Study of Archaeal Diversity in the Arctic Meltwater Lake Region
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site Description and Sample Collection
2.2. Physicochemical Properties of Soils
2.3. DNA Extraction, PCR Amplification and Sequencing
2.4. High-Throughput Sequencing and Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soil Samples
3.2. Diversity and Structure Analysis of Archaeal Community
3.3. Correlation between Soil Physicochemical Factors and Archaeal Community Structure
3.4. The Weighted Gene Co-Expression Network Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Zhang, X.; Zhang, Q.; Lin, Y.; Hao, M.; Luo, Y.; Zhao, Z.; Yao, Y.; Chen, X.; Wang, L.; et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 2017, 7, 875–879. [Google Scholar] [CrossRef]
- Ding, M.; Wang, S.; Sun, W. Decadal Climate Change in Ny-Ålesund, Svalbard, A Representative Area of the Arctic. Condens. Matter 2018, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Christensen, T.R. It’s a gas. Nat. Geosci. 2016, 9, 647–648. [Google Scholar] [CrossRef]
- Kramshoj, M.; Albers, C.N.; Svendsen, S.H.; Bjorkman, M.P.; Lindwall, F.; Bjork, R.G.; Rinnan, R. Volatile emissions from thawing permafrost soils are influenced by meltwater drainage conditions. Glob. Chang. Biol. 2019, 25, 1704–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuur, E.A.G.; Mack, M.C. Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 279–301. [Google Scholar] [CrossRef]
- Urbański, J.A. Monitoring and classification of high Arctic lakes in the Svalbard Islands using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102911. [Google Scholar] [CrossRef]
- Malard, L.A.; Pearce, D.A. Microbial diversity and biogeography in Arctic soils. Environ. Microbiol. Rep. 2018, 10, 611–625. [Google Scholar] [CrossRef]
- Sjursen, H.; Michelsen, A.; Holmstrup, M. Effects of freeze–thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Appl. Soil Ecol. 2005, 28, 79–93. [Google Scholar] [CrossRef]
- Dang, H.; Zhang, X.; Sun, J.; Li, T.; Zhang, Z.; Yang, G. Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 2008, 154, 2084–2095. [Google Scholar] [CrossRef] [Green Version]
- Høj, L.; Olsen, R.A.; Torsvik, V.L. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME J. 2007, 2, 37–48. [Google Scholar] [CrossRef]
- Gubry-Rangin, C.; Novotnik, B.; Mandič-Mulec, I.; Nicol, G.W.; Prosser, J.I. Temperature responses of soil ammonia-oxidising archaea depend on pH. Soil Biol. Biochem. 2017, 106, 61–68. [Google Scholar] [CrossRef]
- Peay, K.G.; von Sperber, C.; Cardarelli, E.; Toju, H.; Francis, C.A.; Chadwick, O.A.; Vitousek, P.M. Convergence and contrast in the community structure of Bacteria, Fungi and Archaea along a tropical elevation-climate gradient. FEMS Microbiol. Ecol. 2017, 93, fix045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paula, F.S.; Chin, J.P.; Schnurer, A.; Muller, B.; Manesiotis, P.; Waters, N.; Macintosh, K.A.; Quinn, J.P.; Connolly, J.; Abram, F.; et al. The potential for polyphosphate metabolism in Archaea and anaerobic polyphosphate formation in Methanosarcina mazei. Sci. Rep. 2019, 9, 17101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, W.; Meinhardt, K.A.; Moffett, J.W.; Devol, A.H.; Virginia Armbrust, E.; Ingalls, A.E.; Stahl, D.A. Influence of oxygen availability on the activities of ammonia-oxidizing archaea. Environ. Microbiol. Rep. 2017, 9, 250–256. [Google Scholar] [CrossRef]
- He, S.; Tan, J.; Hu, W.; Mo, C. Diversity of Archaea and Its Correlation with Environmental Factors in the Ebinur Lake Wetland. Curr. Microbiol. 2019, 76, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Treude, T.; Krause, S.; Steinle, L.; Burwicz, E.; Hamdan, L.J.; Niemann, H.; Feseker, T.; Liebetrau, V.; Krastel, S.; Berndt, C. Biogeochemical Consequences of Nonvertical Methane Transport in Sediment Offshore Northwestern Svalbard. J. Geophys. Res. Biogeosciences 2020, 125, e2019JG005371. [Google Scholar] [CrossRef]
- Zarsky, J.D.; Stibal, M.; Hodson, A.; Sattler, B.; Schostag, M.; Hansen, L.H.; Jacobsen, C.S.; Psenner, R. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea. Environ. Res. Lett. 2013, 8, 035044. [Google Scholar] [CrossRef]
- Lee, S.H.; Jang, I.; Chae, N.; Choi, T.; Kang, H. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils. Microb. Ecol. 2013, 65, 405–414. [Google Scholar] [CrossRef]
- Sundset, M.A.; Edwards, J.E.; Cheng, Y.F.; Senosiain, R.S.; Fraile, M.N.; Northwood, K.S.; Praesteng, K.E.; Glad, T.; Mathiesen, S.D.; Wright, A.D. Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiol. Ecol. 2009, 70, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Pouliot, J.; Galand, P.E.; Lovejoy, C.; Vincent, W.F. Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes. Environ. Microbiol. 2009, 11, 687–699. [Google Scholar] [CrossRef]
- Zuo, J.; Zu, M.; Liu, L.; Song, X.; Yuan, Y. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biol. 2021, 21, 127. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cheng, H.; Liu, J.; Hazen, T.C.; Huang, V.; He, Q. Unexpected competitiveness of Methanosaeta populations at elevated acetate concentrations in methanogenic treatment of animal wastewater. Appl. Microbiol. Biotechnol. 2017, 101, 1729–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.; Li, M.; Liu, Y.; Liu, F. Desulfovibrio feeding Methanobacterium with electrons in conductive methanogenic aggregates from coastal zones. Water Res. 2021, 202, 117490. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, M.; Castelle, C.J.; Probst, A.J.; Zhou, Z.; Pan, J.; Liu, Y.; Banfield, J.F.; Gu, J.D. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome 2018, 6, 102. [Google Scholar] [CrossRef]
- van der Bilt, W.G.M.; Bakke, J.; Vasskog, K.; D’Andrea, W.J.; Bradley, R.S.; Ólafsdóttir, S. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quat. Sci. Rev. 2015. [Google Scholar] [CrossRef] [Green Version]
- de Wet, G.A.; Balascio, N.L.; D’Andrea, W.J.; Bakke, J.; Bradley, R.S.; Perren, B. Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard. Quat. Sci. Rev. 2018, 183, 188–203. [Google Scholar] [CrossRef]
- Pedersen, Å.Ø.; Convey, P.; Newsham, K.K.; Mosbacher, J.B.; Fuglei, E.; Ravolainen, V.; Hansen, B.B.; Jensen, T.C.; Augusti, A.; Biersma, E.M.; et al. Five decades of terrestrial and freshwater research at Ny-Ålesund, Svalbard. Polar Res. 2022, 41. [Google Scholar] [CrossRef]
- Hu, L.; Shi, X.; Yu, Z.; Lin, T.; Wang, H.; Ma, D.; Guo, Z.; Yang, Z. Distribution of sedimentary organic matter in estuarine–inner shelf regions of the East China Sea: Implications for hydrodynamic forces and anthropogenic impact. Mar. Chem. 2012, 142–144, 29–40. [Google Scholar] [CrossRef]
- Wei, S.; Cui, H.; Zhang, Y.; Su, X.; Dong, H.; Chen, F.; Zhu, Y. Comparative evaluation of three archaeal primer pairs for exploring archaeal communities in deep-sea sediments and permafrost soils. Extremophiles 2019, 23, 747–757. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Zhang, W.; Zhu, D.; Zhou, X.; Zhang, L. Archaeal communities in the deep-sea sediments of the South China Sea revealed by Illumina high-throughput sequencing. Ann. Microbiol. 2019, 69, 839–848. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.F.; Zhang, T.; Yang, X.; Wang, S.; Yu, Y.; Dong, L.L.; Guo, Y.D.; Ma, Y.X.; Zang, J.Y. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic Lake Area. Front. Microbiol. 2016, 7, 1170. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Liu, F.; Han, W.; Wang, Y.; Zhu, Q.; Zang, J.; Wang, S.; Zhang, B.; Wang, N. The Effect of Nitrogen Content on Archaeal Diversity in an Arctic Lake Region. Microorganisms 2019, 7, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megyes, M.; Móga, J.; Strat, D.; Borsodi, A.K. Bacterial and Archaeal Taxonomic Diversity of Mud Volcanoes (Beciu, Romania) via Metagenomic Approach. Geomicrobiol. J. 2021, 38, 532–539. [Google Scholar] [CrossRef]
- Azzaro, M.; Papale, M.; Rizzo, C.; Forte, E.; Lenaz, D.; Guglielmin, M.; Lo Giudice, A. Antarctic Salt-Cones: An Oasis of Microbial Life? The Example of Boulder Clay Glacier (Northern Victoria Land). Microorganisms 2022, 10, 1753. [Google Scholar] [CrossRef]
- Fuentes, B.; Choque, A.; Gomez, F.; Alarcon, J.; Castro-Nallar, E.; Arenas, F.; Contreras, D.; Morchen, R.; Amelung, W.; Knief, C.; et al. Influence of Physical-Chemical Soil Parameters on Microbiota Composition and Diversity in a Deep Hyperarid Core of the Atacama Desert. Front. Microbiol. 2021, 12, 794743. [Google Scholar] [CrossRef]
- Conrad, R. Methane Production in Soil Environments-Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation. Microorganisms 2020, 8, 881. [Google Scholar] [CrossRef]
- Mo, S.; Li, J.; Li, B.; Yu, R.; Nie, S.; Zhang, Z.; Liao, J.; Jiang, Q.; Yan, B.; Jiang, C. Impacts of Desulfobacterales and Chromatiales on sulfate reduction in the subtropical mangrove ecosystem as revealed by SMDB analysis. bioRxiv 2020. [CrossRef]
- Anderson, I.; Ulrich, L.E.; Lupa, B.; Susanti, D.; Porat, I.; Hooper, S.D.; Lykidis, A.; Sieprawska-Lupa, M.; Dharmarajan, L.; Goltsman, E.; et al. Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS ONE 2009, 4, e5797. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, N.; Han, W.; Zhang, B.; Zang, J.; Qin, Y.; Wang, L.; Liu, J.; Zhang, T. Soil Geochemical Properties Influencing the Diversity of Bacteria and Archaea in Soils of the Kitezh Lake Area, Antarctica. Biology 2022, 11, 1855. [Google Scholar] [CrossRef] [PubMed]
- Bano, N.; Ruffin, S.; Ransom, B.; Hollibaugh, J.T. Phylogenetic Composition of Arctic Ocean Archaeal Assemblages and Comparison with Antarctic Assemblages. Appl. Environ. Microbiol. 2004, 70, 781–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.; Bruna, P.; Martinez-Urtaza, J.; Solis, F.; Valenzuela, B.; Zamorano, P.; Barrientos, L. Two Archaeal Metagenome-Assembled Genomes from El Tatio Provide New Insights into the Crenarchaeota Phylum. Genes 2021, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- Nicol, G.W.; Schleper, C. Ammonia-oxidising Crenarchaeota: Important players in the nitrogen cycle? Trends Microbiol. 2006, 14, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Green, S.; Tfaily, M.M.; Prakash, O.; Konstantinidis, K.T.; Corbett, J.E.; Chanton, J.P.; Cooper, W.T.; Kostka, J.E. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl. Environ. Microbiol. 2012, 78, 7023–7031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anesio, A.M.; Lutz, S.; Chrismas, N.A.M.; Benning, L.G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 2017, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Stieglmeier, M.; Klingl, A.; Alves, R.J.E.; Rittmann, S.K.R.; Melcher, M.; Leisch, N.; Schleper, C. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int. J. Syst. Evol. Microbiol. 2014, 64, 2738–2752. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; van der Heijden, M.G.A.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M.; et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef]
- Cheng, X.; Xiang, X.; Yun, Y.; Wang, W.; Wang, H.; Bodelier, P.L.E. Archaea and their interactions with bacteria in a karst ecosystem. Front. Microbiol. 2023, 14, 1068595. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, Y.; He, D.; Gu, J.-D.; Guo, Q.; Liu, X.; Duan, Y.; Zhao, J.; Wang, W.; Feng, H. Community structures of bacteria and archaea associated with the biodeterioration of sandstone sculptures at the Beishiku Temple. Int. Biodeterior. Biodegrad. 2021, 164, 105290. [Google Scholar] [CrossRef]
- Brauer, S.L.; Cadillo-Quiroz, H.; Ward, R.J.; Yavitt, J.B.; Zinder, S.H. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int. J. Syst. Evol. Microbiol. 2011, 61, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Yashiro, Y.; Sakai, S.; Ehara, M.; Miyazaki, M.; Yamaguchi, T.; Imachi, H. Methanoregula formicica sp. nov., a methane-producing archaeon isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 2011, 61, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Liebner, S.; Winkel, M.; Alawi, M.; Horn, F.; Dörfer, C.; Ollivier, J.; He, J.-S.; Jin, H.; Kühn, P.; et al. In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil. Biol. Biochem. 2017, 111, 66–77. [Google Scholar] [CrossRef]
- Zinder, S.; Bräuer, S. Methanoregula. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Smith, K.S.; Ingram-Smith, C. Methanosaeta, the forgotten methanogen? Trends Microbiol. 2007, 15, 150–155. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Cadillo-Quiroz, H.; Keller, J.K.; Zhuang, Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Chang. Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Selective enrichment and purification of cultures of Methanosaeta spp. J. Microbiol. Methods 2003, 52, 239–244. [Google Scholar] [CrossRef]
- Falz, K.Z.; Holliger, C.; Grosskopf, R.; Liesack, W.; Hahn, D. Vertical Distribution of Methanogens in the Anoxic Sediment of Rotsee (Switzerland). Appl. Environ. Microbiol. 1999, 65, 2402–2408. [Google Scholar] [CrossRef]
- Andam, C.P.; Harlow, T.J.; Papke, R.T.; Gogarten, J.P. Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales. BMC Evol. Biol. 2012, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Satari, L.; Guillen, A.; Latorre-Perez, A.; Porcar, M. Beyond Archaea: The Table Salt Bacteriome. Front. Microbiol. 2021, 12, 714110. [Google Scholar] [CrossRef]
- Iino, T.; Mori, K.; Suzuki, K.I. Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol. 2010, 60, 2563–2566. [Google Scholar] [CrossRef] [Green Version]
- Cadillo-Quiroz, H.; Yavitt, J.B.; Zinder, S.H. Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int. J. Syst. Evol. Microbiol. 2009, 59, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jia, Z.; Lin, X.; Feng, Y. DNA-based stable isotope probing identifies formate-metabolizing methanogenic archaea in paddy soil. Microbiol. Res. 2017, 202, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, M.T.; Gutiérrez, E.; González-Domínguez, B.; Román, M.; Ávila, J.M.; Ramo, C.; Gonzalez, J.M.; García, L.V. Impacts of protected colonial birds on soil microbial communities: When protection leads to degradation. Soil. Biol. Biochem. 2017, 105, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Blonska, E.; Lasota, J.; Jankowiak, R.; Michalcewicz, J.; Wojas, T.; Zbyryt, A.; Ciach, M. Biological and physicochemical properties of the nests of White Stork Ciconia ciconia reveal soil entirely formed, modified and maintained by birds. Sci. Total Environ. 2021, 763, 143020. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, T.; Zhao, W.; Zhang, Y.; Tang, L.; Xu, B.; Chen, X. Identification of crucial genes in aortic dissection by WGCNA. Atherosclerosis 2021, 331, e244–e246. [Google Scholar] [CrossRef]
- Di, Z.; Zhou, S.; Xu, G.; Ren, L.; Li, C.; Ding, Z.; Huang, K.; Liang, L.; Yuan, Y. Single-cell and WGCNA uncover a prognostic model and potential oncogenes in colorectal cancer. Biol. Proced. Online 2022, 24, 13. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Sun, R.; Nie, S.; Meng, H.; Zhong, Y.; Nie, X.; Cheng, W. Using mRNAsi to identify prognostic-related genes in endometrial carcinoma based on WGCNA. Life Sci. 2020, 258, 118231. [Google Scholar] [CrossRef]
- Zhalnina, K.V.; Dias, R.; Leonard, M.T.; Quadros, P.; Camargo, F.; Drew, J.C.; Farmerie, W.G.; Daroub, S.H.; Triplett, E.W. Genome Sequence of Candidatus Nitrososphaera evergladensis from Group I.1b Enriched from Everglades Soil Reveals Novel Genomic Features of the Ammonia-Oxidizing Archaea. PLoS ONE 2014, 9, e101648. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, L.; Jain, M.K.; Aubert, J.P.; Zeikus, J.G. Comparison of Assimilatory Organic Nitrogen, Sulfur, and Carbon Sources for Growth of Methanobacterium Species. Appl. Environ. Microbiol. 1984, 48, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Magingo, F.S.S.; Stumm, C.K. Nitrogen fixation by Methanobacterium formicicum. FEMS Microbiol. Lett. 1991, 81, 273–277. [Google Scholar] [CrossRef]
- Yang, N.; Tian, C.; Lv, Y.; Hou, J.; Yang, Z.; Xiao, X.; Zhang, Y. Novel primers for 16S rRNA gene-based archaeal and bacterial community analysis in oceanic trench sediments. Appl. Microbiol. Biotechnol. 2022, 106, 2795–2809. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Narihiro, T.; Shinshima, F.; Yoshida, M.; Yamaguchi, H.; Kurashita, H.; Nakahara, N.; Nobu, M.K.; Noguchi, T.Q.P.; Yamauchi, M.; et al. High-rate cotreatment of purified terephthalate and dimethyl terephthalate manufacturing wastewater by a mesophilic upflow anaerobic sludge blanket reactor and the microbial ecology relevant to aromatic compound degradation. Water Res. 2022, 219, 118581. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Holton, M.; Lourenco, J.; Fontes, P. 299 Differences in Microbial Community Composition between Uterine Horns Ipsilateral and Contralateral to the Corpus Luteum in Beef Cows on day 15 of the Estrous Cycle. J. Anim. Sci. 2022, 100, 142–143. [Google Scholar] [CrossRef]
- Liu, Z. Preliminary Application of Sandwich Plate Method in Isolation of Bacteria from Marine Sediments and Multiphase Classification of Two New Strain. Master’s Thesis, Shandong University, Ji’nan, China, 2020. [Google Scholar]
- Zhang, J. The Establishment of the Sandwich Plate Method and Its Application in the Mining of Bacterial Resources in Offshore Sediments. PhD Thesis, Shandong University, Ji’nan, China, 2021. [Google Scholar]
- Schleper, C.; Jurgens, G.; Jonuscheit, M. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 2005, 3, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Y.; Pan, J.; Wang, F.; Li, M. Perspectives on Cultivation Strategies of Archaea. Microb. Ecol. 2019, 79, 770–784. [Google Scholar] [CrossRef] [PubMed]
Sites | Location Profile | Coordinate |
---|---|---|
NHS1 | Intertidal soil of the lake with birds | 78.9656° N 12.0729° E |
NHS2 | 78.9657° N 12.0701° E | |
NHS3 | 78.9662° N 12.0680° E | |
NHX1 | Subtidal soil of the lake with birds | 78.9656° N 12.0729° E |
NHX2 | 78.9657° N 12.0701° E | |
NHX3 | 78.9662° N 12.0680° E | |
XHS1 | Intertidal soil of the small lake | 78.9631° N 12.0690° E |
XHS2 | 78.9638° N 12.0678° E | |
XHS3 | 78.9630° N 12.0698° E | |
XHX1 | Subtidal soil of the small lake | 78.9631° N 12.0690°E |
XHX2 | 78.9638° N 12.0678° E | |
XHX3 | 78.9630° N 12.0698° E |
Sites | pH | MC(%) | TOC (%) | TON (%) | NO2−-N (μg∙g−1) | NO3−-N (μg∙g−1) | NH4+-N (μg∙g−1) | SiO32−-Si (μg∙g−1) | PO43−-P (μg∙g−1) |
---|---|---|---|---|---|---|---|---|---|
NHS1 | 7.08 ± 0.22 fg | 26.44 ± 1.36 c | 6.74 ± 0.81 bcde | 1.479 ± 0.116 bc | 0.424 ± 0.138 bc | 2.016 ± 0.740 c | 3.249 ± 0.262 c | 17.655 ± 0.635 c | 0.049 ± 0.016 b |
NHS2 | 7.68 ± 0.15 de | 27.14 ± 1.77 c | 4.23 ± 1.11 cde | 1.052 ± 0.487 cd | 0.587 ± 0.149 b | 2.159 ± 0.021 bc | 9.597 ± 1.901 c | 16.852 ± 1.179 c | 0.219 ± 0.034 b |
NHS3 | 8.11 ± 0.15 ab | 17.36 ± 2.37 d | 1.08 ± 0.32 de | 0.231 ± 0.064 e | 0.173 ± 0.079 cde | 0.998 ± 0.235 de | 5.467 ± 4.379 c | 20.347 ± 3.880 c | 0.040 ± 0.023 b |
NHX1 | 7.42 ± 0.15 ef | 25.62 ± 2.88 c | 8.10 ± 1.43 bcd | 1.881 ± 0.328 ab | 0.080 ± 0.043 de | 0.764 ± 0.242 e | 2.458 ± 1.417 c | 14.402 ± 1.366 c | 0.095 ± 0.060 b |
NHX2 | 7.52 ± 0.14 de | 15.58 ± 0.91 d | 3.38 ± 1.29 cde | 0.755 ± 0.321 de | 0.039 ± 0.005 e | 0.332 ± 0.070 e | 1.423 ± 0.392 c | 14.046 ± 0.619 c | 0.074 ± 0.019 b |
NHX3 | 8.10 ± 0.11 abc | 14.06 ± 1.35 d | 0.23 ± 0.10 e | 0.132 ± 0.183 e | 0.080 ± 0.038 de | 0.364 ± 0.058 e | 4.613 ± 2.351 c | 27.733 ± 7.466 c | 0.045 ± 0.048 b |
XHS1 | 8.30 ± 0.15 a | 12.36 ± 0.47 d | 0.87 ± 0.48 de | 0.207 ± 0.206 e | 0.196 ± 0.078 cde | 0.693 ± 0.187 e | 2.318 ± 1.518 c | 34.942 ± 4.522 c | 0.028 ± 0.022 b |
XHS2 | 7.76 ± 0.02 cde | 31.29 ± 2.00 c | 6.39 ± 0.52 bcde | 1.736 ± 0.052 ab | 0.590 ± 0.042 b | 1.596 ± 0.158 cd | 1.789 ± 0.379 c | 19.337 ± 0.853 c | 0.143 ± 0.228 b |
XHS3 | 7.82 ± 0.08 bcd | 17.60 ± 1.68 d | 5.19 ± 3.13 bcde | 1.289 ± 0.628 bcd | 2.230 ± 0.430 a | 5.975 ± 0.472 a | 3.342 ± 0.239 c | 12.103 ± 0.746 c | 0.471 ± 0.189 b |
XHX1 | 6.81 ± 0.07 gh | 40.25 ± 6.82 b | 12.27 ± 4.39 ab | 2.232 ± 0.407 a | 0.351 ± 0.101 bcde | 2.767 ± 0.488 b | 0.524 ± 0.257 c | 10.295 ± 0.510 c | 0.017 ± 0.008 b |
XHX2 | 7.02 ± 0.36 gh | 58.56 ± 2.92 a | 9.64 ± 10.03 bc | 0.320 ± 0.397 e | 0.039 ± 0.022 e | 0.609 ± 0.128 e | 23.377 ± 18.074 b | 191.481 ± 152.678 a | 0.013 ± 0.010 b |
XHX3 | 6.67 ± 0.23 h | 62.43 ± 7.10 a | 18.95 ± 4.56 a | 0.135 ± 0.161 e | 0.402 ± 0.259 bcd | 1.612 ± 0.560 cd | 65.510 ± 10.494 a | 168.284 ± 53.541 b | 18.857 ± 16.914 a |
RDA1 | RDA2 | r2 | Pr (>r) | ||
---|---|---|---|---|---|
NH4+ | −0.88670 | 0.46234 | 0.4339 | 0.001 | *** |
SiO32− | −0.88229 | 0.47071 | 0.4911 | 0.001 | *** |
NO3− | 0.76690 | 0.64176 | 0.4254 | 0.001 | *** |
PO43− | −0.91135 | 0.41164 | 0.1456 | 0.054 | . |
NO2− | 0.71669 | 0.69739 | 0.5296 | 0.001 | *** |
TON | 0.89069 | −0.45462 | 0.1322 | 0.100 | . |
TOC | −0.97268 | 0.23215 | 0.1773 | 0.039 | * |
MC | −0.91961 | 0.39284 | 0.4264 | 0.001 | *** |
pH | 0.95720 | 0.28943 | 0.2527 | 0.015 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Wang, N.; Zheng, L.; Li, Q.; Wang, L.; Xu, X.; Yin, X. Study of Archaeal Diversity in the Arctic Meltwater Lake Region. Biology 2023, 12, 1023. https://doi.org/10.3390/biology12071023
Qin Y, Wang N, Zheng L, Li Q, Wang L, Xu X, Yin X. Study of Archaeal Diversity in the Arctic Meltwater Lake Region. Biology. 2023; 12(7):1023. https://doi.org/10.3390/biology12071023
Chicago/Turabian StyleQin, Yiling, Nengfei Wang, Li Zheng, Qinxin Li, Long Wang, Xiaoyu Xu, and Xiaofei Yin. 2023. "Study of Archaeal Diversity in the Arctic Meltwater Lake Region" Biology 12, no. 7: 1023. https://doi.org/10.3390/biology12071023
APA StyleQin, Y., Wang, N., Zheng, L., Li, Q., Wang, L., Xu, X., & Yin, X. (2023). Study of Archaeal Diversity in the Arctic Meltwater Lake Region. Biology, 12(7), 1023. https://doi.org/10.3390/biology12071023