Comparing the Performance of CMCC-BioClimInd and WorldClim Datasets in Predicting Global Invasive Plant Distributions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Data
2.2. Data of Bioclimatic Variables
2.3. Modelling Approach and Evaluation
2.4. Effects of Bioclimatic Variables on Global Invasive Plant Species Distributions
3. Results
3.1. Importance of Bioclimatic Variables for the Distribution of Invasive Species
3.2. Distribution Probability of Invasive Species
3.3. Differences in the Distribution Probability of Invasive Plant Species Predicted by the WorldClim and CMCC-BioClimInd Datasets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, D.F. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol. Invasions 2007, 9, 723–735. [Google Scholar] [CrossRef]
- Beck, K.G.; Zimmerman, K.; Schardt, J.D.; Stone, J.; Lukens, R.R.; Reichard, S.; Randall, J.; Cangelosi, A.A.; Cooper, D.; Thompson, J.P. Invasive Species Defined in a Policy Context: Recommendations from the Federal Invasive Species Advisory Committee. Invasive Plant Sci. Manag. 2008, 1, 414–421. [Google Scholar] [CrossRef]
- Bradley, B.A.; Wilcove, D.S.; Oppenheimer, M. Climate change increases risk of plant invasion in the Eastern United States. Biol. Invasions 2010, 12, 1855–1872. [Google Scholar] [CrossRef]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibanez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Lee, Y.H.; Lee, G.; Lee, D.; Adhikari, P. Predicting Impacts of Climate Change on Northward Range Expansion of Invasive Weeds in South Korea. Plants 2021, 10, 1604. [Google Scholar] [CrossRef] [PubMed]
- Walther, G.R.; Post, E.; Convey, P. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Beaumonta, L.J.; Hughesa, L.; Poulsenb, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and IPS impact on predictions of species’ current and future distributions. Ecol. Modell 2005, 186, 250–269. [Google Scholar] [CrossRef]
- Ehrlen, J.; Morris, W.F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 2015, 18, 3030–3314. [Google Scholar] [CrossRef]
- Wagner, V.; Vecera, M.; Jimenez-Alfaro, B. Alien plant invasion hotspots and invasion debt in European woodlands. J. Veg. Sci. 2021, 32, 13014. [Google Scholar] [CrossRef]
- Ciapała, B.; Jurasz, J.; Janowski, M.; Kępińska, B. Climate factors infuencing efective use of geothermal resources in SE Poland: The Lublin. Geotherm. Energy 2021, 9, 3. [Google Scholar] [CrossRef]
- Bacon, S.J.; Bacher, S.; Aebi, A. Gaps in Border Controls Are Related to Quarantine Alien Insect Invasions in Europe. PLoS ONE 2012, 7, e47689. [Google Scholar] [CrossRef] [PubMed]
- Brundu, G.; Pauchard, A.; Pysek, P.; Pergl, J.; Bindewald, A.M.; Brunori, A.; Canavan, S.; Campagnaro, T.; Celesti-Grapow, L.; de Sá Dechoum, M.; et al. Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. Neobiota 2020, 61, 65–116. [Google Scholar] [CrossRef]
- Franzese, J.; Urrutia, J.; Garcia, R.A.; Taylor, K.; Pauchard, A. Pine invasion impacts on plant diversity in Patagonia: Invader size and invaded habitat matter. Biol. Invasions 2017, 19, 1015–1027. [Google Scholar] [CrossRef]
- Milani, T.; Jobbagy, E.G.; Nunez, M.A.; Ferrero, M.E.; Baldi, G.; Teste, F.P. Stealth invasions on the rise: Rapid long-distance establishment of exotic pines in mountain grasslands of Argentina. Biol. Invasions 2020, 22, 2989–3001. [Google Scholar] [CrossRef]
- Aranda, M.J.; Tognetti, P.M.; Mazia, N. Are field crops refuge for woody invaders? Rainfall, crop type and management shaped tree invasion in croplands. Agric. Ecosyst. Environ. 2021, 319, 107564. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change: 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Tech. Rep.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Newbold, T. Future effects of climate and land– use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 2018, 285, 20180792. [Google Scholar] [CrossRef]
- Thuiller, W.; Araujo, M.B.; Lavorel, S. Do we need land–cover data to model species distributions in Europe? J. Biogeogr. 2004, 31, 353–361. [Google Scholar] [CrossRef]
- Cerasoli, F.; D’Alessandro, P.; Biondi, M. Worldclim 2.1 versus Worldclim 1.4: Climatic niche and grid resolution affect between–version mismatches in Habitat Suitability Models predictions across Europe. Ecol. Evol. 2022, 12, 8430. [Google Scholar] [CrossRef]
- Woodward, F.I.; Long, S.P. Temperature and the distribution of plant species. Plants Temp. Symp. Soc. Exp. Biol. 1988, 42, 59–75. [Google Scholar]
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global high–resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- Fitzpatrick, E.A.; Nix, H.A. The Climatic Factor in Australian Grass–Lands; Moore, R.M., Ed.; Australian National University Press: Canberra, Australia, 1970; pp. 3–26. [Google Scholar]
- Graham, C.H.; Ferrier, S.; Huettman, F.; Moritz CPeterson, A.T. New developments in museum–based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 2004, 19, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Chefaoui, R.M.; Lobo, J.M. Assessing the effects of pseudo–absenceson predictive distribution model performance. Ecol. Modell. 2008, 210, 478–486. [Google Scholar] [CrossRef]
- Guisan, A.; Thuïller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.H.A.; Sansford, C.E.; Jarvis, C.H.; Cannon, R.J.C.; MacLeod, A.; Walters, K.F.A. The role of climatic mapping in predicting the potential geographical distribution of non–indigenous pests under current and future climates. Agric. Ecosyst. Environ. 2000, 82, 57–71. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Randall, R.P. A Comparison of Systems to Analyse Potential Weed Distributions; Groves, R.H., Panetta, F.D., Virtue, J.G., Eds.; CSIRO Publishing: Melbourne, Australia, 2001; pp. 61–79. [Google Scholar]
- Julien, M.H.; Skarratt, B.; Maywald, G.F. Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. J. Aquat. Plant. Manag. 1995, 33, 55–60. [Google Scholar]
- Poggio, L.; Simonetti, E.; Gimona, A. Enhancing the WorldClim data set for national and regional applications. Sci. Total Environ. 2017, 625, 1628–1643. [Google Scholar] [CrossRef]
- Soria-Auza, R.W.; Kessler, M.; Bach, K.; Barajas–Barbosa, P.M.; Lehnert, M.; Herzog, S.K.; Bohner, J. Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: A case study from Bolivia. Ecol. Modell. 2010, 221, 1221–1229. [Google Scholar] [CrossRef]
- Kim, D. Mapping Species Distributions: Spatial Inference and Prediction. Ann. Am. Assoc. 2011, 101, 1384–1386. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Baker, D.J.; Hartley, A.J.; Butchart, S.H.; Willis, S.G. Choice of baseline climate data impacts projected species’ responses to climate change. Glob. Change Biol. 2016, 22, 2392–2404. [Google Scholar] [CrossRef]
- Morales-Barbero, J.; Vega-Álvarez, J. Input matters matter: Bioclimatic consistency to map more reliable species distribution models. Methods Ecol. Evol. 2019, 10, 212–224. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high–resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. Worldclim 2: New 1–km spatial resolution climate surfaces for global land areas. Int. J. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Imbach, P.; Molina, L.; Locatelli, B.; Roupsard, O.; Ciais, P.; Corrales, L.; Mahe, G. Climatology–based regional modelling of potential vegetation and average annual long–term runoff for Mesoamerica. Hydrol. Earth Syst. Sci. 2010, 14, 1801–1817. [Google Scholar] [CrossRef]
- Moreno, A.; Hasenauer, H. Spatial downscaling of european climate data. Int. J. Climatol. 2016, 36, 1444–1458. [Google Scholar] [CrossRef]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557, 838–850. [Google Scholar] [CrossRef]
- Busby, J.R. BIOCLIM—A bioclimatic analysis and prediction tool. Plant Prot. Q. 1991, 6, 8–9. [Google Scholar]
- Daly, C.; Neilson, R.; Phillips, D. A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 1994, 33, 140–158. [Google Scholar] [CrossRef]
- Killeen, T.J.; Douglas, M.; Consiglio, T.; Jorgensen, P.M.; Mejia, J. Dry spots and wet spots in the Andean hotspot. J. Biogeogr. 2007, 34, 1357–1373. [Google Scholar] [CrossRef]
- Weedon, G.P.; Gomes, S.; Viterbo, P. Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century. J. Hydrometeorol. 2011, 12, 823–848. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Noce, S.; Caporaso, L.; Santini, M. A new global dataset of bioclimatic indicators. Sci. Data 2020, 7, 398. [Google Scholar] [CrossRef] [PubMed]
- Kenney, M.A.; Janetos, A.C.; Gerst, M.D. A framework for national climate indicators. Clim. Change 2018, 163, 1705–1718. [Google Scholar] [CrossRef]
- Collins, M. Ensembles and probabilities: A new era in the prediction of climate change. Phil. Trans. R. Soc. A 2007, 365, 1957–1970. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Liang, X.Z.; Gao, W.; Stohlgren, T.J. Regional climate model downscaling may improve the prediction of alien plant species distributions. Front. Earth Sci. 2014, 8, 457–471. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Serra-Diaz, J.M.; Dormann, C.F.; Elith, J.; Fandos Guzman, G.; Feng, X.; Guillera-Arroita, G.; et al. A standard protocol for describing species distribution models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Chakraborty, D.; Moricz, N.; Rasztovits, E.; Dobor, L.; Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 2021, 78, 26. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Diagne, C.; Haubrock, P.J.; Turbelin, A.J.; Courchamp, F. Are the “100 of the world’s worst” invasive species also the costliest? Biol. Invasion 2021, 24, 1895–1904. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M. Insight into distribution patterns and conservation planning in relation to woody species diversity in Xinjiang, arid northwestern China. Biol. Conserv. 2014, 177, 165–173. [Google Scholar] [CrossRef]
- Uppala, S.M.; Kallberg, P.W.; Simmons, A.J. The ERA–40 re–analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to Maxent for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.E.; Yates, C.J. Astatistical explanation of Maxent for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Saupe, E.E.; Hendricks, J.R.; Townsend Peterson, A.; Lieberman, B.S. Climate change and marine molluscs of the western North Atlantic: Future prospects and perils. J. Biogeogr. 2014, 41, 1352–1366. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2013, 275, 73–77. [Google Scholar] [CrossRef]
- Boria, R.A.; Blois, J.L. The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus. Ecol. Model. 2018, 386, 83–88. [Google Scholar] [CrossRef]
- Wan, J.Z.; Zhang, Z.X.; Wang, C.J. Effects of ecoregional vulnerability on habitat suitability of invasive alien plants: An assessment using 13 species on a global scale. Environ. Earth Sci. 2019, 78, 180. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend–preserving bias correction–The ISIMIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef]
- Wittmann, M.E.; Barnes, M.A.; Jerde, C.L.; Jones, L.A.; Lodge, D.M. Confronting species distribution model predictions with species functional traits. Ecol. Evol. 2016, 6, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high–resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.A.; Ignizio, D.A. Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States; US Geological Survey Data Series 691; U.S. Department of the Interior: Washington, DC, USA, 2012. [Google Scholar]
- Driscoll, D.M.; Fong, J.M.Y. Continentality: A basic climatic parameter re–examined. Int. J. Climatol. 1992, 12, 185–192. [Google Scholar] [CrossRef]
- Fobes, C. Continentality in New England. Bull. Am. Meteorol. Soc. 1954, 35, 197. [Google Scholar]
- Kopec, R. Continentality around the Great Lakes. Bull. Am. Meteurol. Soc. 1965, 46, 54–57. [Google Scholar] [CrossRef]
- Kira, T. Forest ecosystems of east and southeast—Asia in a global perspective. Ecol. Res. 1991, 6, 185–200. [Google Scholar] [CrossRef]
- Yim, Y.J.; Kira, T. Distribution of forest vegetation and climate in the Korean Peninsula, I, Distribution of some indices of thermal climate. Jpn. J. Ecol. 1975, 25, 77–88. [Google Scholar]
- Yim, Y.J. Distribution of forest vegetation and climate in the Korean Peninsula, IV, Zonal distribution of forest vegetation in relation to thermal climate. Jpn. J. Ecol. 1977, 27, 269–278. [Google Scholar]
- Kriticos, D.J.; Jarošik, V.; Ota, N. Extending the suite of bioclim variables: A proposed registry system and case study using principal components analysis. Methods. Ecol. Evol. 2014, 5, 956–960. [Google Scholar] [CrossRef]
- Davis, A.J.; Jenkinson, L.S.; Lawton, J.H.; Shorrocks, B.; Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 1998, 391, 783–786. [Google Scholar] [CrossRef]
- Araújo, M.B.; Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 2007, 16, 743–753. [Google Scholar] [CrossRef]
- Dingle, H.; Rochester, W.A.; Zalucki, M.P. Relationships among climate, latitude and migration: Australian butterflies are not temperate–zone birds. Oecologia 2000, 124, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.X.; Wang, C.J.; Wan, J.Z. Using Consensus Land Cover Data to Model Global Invasive Tree Species Distributions. Plants 2022, 11, 981. [Google Scholar] [CrossRef] [PubMed]
- Loh, R.K.; Daehler, C.C. Influence of woody invader control methods and seed availability on native and invasive species establishment in a Hawaiian forest. Biol. Invasions 2008, 10, 805–819. [Google Scholar] [CrossRef]
- Gallagher, R.V.; Hughes, L.; Leishman, M.R. Species loss and gain in communities under future climate change: Consequences for functional diversity. Ecography 2013, 36, 531–540. [Google Scholar] [CrossRef]
- Wan, J.Z.; Wang, C.J.; Yu, F.H. Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia 2019, 74, 757–766. [Google Scholar] [CrossRef]
- Fernandez, I.C.; Morales, N.S. One-class land-cover classification using MaxEnt: The effect of modelling parameterization on classification accuracy. PeerJ 2019, 7, 7016. [Google Scholar] [CrossRef]
- Suárez-Mota, M.E.; Ortiz, E.; Villaseñor, J.L.; Espinosa-García, F.J. Ecological niche modeling of invasive plant species according to invasion status and management needs: The case of Chromolaena odorata (Asteraceae) in South Africa. Pol. J. Ecol. 2016, 64, 369–383. [Google Scholar] [CrossRef]
- Skowronek, S.; Asner, G.P.; Feilhauer, H. Performance of one-class classifiers for invasive species mapping using airborne imaging spectroscopy. Ecol. Inform. 2017, 37, 66–76. [Google Scholar] [CrossRef]
- Mack, B.; Waske, B. In-depth comparisons of MaxEnt, biased SVM and one-class SVM for one-class classification of remote sensing data. Remote Sens. Lett. 2017, 8, 290–299. [Google Scholar] [CrossRef]
- Austin, M.P. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Mouton, A.M.; De Baets, B.; Goethals, P.L.M. Ecological relevance of performance criteria for species distribution models. Ecol. Model. 2010, 221, 1995–2002. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Raes, N.; ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography 2007, 30, 727–736. [Google Scholar] [CrossRef]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 2019, 10, 225–232. [Google Scholar] [CrossRef]
- Mainali, K.P.; Warren, D.L.; Dhileepan, K.; McConnachie, A.; Strathie, L.; Hassan, G.; Karki, D.; Shrestha, B.B.; Parmesan, C. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Glob. Change Biol. 2015, 21, 4464–4480. [Google Scholar] [CrossRef] [PubMed]
Species | WorldClim | OR | CMCC | OR | CMCC | OR | CMCC | OR |
---|---|---|---|---|---|---|---|---|
(bio1–bio19) | (bio1–bio35) | (bio20–bio35) | ||||||
Acacia mearnsii | 0.953 | 0.102 | 0.963 | 0.069 | 0.985 | 0.052 | 0.984 | 0.051 |
Cecropia peltata | 0.954 | 0.090 | 0.961 | 0.059 | 0.979 | 0.042 | 0.980 | 0.043 |
Cinchona pubescens | 0.969 | 0.081 | 0.977 | 0.054 | 0.966 | 0.055 | 0.972 | 0.056 |
Leucaena leucocephala | 0.861 | 0.213 | 0.892 | 0.164 | 0.958 | 0.079 | 0.956 | 0.081 |
Ligustrum robustum | 0.980 | 0.052 | 0.974 | 0.054 | 0.980 | 0.050 | 0.977 | 0.049 |
Melaleuca quinquenervia | 0.967 | 0.082 | 0.967 | 0.059 | 0.972 | 0.056 | 0.975 | 0.054 |
Miconia calvescens | 0.953 | 0.099 | 0.963 | 0.063 | 0.978 | 0.041 | 0.975 | 0.044 |
Morella faya | 0.977 | 0.075 | 0.927 | 0.124 | 0.863 | 0.162 | 0.927 | 0.124 |
Pinus pinaster | 0.962 | 0.073 | 0.955 | 0.068 | 0.976 | 0.046 | 0.976 | 0.046 |
Schinus terebinthifolia | 0.941 | 0.116 | 0.936 | 0.100 | 0.963 | 0.076 | 0.962 | 0.074 |
Spathodea campanulata | 0.913 | 0.160 | 0.944 | 0.095 | 0.975 | 0.055 | 0.974 | 0.057 |
Average of all species | 0.948 | 0.104 | 0.951 | 0.083 | 0.963 | 0.065 | 0.969 | 0.062 |
Climate Variables | WorldClim (%) | CMCC-Bioclimlnd bio1–bio19 (%) | CMCC-Bioclimlnd bio1–bio35 (%) | CMCC-Bioclimlnd bio20–bio35 (%) |
---|---|---|---|---|
bio1 | 5.412 | 14.131 | 2.758 | |
bio2 | 2.477 | 1.819 | 3.113 | |
bio3 | 12.991 | 7.391 | 2.776 | |
bio4 | 20.472 | 23.900 | 10.774 | |
bio5 | 1.406 | 1.223 | 0.094 | |
bio6 | 7.112 | 4.134 | 0.130 | |
bio7 | 2.877 | 3.721 | 1.736 | |
bio8 | 1.021 | 0.553 | 0.023 | |
bio9 | 0.225 | 0.147 | 0.001 | |
bio10 | 0.556 | 4.836 | 1.878 | |
bio11 | 14.020 | 3.116 | 1.189 | |
bio12 | 5.255 | 3.440 | 0.657 | |
bio13 | 2.541 | 1.652 | 0.484 | |
bio14 | 3.721 | 5.371 | 2.726 | |
bio15 | 1.944 | 4.471 | 2.554 | |
bio16 | 4.865 | 8.741 | 1.140 | |
bio17 | 0.401 | 3.025 | 2.390 | |
bio18 | 5.544 | 2.950 | 3.433 | |
bio19 | 7.161 | 5.381 | 5.411 | |
bio20 | 1.004 | 1.590 | ||
bio21 | 1.293 | 5.250 | ||
bio22 | 0.041 | 2.386 | ||
bio23 | 3.910 | 7.617 | ||
bio24 | 4.795 | 8.041 | ||
bio25 | 9.401 | 10.085 | ||
bio26 | 13.883 | 16.000 | ||
bio27 | 12.322 | 28.726 | ||
bio28 | 0.500 | 2.042 | ||
bio29 | 0.279 | 1.939 | ||
bio30 | 0.129 | 0.757 | ||
bio31 | 0.198 | 0.692 | ||
bio32 | 0.054 | 0.176 | ||
bio33 | 5.633 | 6.748 | ||
bio34 | 0.793 | 4.807 | ||
bio35 | 2.497 | 3.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wang, C.; Zhang, C.; Wan, J. Comparing the Performance of CMCC-BioClimInd and WorldClim Datasets in Predicting Global Invasive Plant Distributions. Biology 2023, 12, 652. https://doi.org/10.3390/biology12050652
Zhang F, Wang C, Zhang C, Wan J. Comparing the Performance of CMCC-BioClimInd and WorldClim Datasets in Predicting Global Invasive Plant Distributions. Biology. 2023; 12(5):652. https://doi.org/10.3390/biology12050652
Chicago/Turabian StyleZhang, Feixue, Chunjing Wang, Chunhui Zhang, and Jizhong Wan. 2023. "Comparing the Performance of CMCC-BioClimInd and WorldClim Datasets in Predicting Global Invasive Plant Distributions" Biology 12, no. 5: 652. https://doi.org/10.3390/biology12050652
APA StyleZhang, F., Wang, C., Zhang, C., & Wan, J. (2023). Comparing the Performance of CMCC-BioClimInd and WorldClim Datasets in Predicting Global Invasive Plant Distributions. Biology, 12(5), 652. https://doi.org/10.3390/biology12050652