossRef]
- Abed, G.S.; Buschang, P.H.; Taylor, R.; Hinton, R.J. Maturational and functional related differences in rat craniofacial growth. Arch. Oral Biol. 2007, 52, 1018–1025. [Google Scholar] [CrossRef]
- Hassan, M.; Kaler, H.; Zhang, B.; Cox, T.C.; Young, N.; Jheon, A.H. Effects of Multi-Generational Soft Diet Consumption on Mouse Craniofacial Morphology. Front. Physiol. 2020, 11, 783. [Google Scholar] [CrossRef]
- Kahn, S.; Ehrlich, P.; Feldman, M.; Sapolsky, R.; Wong, S. The Jaw Epidemic: Recognition, Origins, Cures, and Prevention. Bioscience 2020, 70, 759–771. [Google Scholar] [CrossRef]
Gender | S1 | H1 | S2 | H2 | S3 | H3 | |
---|---|---|---|---|---|---|---|
Male | 8 | 2 | 2 | 2 | 2 | 0 | 0 |
Female | 60 | 10 | 10 | 10 | 10 | 10 | 10 |
Total | 68 |
Cephalometric Landmarks | Definition |
---|---|
Co | Most posterior-superior point on the mandibular condyle. |
Go | Most posterior point of the angular process of the mandible |
Go’ | Point on the most inferior contour of the angular process of the mandible |
Coronoid | Most posterosuperior point of condylar process |
Me | The most inferior and anterior point of the lower border of the mandible |
Id | Most inferior and anterior point on the alveolar process of the mandible |
I’ | The most anterior edge of the alveolar bone on the convexity of the lower incisor. |
Structures | Cephalometric Measurements |
---|---|
Mandibular length | Co-Me |
Coronoid-Me | |
Go-Me | |
Go’-Me | |
Co-Id | |
Co-I’ | |
Posterior mandibular height | Co-Go |
Co-Go’ |
Variables | Cochran’s Alpha | |
---|---|---|
Linear measurements | Go’-Me | 0.803 |
Go-Me | 0.827 | |
Coronoid-Me | 0.828 | |
Co-Me | 0.833 | |
Co-id | 0.935 | |
Co-i’ | 0.929 | |
Co-Go | 0.943 | |
Co-Go’ | 0.922 |
Diet S | Generation | |||
1 (n = 10) | 2 (n = 10) | 3 (n = 10) | Overall | |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Go’-Menton | 15.80 (1.86) | 14.93 (1.40) | 14.58 (0.72) | 15.10 (1.46) |
Go-Menton | 17.38 (1.32) | 16.77 (1.05) | 15.79 (0.81) | 16.65 (1.24) |
Coronoid-Menton | 13.98 (1.11) | 13.47 (0.70) | 12.65 (0.67) | 13.37 (0.99) |
Condylion-Menton | 17.43 (1.24) | 16.55 (0.67) | 15.48 (0.90) | 16.49 (1.23) |
Condylion-Id | 20.59 (1.17) | 19.42 (0.87) | 18.36 (0.93) | 19.46 (1.34) |
Condylion-I’ | 19.84 (1.16) | 18.80 (0.97) | 17.77 (0.98) | 18.80 (1.32) |
Condylion-Go | 5.91 (0.49) | 5.64 (0.64) | 5.07 (0.63) | 5.54 (0.67) |
Condylion-Go’ | 6.97 (0.69) | 6.45 (0.72) | 5.95 (0.59) | 6.46 (0.77) |
DietH | Generation | |||
1 (n = 10) | 2 (n = 10) | 3 (n = 10) | Overall | |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Go’-Menton | 18.65 (1.28) | 19.44 (0.80) | 18.85 (0.56) | 18.98 (0.96) |
Go-Menton | 20.59 (1.42) | 21.50 (1.01) | 20.85 (0.71) | 20.98 (1.12) |
Coronoid-Menton | 15.74 (1.42) | 16.14 (0.29) | 16.34 (0.40) | 16.07 (0.87) |
Condylion-Menton | 20.74 (1.56) | 20.69 (0.60) | 20.27 (0.54) | 20.57 (1.00) |
Condylion-Id | 24.47 (1.53) | 24.60 (0.59) | 24.40 (0.47) | 24.49 (0.96) |
Condylion-I’ | 23.42 (1.47) | 23.69 (0.61) | 23.49 (0.49) | 23.53 (0.93) |
Condylion-Go | 7.65 (0.55) | 7.10 (0.51) | 6.77 (0.59) | 7.17 (0.65) |
Condylion-Go’ | 8.84 (0.61) | 8.27 (0.46) | 8.88 (0.74) | 8.66 (0.71) |
S1–H1 | S2–H2 | S3–H3 | S1–S2 | S1–S3 | S2–S3 | H1–H2 | H1–H3 | H2–H3 | |
---|---|---|---|---|---|---|---|---|---|
Go’-Me | <0.001 | <0.001 | <0.001 | 0.437 | 0.105 | >0.999 | 0.580 | >0.999 | >0.999 |
Go-Me | <0.001 | <0.001 | <0.001 | 0.858 | 0.007 | 0.194 | 0.266 | >0.999 | 0.746 |
Coronoid-Me | 0.001 | <0.001 | <0.001 | 0.891 | 0.002 | 0.067 | >0.999 | 0.5789 | >0.999 |
Co-Me | <0.001 | <0.001 | <0.001 | 0.208 | 0.004 | 0.076 | >0.999 | >0.999 | >0.999 |
Co-Id | <0.001 | <0.001 | <0.001 | 0.092 | 0.003 | 0.853 | >0.999 | >0.999 | >0.999 |
Co-I’ | <0.001 | <0.001 | <0.001 | 0.151 | 0.006 | 0.877 | >0.999 | >0.999 | >0.999 |
Co-Go | <0.001 | <0.001 | <0.001 | >0.999 | 0.007 | 0.120 | 0.144 | 0.150 | 0.810 |
Co-Go’ | <0.001 | <0.001 | <0.001 | 0.302 | 0.003 | 0.348 | 0.208 | 0.300 | 0.718 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolakis, I.A.; Verikokos, C.; Papaioannou, W.; Alexiou, K.-E.; Yfanti, Z.; Perrea, D.; Tsolakis, A.I. Long-Term Effect of Diet Consistency on Mandibular Growth within Three Generations: A Longitudinal Cephalometric Study in Rats. Biology 2023, 12, 568. https://doi.org/10.3390/biology12040568
Tsolakis IA, Verikokos C, Papaioannou W, Alexiou K-E, Yfanti Z, Perrea D, Tsolakis AI. Long-Term Effect of Diet Consistency on Mandibular Growth within Three Generations: A Longitudinal Cephalometric Study in Rats. Biology. 2023; 12(4):568. https://doi.org/10.3390/biology12040568
Chicago/Turabian StyleTsolakis, Ioannis A., Christos Verikokos, William Papaioannou, Konstantina-Eleni Alexiou, Zafeiroula Yfanti, Despoina Perrea, and Apostolos I. Tsolakis. 2023. "Long-Term Effect of Diet Consistency on Mandibular Growth within Three Generations: A Longitudinal Cephalometric Study in Rats" Biology 12, no. 4: 568. https://doi.org/10.3390/biology12040568
APA StyleTsolakis, I. A., Verikokos, C., Papaioannou, W., Alexiou, K. -E., Yfanti, Z., Perrea, D., & Tsolakis, A. I. (2023). Long-Term Effect of Diet Consistency on Mandibular Growth within Three Generations: A Longitudinal Cephalometric Study in Rats. Biology, 12(4), 568. https://doi.org/10.3390/biology12040568