Spatial–Temporal Distribution of Fish Larvae in the Pearl River Estuary Based on Habitat Suitability Index Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fishery Data
2.2. Satellite Remote Sensing Data
2.3. Suitability Index Model
2.4. Habitat Suitability Index Model
3. Results
3.1. SI of Environmental Factors
3.2. SI Curve Distribution and Suitable Environment Range
3.3. Validation of HSI Model Accuracy
4. Discussion
4.1. HSI Model Selection
4.2. Analysis of SI Model Fitting
4.3. Analysis of HSI Model Fitting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shuai, F.M.; Li, X.H.; Liu, Q.F.; Li, Y.F.; Yang, J.P.; Li, J.; Chen, F.C. Spatial patterns of fish diversity and distribution in the Pearl River. Acta Ecol. Sin. 2017, 37, 3182–3192. [Google Scholar]
- Gao, Y.; Lai, Z.; Yang, W.; Zeng, Y. Changes of Zooplankton Community before and after the Spring Closed Season in the Pearl River in 2014–2015. Ecol. Environ. Sci. 2017, 026, 1562–1569. [Google Scholar]
- Li, K.Z.; Yin, J.Q.; Huang, L.M.; Tan, Y.H. Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China. Estuar. Coast. Shelf Sci. 2006, 67, 543–552. [Google Scholar] [CrossRef]
- Yang, Y.; Ruixiang, L.; Pengli, Z.; Pinde, R. Seasonal variation of the Pearl River diluted water and its dynamical cause. Mar. Sci. Bull. 2014, 33, 36–44. [Google Scholar]
- Zhang, X.; Shi, Z.; Ye, F.; Zeng, Y.; Huang, X. Picophytoplankton abundance and distribution in three contrasting periods in the Pearl River Estuary, South China. Mar. Freshw. Res. 2013, 64, 692–705. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Mujiao, X.; Weiguo, Z.; Yingting, S.; Dewen, D.; Anning, S. Community structure characteristics of commercial netkon in the Pearl River Estuary in recent 30 years. J. Appl. Oceanogr. 2021, 40, 239–250. [Google Scholar]
- Xiao, Y.; Wang, R.; Zhang, B. Analysis and Suggestions on the Current Situation of Marine Fishery Resources in the the Pearl River Estuary. Sci. Technol. Innov. 2010, 28, 233. [Google Scholar]
- Wu, P.; Liu, Y.; Xiao, Y.; Xie, Y.; Tang, G.; Lin, L.; Wang, T.; Li, C. Evaluation of fisheries ecological environment in adjacent sea areas of Wanshan Archipelago in Pearl River Estuary in spring. South China Fish. Sci. 2022, 18, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Huang, D.; Wang, X.; Xu, L.; Zhang, J.; Li, Y.; Ning, J.; Wang, L.; Liu, S.; Lin, Z.; et al. Species identification and morphology of fish eggs from Jiangmen coastal waters in spring using DNA barcoding. South China Fish. Sci. 2022, 18, 10–18. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, G.; Kuang, T.; Guo, D.; Li, G. Fish assemblage in the Pearl River Estuary: Spatial-seasonal variation, environmental influence and trends over the past three decades. J. Appl. Ichthyol. 2019, 35, 4. [Google Scholar] [CrossRef]
- Tang, G.; Liu, Y.; Wu, P.; Sun, D.; Xiao, Y.; Wang, T.; Xie, Y.; Li, C.; Shi, J.; Zhong, Z.; et al. Community structure of fishery resources and its relationship to environmental factors in the Wanshan Islands Sea of the Pearl River Estuary in spring. J. Fish. Sci. China 2022, 29, 12. [Google Scholar]
- Liu, G.; Hu, J.; Li, S.; Li, B.; Huang, J. Simulation of organic carbon distribution and budgets during summer in the Pearl River Estuary. Acta Sci. Circumstantiae 2019, 39, 1123–1133. [Google Scholar]
- Lu, Z.; Gan, J. Controls of seasonal variability of phytoplankton blooms in the Pearl River Estuary. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 117, 86–96. [Google Scholar] [CrossRef]
- Walsh, C.T.; Reinfelds, I.V.; Ives, M.C.; Gray, C.A.; West, R.J.; van der Meulen, D.E. Environmental influences on the spatial ecology and spawning behaviour of an estuarine-resident fish, Macquaria colonorum. Estuar. Coast. Shelf Sci. 2013, 118, 60–71. [Google Scholar] [CrossRef]
- Peck, M.A.; Huebert, K.B.; Llopiz, J.K. Intrinsic and Extrinsic Factors Driving Match–Mismatch Dynamics during the Early Life History of Marine Fishes. Adv. Ecol. Res. 2012, 47, 177–302. [Google Scholar]
- Xiao, Y.; Wang, R.; Ou, Q.; Fang, H. Relationship between abundance distribution of fish eggs, larvae and juveniles and environmental factors in the Pearl River Estuary waters in spring. J. Appl. Oceanogr. 2010, 29, 488–495. [Google Scholar] [CrossRef]
- Coulter, A.A.; Keller, D.; Bailey, E.J.; Goforth, R.R. Predictors of bigheaded carp drifting egg density and spawning activity in an invaded, free-flowing river. J. Great Lakes Res. 2016, 42, 83–89. [Google Scholar] [CrossRef]
- Nanami, A.; Sato, T.; Kawabata, Y.; Okuyama, J. Spawning aggregation of white-streaked grouper Epinephelus ongus: Spatial distribution and annual variation in the fish density within a spawning ground. PeerJ 2017, 5, e3000. [Google Scholar] [CrossRef] [Green Version]
- Roussel, E.; Crec’hriou, R.; Lenfant, P.; Mader, J.; Planes, S. Relative influences of space, time and environment on coastal ichthyoplankton assemblages along a temperate rocky shore. J. Plankton Res. 2010, 32, 1443–1457. [Google Scholar] [CrossRef]
- Porcaro, R.R.; Zani-Teixeira, M.d.L.; Katsuragawa, M.; Namiki, C.; Ohkawara, M.H.; Favero, J.M.d. Spatial and Temporal Distribution Patterns of Larval Sciaenids in The Estuarine System and Adjacent Continental Shelf off Santos, Southeastern Brazil. Braz. J. Oceanogr. 2014, 62, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Thomasma, L.E. Standards for the development of habitat suitability index models. Wildl. Soc. Bull. 1981, 19, 1–171. [Google Scholar]
- Zhou, W.; Li, Y.; Cheng, T.; Cui, X. Progress of habitat suitability index model in fish habitat assessment. Mod. Fish. Inf. 2020, 35, 48–54. [Google Scholar] [CrossRef]
- Barnes, T.K.; Volety, A.K.; Chartier, K.; Mazzotti, F.J.; Pearlstine, L. A Habitat Suitability Index Model for the Eastern Oyster (Crassostrea virginica), a Tool for Restoration of the Caloosahatchee Estuary, Florida. J. Shellfish Res. 2007, 26, 949–959. [Google Scholar] [CrossRef]
- Vinagre, C.; Fonseca, V.; Cabral, H.; Costa, M.J. Habitat suitability index models for the juvenile soles, Solea solea and Solea senegalensis, in the Tagus estuary: Defining variables for species management. Fish. Res. 2006, 82, 140–149. [Google Scholar] [CrossRef]
- Yu, W.; Yi, Q.; Chen, X.; Chen, Y. Modelling the effects of climate variability on habitat suitability of jumbo flying squid, Dosidicus gigas, in the Southeast Pacific Ocean off Peru. ICES J. Mar. Sci. 2016, 73, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wu, P.; Liu, Y.; Xiao, Y.; Tang, G.; Wang, T.; Lin, L.; Li, L. Study on habitat suitability of Coilia mystus in Pearl River Estuary, China. South China Fish. Sci. 2022, 19, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Feng, B.; Xu, L. Study on distribution of Thunnuns obesus in the Indian Ocean based on habitat suitability index. J. Fish. China 2007, 31, 805–812. [Google Scholar]
- Xu, H.Y.; Cui, X.S.; Zhou, W.F.; Chen, G.B.; Li, A.Z. Analysis on optimal habitats of purpleback flying squid in the open South China Sea based on remote sensing data. Chin. J. Ecol. 2016, 35, 3080–3085. [Google Scholar]
- Zou, Y.Y.; Xue, Y.; Ma, Q.Y.; Xu, B.; Ren, Y. Spatial Distribution of Larimichthys polyactis in Haizhou Bay Based on Habitat Suitability Index. Period. Ocean Univ. China 2016, 46, 54–63. [Google Scholar] [CrossRef]
- Li, Y.; Chen, G.; Sun, D. Analysis of the composition of fishes in the Pearl River estuarine waters. J. Fish. China 2000, 24, 312–317. [Google Scholar]
- Lin, Z.; Liang, P. Morphological characteristics of larval and juvenile Polyspondylogobius sinensis. Curr. Zool. 2006, 52, 585–590. [Google Scholar]
- GB/T 12763.6-2007; Specifications for Oceanographic Survey—Part 6: Marine Biological Survey. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China/Standardization Administration of the People’s Republic of China: Beijing, China, 2007; pp. 35–41.
- Müller, D. Estimation of algae concentration in cloud covered scenes using geostatistical methods. In Proceedings of the Envisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- Yu, J.; Hu, Q.W.; Yuan, H.R.; Chen, P.M. Effect assessment of summer fishing moratorium in Daya Bay based on remote sensing data. South China Fish. Sci. 2018, 14, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.F.; Hu, Q.W.; Yu, J.; Chen, P.M.; Shu, L.M. Effect assessment of fishery resources proliferation in Zhelin Bay marine ranching in eastern Guangdong. South China Fish. Sci. 2019, 15, 12–19. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, J.; Feng, X.; Chen, Z. Fishery forecast research of purpleback flying squid in Nansha area based on Habitat model. South China Fish. Sci. 2015, 11, 20–26. [Google Scholar]
- Ren, R.E.; Wang, H.W. Multivariate Statistical Data Analysis: Theory, Method and Example; National Defense Industry Press: Beijing, China, 1997. [Google Scholar]
- Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal. Ecol. Eng. 2007, 30, 215–230. [Google Scholar] [CrossRef]
- Gong, C.X.; Chen, X.J.; Gao, F.; Guan, W.J.; Lei, L. Review on habitat suitability index in fishery science. J. Shanghai Ocean Univ. 2011, 20, 260–269. [Google Scholar]
- Gao, F.; Chen, X.; Fan, J.; Lin, L.; Guan, W. Implementation and verification of intelligent fishing ground forecasting of Illex argentinus in the Southwest Atlantic. J. Shanghai Ocean Univ. 2011, 20, 754–758. [Google Scholar]
- Chen, X.; Feng, B.; Xu, L. A comparative study on habitat suitability index of bigeye tuna, Thunnus obesus in the Indian Ocean. J. Fish. Sci. China 2008, 15, 269–278. [Google Scholar]
- Fang, Y.; Zou, X.R.; Zhang, M.; Xie, F.; Wu, X.L. A comparative study on habitat suitability index of Chilean Jack Mackerel in Southeast Pacific Ocean. Mar. Fish. 2010, 32, 178–185. [Google Scholar]
- Petereit, C.; Hinrichsen, H.H.; Voss, R.; Kraus, G.; Freese, M.; Clemmesen, C. The influence of different salinity conditions on egg buoyancy and development and yolk sac larval survival and morphometric traits of Baltic Sea sprat (Sprattus sprattus balticus Schneider). Sci. Mar. 2009, 73, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.; Kato, Y.; Kitagawa, T.; Yamaoka, N. Impacts of environmental variability and global warming scenario on Pacific bluefin tuna (Thunnus orientalis) spawning grounds and recruitment habitat. Prog. Oceanogr. 2010, 86, 39–44. [Google Scholar] [CrossRef]
- Bonanno, A.; Zgozi, S.; Cuttitta, A.; El Turki, A.; Di Nieri, A.; Ghmati, H.; Basilone, G.; Aronica, S.; Hamza, M.; Barra, M.; et al. Influence of environmental variability on anchovy early life stages (Engraulis encrasicolus) in two different areas of the Central Mediterranean Sea. Hydrobiologia 2012, 701, 273–287. [Google Scholar] [CrossRef]
- Spies, B.T.; Steele, M.A. Effects of temperature and latitude on larval traits of two estuarine fishes in differing estuary types. Mar. Ecol. Prog. Ser. 2016, 544, 243–255. [Google Scholar] [CrossRef]
- Wang, J. Study on the correlation between the population characteristics of fish eggs, larvae and juveniles and environmental factors in Daya Bay. In Proceedings of the Second International Symposium on Modern Marine Pasture, 2018 Academic Annual Meeting of the Fishery Resources and Environment Professional Committee of the Chinese Fishery Society, Dalian, China, 29–30 October 2018; p. 50. [Google Scholar]
- Giffard-Mena, I.; Hernández-Montiel, L.H.; Pérez-Robles, J.; David-True, C. Effects of salinity on survival and plasma osmolarity of Totoaba macdonaldi eggs, larvae, and juveniles—ScienceDirect. J. Exp. Mar. Biol. Ecol. 2020, 526, 1–5. [Google Scholar] [CrossRef]
- Pitchaikani, J.S.; Lipton, A.P. Nutrients and phytoplankton dynamics in the fishing grounds off Tiruchendur coastal waters, Gulf of Mannar, India. Springerplus 2016, 5, 1405. [Google Scholar] [CrossRef] [Green Version]
- Bacha, M.; Jeyid, M.A.; Vantrepotte, V.; Dessailly, D.; Amara, R. Environmental effects on the spatio-temporal patterns of abundance and distribution ofSardina pilchardusand sardinella off the Mauritanian coast (North-West Africa). Fish. Oceanogr. 2017, 26, 282–298. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, J.; Lin, Z.; Chen, P. Environmental Influence on the Spatiotemporal Variability of Spawning Grounds in the Western Guangdong Waters, South China Sea. J. Mar. Sci. Eng. 2020, 8, 607. [Google Scholar] [CrossRef]
- Wang, D.; Yao, L.; Yu, J.; Chen, P. The Role of Environmental Factors on the Fishery Catch of the Squid Uroteuthis chinensis in the Pearl River Estuary, China. J. Mar. Sci. Eng. 2021, 9, 131. [Google Scholar] [CrossRef]
- Yu, J.; Hu, Q.; Tang, D.; Chen, P. Environmental effects on the spatiotemporal variability of purpleback flying squid in XishaZhongsha waters, South China Sea. Mar. Ecol. Prog. Ser. 2019, 623, 25–37. [Google Scholar] [CrossRef]
- Pawelec, A.J.; Sapota, M.R.; Kobos, J. The effect of algal blooms on fish in their inshore nursery grounds in the Gulf of Gdańsk. J. Mar. Biol. Assoc. U. K. 2017, 98, 97–104. [Google Scholar] [CrossRef]
- Wong, L.A. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations. J. Geophys. Res. Ocean. 2003, 108, 1–17. [Google Scholar] [CrossRef]
- Shu, Y.; Wang, Q.; Zu, T. Progress on shelf and slope circulation in the northern South China Sea. Sci. China Earth Sci. 2018, 61, 560–571. [Google Scholar] [CrossRef]
- Lu, L.Y.; Zhan, J.M.; Geng, B.X. Study of the Pearl River plume dispersion based on flux budget analysis. J. Hydrodyn. 2013, 28, 252–259. [Google Scholar] [CrossRef]
- Gan, J.; Li, L.; Wang, D.; Guo, X. Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Cont. Shelf Res. 2009, 29, 728–740. [Google Scholar] [CrossRef]
- Cheng, Q. Note on the Economic Fish Fauna of the South China Sea. Oceanol. Limnol. Sin. 1959, 11, 283–298. [Google Scholar]
- Ou, S.; Zhang, H.; Wang, D. Dynamics of the buoyant plume off the Pearl River Estuary in summer. Environ. Fluid Mech. 2009, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Neira, F.J.; Potter, I.C. Movement of larval fishes through the entrance channel of a seasonally open estuary in Western Australia. Estuar. Coast. Shelf Sci. 1992, 35, 213–224. [Google Scholar] [CrossRef]
- Harris, S.A.; Cyrus, D.P. Composition, abundance and seasonality of larval fish in richards bay harbour, kwazulu-natal, south africa. S. Afr. J. Aquat. Sci. 1997, 23, 56–78. [Google Scholar] [CrossRef]
- Xu, Z.; Hua, C.; Chen, Q. Distribution patterns of ichthyoplankton in the Oujiang estuary. J. Fish. Sci. China 2008, 32, 733–739. [Google Scholar]
- Zhang, Y.; Xue, Y.; Yu, H.; Yu, H.; Zhang, C.; Xu, B.; Ren, Y. Study on the habitat suitability of Johnius belangerii during spring in the Haizhou Bay, China. Acta Oceanol. Sin. 2018, 40, 83–91. [Google Scholar] [CrossRef]
Month | Variables | Single-Factor SI Model | p-Value |
---|---|---|---|
April | SST | SI = e−1.353×(SST−23.197)2 | <0.001 |
SSS | SI = e−0.1238×(SSS−29.0204)2 | <0.001 | |
Chl-a | SI = e−0.3079×(chla−2.9346)2 | <0.001 | |
June | SST | SI = e−16.20×(SST−29.64)2 | <0.001 |
SSS | SI = e−0.09026×(SSS−30.24479)2 | <0.001 | |
Chl-a | SI = e−0.154×(Chla−1.878)2 | <0.001 | |
July | SST | SI = e−18.63×(SST−28.96)2 | <0.001 |
SSS | SI = e−0.06309×(SSS−27.90948)2 | <0.001 | |
Chl-a | SI = e−0.07337×(Chla−4.09307)2 | <0.001 | |
August | SST | SI = e−11.63×(SST−29.20)2 | <0.001 |
SSS | SI = e−0.04606×(SSS−29.60043)2 | <0.001 | |
Chl-a | SI = e−0.121×(Chla−3.673)2 | <0.001 | |
September | SST | SI = e−13.02×(SST−28.68)2 | <0.001 |
SSS | SI = e−0.08401×(SSS−24.42966)2 | <0.001 | |
Chl-a | SI = e−0.2262×(Chla−2.3911)2 | <0.001 |
Month | SST (°C) | SSS | Chl-a (mg/m3) |
---|---|---|---|
April | 23.2 ± 0.4 | 29.0 ± 1.3 | 2.9 ± 0.8 |
June | 29.6 ± 0.1 | 30.2 ± 1.5 | 1.9 ± 1.2 |
July | 29.0 ± 0.1 | 27.9 ± 1.9 | 4.1 ± 1.7 |
August | 29.2 ± 0.1 | 29.6 ± 2.1 | 3.7 ± 1.4 |
September | 28.7 ± 0.1 | 24.4 ± 1.6 | 2.4 ± 1.0 |
Month | Arithmetic Mean Model (AMM) | Geometric Mean Model (GMM) | Maximum Model (MAXM) | Minimum Model (MINM) |
---|---|---|---|---|
April | 71% | 71% | 57% | 57% |
June | 58% | 64% | 41% | 70% |
July | 61% | 76% | 46% | 84% |
August | 36% | 36% | 36% | 64% |
September | 93% | 93% | 60% | 87% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Yu, J.; Lin, Z.; Chen, P. Spatial–Temporal Distribution of Fish Larvae in the Pearl River Estuary Based on Habitat Suitability Index Model. Biology 2023, 12, 603. https://doi.org/10.3390/biology12040603
Wang D, Yu J, Lin Z, Chen P. Spatial–Temporal Distribution of Fish Larvae in the Pearl River Estuary Based on Habitat Suitability Index Model. Biology. 2023; 12(4):603. https://doi.org/10.3390/biology12040603
Chicago/Turabian StyleWang, Dongliang, Jing Yu, Zhaojin Lin, and Pimao Chen. 2023. "Spatial–Temporal Distribution of Fish Larvae in the Pearl River Estuary Based on Habitat Suitability Index Model" Biology 12, no. 4: 603. https://doi.org/10.3390/biology12040603
APA StyleWang, D., Yu, J., Lin, Z., & Chen, P. (2023). Spatial–Temporal Distribution of Fish Larvae in the Pearl River Estuary Based on Habitat Suitability Index Model. Biology, 12(4), 603. https://doi.org/10.3390/biology12040603