Winter Is (Not) Coming: Is Climate Change Helping Drosophila suzukii Overwintering?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Migration and Sheltering in Non-Crop Habitats
3. Seasonal Polyphenism as a Thermoregulation Strategy
4. Transcriptomic Changes Underlying Cold Adaptation and Survival
5. Reproductive Arrest in Winter Morphs as a Result of A metabolic Trade-Off
6. How Is Climate Change Affecting D. suzukii Survival?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.; Rebetez, M.; Rasmann, S. The Effect of Climate Change on Invasive Crop Pests across Biomes. Curr. Opin. Insect Sci. 2022, 50, 100895. [Google Scholar] [CrossRef] [PubMed]
- Sutton, A.O.; Studd, E.K.; Fernandes, T.; Bates, A.E.; Bramburger, A.J.; Cooke, S.J.; Hayden, B.; Henry, H.A.L.; Humphries, M.M.; Martin, R.; et al. Frozen out: Unanswered Questions about Winter Biology. Environ. Rev. 2021, 29, 431–442. [Google Scholar] [CrossRef]
- Williams, C.M.; Henry, H.A.L.; Sinclair, B.J. Cold Truths: How Winter Drives Responses of Terrestrial Organisms to Climate Change. Biol. Rev. 2015, 90, 214–235. [Google Scholar] [CrossRef] [Green Version]
- Teets, N.M.; Marshall, K.E.; Reynolds, J.A. Molecular Mechanisms of Winter Survival. Annu. Rev. Entomol. 2023, 68, 319–339. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, B.J.; Ferguson, L.V.; Salehipour-Shirazi, G.; Macmillan, H.A. Cross-Tolerance and Cross-Talk in the Cold: Relating Low Temperatures to Desiccation and Immune Stress in Insects. Integr. Comp. Biol. 2013, 53, 545–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.E. A Primer on Insect Cold-Tolerance. In Low. Temperature Biology of Insects; Cambridge University Press: Cambridge, UK, 2010; pp. 3–34. [Google Scholar]
- Toxopeus, J.; Sinclair, B.J. Mechanisms Underlying Insect Freeze Tolerance. Biol. Rev. 2018, 93, 1891–1914. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Coello Alvarado, L.E.; Ferguson, L.V. An Invitation to Measure Insect Cold Tolerance: Methods, Approaches, and Workflow. J. Biol. 2015, 53, 180–197. [Google Scholar] [CrossRef] [Green Version]
- Overgaard, J.; Sørensen, J.G.; Loeschcke, V. Genetic Variability and Evolution of Cold-Tolerance. In Low Temperature Biology of Insects; Cambridge University Press: Cambridge, UK, 2010; pp. 276–296. [Google Scholar]
- Xue, Q.; Majeed, M.Z.; Zhang, W.; Ma, C. Adaptation of Drosophila Species to Climate Change—A Literature Review since 2003. J. Integr. Agric. 2019, 18, 805–814. [Google Scholar] [CrossRef]
- Poyet, M.; le Roux, V.; Gibert, P.; Meirland, A.; Prévost, G.; Eslin, P.; Chabrerie, O. The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe? PLoS ONE 2015, 10, e0142785. [Google Scholar] [CrossRef] [Green Version]
- Shawer, R. Chemical Control of Drosophila suzukii. In Drosophila suzukii Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 133–142. [Google Scholar] [CrossRef]
- Falkenberg, T.; Ekesi, S.; Borgemeister, C. Integrated Pest Management (IPM) and One Health—A Call for Action to Integrate. Curr. Opin. Insect Sci. 2022, 53, 100960. [Google Scholar] [CrossRef] [PubMed]
- Sario, S.; Santos, C.; Gonçalves, F.; Torres, L. DNA Screening of Drosophila suzukii Predators in Berry Field Orchards Shows New Predatory Taxonomical Groups. PLoS ONE 2021, 16, e0249673. [Google Scholar] [CrossRef]
- Wolf, S.; Zeisler, C.; Sint, D.; Romeis, J.; Traugott, M.; Collatz, J. A Simple and Cost-Effective Molecular Method to Track Predation on Drosophila suzukii in the Field. J. Pest. Sci. (2004) 2018, 91, 927–935. [Google Scholar] [CrossRef]
- Wollmann, J.; Schlesener, D.; Ferreira, M.; Garcia, F. Parasitoids of Drosophilidae with Potential for Parasitism on Drosophila suzukii in Brazil. Dros. Inf. Serv. 2016, 99, 38–42. [Google Scholar]
- Modic, Š.; Žigon, P.; Razinger, J. Trichopria Drosophilae (Diapriidae) and Leptopilina Heterotoma (Figitidae), Native Parasitoids of Drosophila suzukii, Confirmed in Slovenia. Acta Agric. Slov. 2019, 113, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Tait, G.; Mermer, S.; Stockton, D.; Lee, J.; Avosani, S.; Abrieux, A.; Anfora, G.; Beers, E.; Biondi, A.; Burrack, H.; et al. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research towards a Sustainable Integrated Pest Management Program. J. Econ. Entomol. 2021, 114, 1950–1974. [Google Scholar] [CrossRef] [PubMed]
- Clymans, R.; van Kerckvoorde, V.; Bangels, E.; Akkermans, W.; Alhmedi, A.; de Clercq, P.; Beliën, T.; Bylemans, D. Olfactory Preference of Drosophila suzukii Shifts between Fruit and Fermentation Cues over the Season: Effects of Physiological Status. Insects 2019, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Panel, A.D.C.; Zeeman, L.; van der Sluis, B.J.; van Elk, P.; Pannebakker, B.A.; Wertheim, B.; Helsen, H.H.M. Overwintered Drosophila suzukii Are the Main Source for Infestations of the First Fruit Crops of the Season. Insects 2018, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Champagne-Cauchon, W.; Guay, J.F.; Fournier, V.; Cloutier, C. Phenology and Spatial Distribution of Spotted-Wing Drosophila (Diptera: Drosophilidae) in Lowbush Blueberry (Ericaceae) in Saguenay-Lac-Saint-Jean, Québec, Canada. Can. Entomol. 2020, 152, 432–449. [Google Scholar] [CrossRef]
- Zerulla, F.N.; Schmidt, S.; Streitberger, M.; Zebitz, C.P.W.; Zelger, R. On the Overwintering Ability of Drosophila suzukii in South Tyrol. J. Berry Res. 2015, 5, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Thistlewood, H.M.A.; Gill, P.; Beers, E.H.; Shearer, P.W.; Walsh, D.B.; Rozema, B.M.; Acheampong, S.; Castagnoli, S.; Yee, W.L.; Smytheman, P.; et al. Spatial Analysis of Seasonal Dynamics and Overwintering of Drosophila suzukii (Diptera: Drosophilidae) in the Okanagan-Columbia Basin, 2010–2014. Environ. Entomol. 2018, 47, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Sario, S.; Mendes, R.J.; Gonçalves, F.; Torres, L.; Santos, C. Drosophila suzukii Energetic Pathways Are Differently Modulated by Nutritional Geometry in Males and Females. Sci. Rep. 2022, 12, 21194. [Google Scholar] [CrossRef]
- Olazcuaga, L.; Baltenweck, R.; Leménager, N.; Maia-Grondard, A.; Claudel, P.; Hugueney, P.; Foucaud, J. Metabolic Consequences of Various Fruit-Based Diets in a Generalist Insect Species. Elife 2023, 12, e84370. [Google Scholar] [CrossRef]
- Olazcuaga, L.; Rode, N.O.; Foucaud, J.; Facon, B.; Ravigné, V.; Ausset, A.; Leménager, N.; Loiseau, A.; Gautier, M.; Estoup, A.; et al. Oviposition Preference and Larval Performance of Drosophila suzukii (Diptera: Drosophilidae), Spotted-Wing Drosophila: Effects of Fruit Identity and Composition. Environ. Entomol. 2019, 48, 867–881. [Google Scholar] [CrossRef] [PubMed]
- Arnó, J.; Solà, M.; Riudavets, J.; Gabarra, R. Population Dynamics, Non-Crop Hosts, and Fruit Susceptibility of Drosophila suzukii in Northeast Spain. J. Pest. Sci. (2004) 2016, 89, 713–723. [Google Scholar] [CrossRef]
- Buck, N.; Fountain, M.T.; Potts, S.G.; Bishop, J.; Garratt, M.P.D. The Effects of Non-Crop Habitat on Spotted Wing Drosophila (Drosophila suzukii) Abundance in Fruit Systems: A Meta-Analysis. Agric. Entomol. 2022, 25, 66–76. [Google Scholar] [CrossRef]
- Elsensohn, J.; Loeb, G. Non-Crop Host Sampling Yields Insights into Small-Scale Population Dynamics of Drosophila suzukii (Matsumura). Insects 2018, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Dreves, A.J.; Cave, A.M.; Kawai, S.; Isaacs, R.; Miller, J.C.; Van Timmeren, S.; Bruck, D.J. Infestation of Wild and Ornamental Noncrop Fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 2015, 108, 117–129. [Google Scholar] [CrossRef]
- Kienzle, R.; Rohlfs, M. Mind the Wound!—Fruit Injury Ranks Higher than, and Interacts with, Heterospecific Cues for Drosophila suzukii Oviposition. Insects 2021, 12, 424. [Google Scholar] [CrossRef] [PubMed]
- Tochen, S.; Woltz, J.M.; Dalton, D.T.; Lee, J.C.; Wiman, N.G.; Walton, V.M. Humidity Affects Populations of Drosophila suzukii (Diptera: Drosophilidae) in Blueberry. J. Appl. Entomol. 2016, 140, 47–57. [Google Scholar] [CrossRef]
- Winkler, A.; Jung, J.; Kleinhenz, B.; Racca, P. A Review on Temperature and Humidity Effects on Drosophila suzukii Population Dynamics. Agric. Entomol. 2020, 22, 179–192. [Google Scholar] [CrossRef]
- Guédot, C.; Avanesyan, A.; Hietala-Henschell, K. Effect of Temperature and Humidity on the Seasonal Phenology of Drosophila suzukii (Diptera: Drosophilidae) in Wisconsin. Environ. Entomol. 2018, 47, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Stockton, D.G.; Wallingford, A.K.; Loeb, G.M. Phenotypic Plasticity Promotes Overwintering Survival in A Globally Invasive Crop Pest, Drosophila suzukii. Insects 2018, 9, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brakefield, P.M.; Frankino, W.A. Polyphenisms in Lepidoptera: Multidisciplinary Approaches to Studies of Evolution and Development. In Phenotypic Plasticity of Insects: Mechanisms and Consequences; CRC Press: Boca Raton, FL, USA, 2009; pp. 337–368. [Google Scholar]
- Zimova, M.; Hackländer, K.; Good, J.M.; Melo-Ferreira, J.; Alves, P.C.; Mills, L.S. Function and Underlying Mechanisms of Seasonal Colour Moulting in Mammals and Birds: What Keeps Them Changing in a Warming World? Biol. Rev. 2018, 93, 1478–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, L.S.; Zimova, M.; Oyler, J.; Running, S.; Abatzoglou, J.T.; Lukacs, P.M. Camouflage Mismatch in Seasonal Coat Color Due to Decreased Snow Duration. Proc. Natl. Acad. Sci. USA 2013, 110, 7360–7365. [Google Scholar] [CrossRef] [Green Version]
- Leach, H.; Stone, J.; van Timmeren, S.; Isaacs, R. Stage-Specific and Seasonal Induction of the Overwintering Morph of Spotted Wing Drosophila (Diptera: Drosophilidae). J. Insect Sci. 2019, 19, 5. [Google Scholar] [CrossRef]
- Tran, A.K.; Hutchison, W.D.; Asplen, M.K. Morphometric Criteria to Differentiate Drosophila suzukii (Diptera: Drosophilidae) Seasonal Morphs. PLoS ONE 2020, 15, e0228780. [Google Scholar] [CrossRef]
- Stockton, D.G.; Wallingford, A.K.; Brind’amore, G.; Diepenbrock, L.; Burrack, H.; Leach, H.; Isaacs, R.; Iglesias, L.E.; Liburd, O.; Drummond, F.; et al. Seasonal Polyphenism of Spotted-Wing Drosophila Is Affected by Variation in Local Abiotic Conditions within Its Invaded Range, Likely Influencing Survival and Regional Population Dynamics. Ecol. Evol. 2020, 10, 7669–7685. [Google Scholar] [CrossRef]
- Chakraborty, A.; Walter, G.M.; Monro, K.; Alves, A.N.; Mirth, C.K.; Sgrò, C.M. Within-Population Variation in Body Size Plasticity in Response to Combined Nutritional and Thermal Stress Is Partially Independent from Variation in Development Time. J. Evol. Biol. 2022, 36, 264–279. [Google Scholar] [CrossRef]
- Shearer, P.W.; West, J.D.; Walton, V.M.; Brown, P.H.; Svetec, N.; Chiu, J.C. Seasonal Cues Induce Phenotypic Plasticity of Drosophila suzukii to Enhance Winter Survival. BMC Ecol. 2016, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Clusella Trullas, S.; van Wyk, J.H.; Spotila, J.R. Thermal Melanism in Ectotherms. J. Biol. 2007, 32, 235–245. [Google Scholar] [CrossRef]
- Wallingford, A.K.; Lee, J.C.; Loeb, G.M. The Influence of Temperature and Photoperiod on the Reproductive Diapause and Cold Tolerance of Spotted-Wing Drosophila, Drosophila suzukii. Entomol. Exp. Appl. 2016, 159, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Dalton, D.T.; Walton, V.M.; Shearer, P.W.; Walsh, D.B.; Caprile, J.; Isaacs, R. Laboratory Survival of Drosophila suzukii under Simulated Winter Conditions of the Pacific Northwest and Seasonal Field Trapping in Five Primary Regions of Small and Stone Fruit Production in the United States. Pest. Manag. Sci. 2011, 67, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, T.; Colinet, H. Basal Tolerance to Heat and Cold Exposure of the Spotted Wing Drosophila, Drosophila suzukii. PeerJ 2017, 5, e3112. [Google Scholar] [CrossRef] [Green Version]
- Ryan, G.D.; Emiljanowicz, L.; Wilkinson, F.; Kornya, M.; Newman, J.A. Thermal Tolerances of the Spotted-Wing Drosophila Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 2016, 109, 746–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, A.; Jung, J.; Kleinhenz, B.; Racca, P. Estimating Temperature Effects on Drosophila suzukii Life Cycle Parameters. Agric. Entomol. 2021, 23, 361–377. [Google Scholar] [CrossRef]
- Hamby, K.A.; Bellamy, D.E.; Chiu, J.C.; Lee, J.C.; Walton, V.M.; Wiman, N.G.; York, R.M.; Biondi, A. Biotic and Abiotic Factors Impacting Development, Behavior, Phenology, and Reproductive Biology of Drosophila suzukii. J. Pest. Sci. (2004) 2016, 89, 605–619. [Google Scholar] [CrossRef]
- Toxopeus, J.; Jakobs, R.; Ferguson, L.V.; Gariepy, T.D.; Sinclair, B.J. Reproductive Arrest and Stress Resistance in Winter-Acclimated Drosophila suzukii. J. Insect Physiol. 2016, 89, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, T.; Colinet, H. Cold Acclimation Triggers Major Transcriptional Changes in Drosophila suzukii. BMC Genom. 2019, 20, 413. [Google Scholar] [CrossRef]
- Seong, K.M.; Sun, W.; Huang, J.; Gut, L.; Kim, Y.H.; Pittendrigh, B.R. Comparative Response of Two Seasonal Spotted Wing Drosophila (Drosophila suzukii) Morphs to Different Classes of Insecticides. Entomol. Res. 2022, 52, 504–512. [Google Scholar] [CrossRef]
- Kirkpatrick, D.M.; Leach, H.L.; Xu, P.; Dong, K.; Isaacs, R.; Gut, L.J. Comparative Antennal and Behavioral Responses of Summer and Winter Morph Drosophila suzukii (Diptera: Drosophilidae) to Ecologically Relevant Volatiles. Env. Entomol. 2018, 47, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Schwanitz, T.W.; Polashock, J.J.; Stockton, D.G.; Rodriguez-Saona, C.; Sotomayor, D.; Loeb, G.; Hawkings, C. Molecular and Behavioral Studies Reveal Differences in Olfaction between Winter and Summer Morphs of Drosophila suzukii. PeerJ 2022, 10, e13825. [Google Scholar] [CrossRef] [PubMed]
- Stockton, D.G.; Brown, R.; Loeb, G.M. Not Berry Hungry? Discovering the Hidden Food Sources of a Small Fruit Specialist, Drosophila suzukii. Ecol. Entomol. 2019, 44, 810–822. [Google Scholar] [CrossRef]
- Zhai, Y.; Lin, Q.; Zhang, J.; Zhang, F.; Zheng, L.; Yu, Y. Adult Reproductive Diapause in Drosophila suzukii Females. J. Pest. Sci. (2004) 2016, 89, 679–688. [Google Scholar] [CrossRef]
- Grassi, A.; Gottardello, A.; Dalton, D.T.; Tait, G.; Rendon, D.; Ioriatti, C.; Gibeaut, D.; Rossi Stacconi, M.V.; Walton, V.M. Seasonal Reproductive Biology of Drosophila suzukii (Diptera: Drosophilidae) in Temperate Climates. Environ. Entomol. 2018, 47, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Mattila, J.; Hietakangas, V. Regulation of Carbohydrate Energy Metabolism in Drosophila Melanogaster. Genetics 2017, 207, 1231–1253. [Google Scholar] [CrossRef]
- Gillette, C.M.; Tennessen, J.M.; Reis, T. Balancing Energy Expenditure and Storage with Growth and Biosynthesis during Drosophila Development. Dev. Biol. 2021, 475, 234–244. [Google Scholar] [CrossRef]
- Enriquez, T.; Renault, D.; Charrier, M.; Colinet, H. Cold Acclimation Favors Metabolic Stability in Drosophila suzukii. Front. Physiol. 2018, 9, 1506. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, C.; Guay, J.-F.; Champagne-Cauchon, W. Postdiapause Reproduction of Spotted-Wing Drosophila (Diptera: Drosophilidae) in Realistically Simulated Cold Climatic Springtime Conditions of Québec, Canada. Can. Entomol. 2022, 154, e22. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect Decline in the Anthropocene: Death by a Thousand Cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Tarapacki, P.; Jørgensen, L.B.; Sørensen, J.G.; Andersen, M.K.; Colinet, H.; Overgaard, J. Acclimation, Duration and Intensity of Cold Exposure Determine the Rate of Cold Stress Accumulation and Mortality in Drosophila suzukii. J. Insect Physiol. 2021, 135, 104323. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, T.; Ruel, D.; Charrier, M.; Colinet, H. Effects of Fluctuating Thermal Regimes on Cold Survival and Life History Traits of the Spotted Wing Drosophila (Drosophila suzukii). Insect Sci. 2018, 33, 1744–7917.12649. [Google Scholar] [CrossRef] [PubMed]
- Grumiaux, C.; Andersen, M.K.; Colinet, H.; Overgaard, J. Fluctuating Thermal Regime Preserves Physiological Homeostasis and Reproductive Capacity in Drosophila suzukii. J. Insect Physiol. 2019, 113, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Ometto, L.; Cestaro, A.; Ramasamy, S.; Grassi, A.; Revadi, S.; Siozios, S.; Moretto, M.; Fontana, P.; Varotto, C.; Pisani, D.; et al. Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest. Genome Biol. Evol. 2013, 5, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Reyes, J.A.; Lira-Noriega, A. Current and Future Global Potential Distribution of the Fruit Fly Drosophila suzukii (Diptera: Drosophilidae). Can. Entomol. 2020, 152, 587–599. [Google Scholar] [CrossRef]
- Dos Santos, L.A.; Mendes, M.F.; Krüger, A.P.; Blauth, M.L.; Gottschalk, M.S.; Garcia, F.R.M. Global Potential Distribution of Drosophila suzukii (Diptera, Drosophilidae). PLoS ONE 2017, 12, e0174318. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sario, S.; Melo-Ferreira, J.; Santos, C. Winter Is (Not) Coming: Is Climate Change Helping Drosophila suzukii Overwintering? Biology 2023, 12, 907. https://doi.org/10.3390/biology12070907
Sario S, Melo-Ferreira J, Santos C. Winter Is (Not) Coming: Is Climate Change Helping Drosophila suzukii Overwintering? Biology. 2023; 12(7):907. https://doi.org/10.3390/biology12070907
Chicago/Turabian StyleSario, Sara, José Melo-Ferreira, and Conceição Santos. 2023. "Winter Is (Not) Coming: Is Climate Change Helping Drosophila suzukii Overwintering?" Biology 12, no. 7: 907. https://doi.org/10.3390/biology12070907
APA StyleSario, S., Melo-Ferreira, J., & Santos, C. (2023). Winter Is (Not) Coming: Is Climate Change Helping Drosophila suzukii Overwintering? Biology, 12(7), 907. https://doi.org/10.3390/biology12070907