Unsaturated Long-Chain Fatty Acids Activate Resident Macrophages and Stem Cells in a Human Skeletal Muscle Tissue Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Specimens
2.2. Multiplex Protein Quantification
2.3. Maintenance of, and FA Stimulation in, Human Skeletal Muscle Tissue
2.4. Hematoxylin and Eosin (HE) Staining
2.5. Immunofluorescence and DAPI Staining
2.6. Microscopy and Imaging
2.7. Statistical Analyses
3. Results
3.1. The Numbers of Macrophages and Stem Cells Correlated with the Expression of Inflammatory Proteins in Human Skeletal Muscle Tissue
3.2. The Phenotypes of Tissue-Resident Macrophages and Stem Cells Are Linked to Cytokine/Chemokine Expression in Human Skeletal Muscle Tissue
3.3. FAs Increase the Numbers of Macrophages and Stem Cells in Human Skeletal Muscle Tissue
3.4. Saturated and Unsaturated FAs Induce a Coordinated Increase in Different Macrophages and MyoD+ Stem Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.-J.; Lin, I.-H.; Lee, C.-W.; Chen, Y.-F. Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury. Int. J. Mol. Sci. 2021, 22, 2123. [Google Scholar] [CrossRef]
- Hunter, G.R.; Singh, H.; Carter, S.J.; Bryan, D.R.; Fisher, G. Sarcopenia and Its Implications for Metabolic Health. J. Obes. 2019, 2019, 8031705. [Google Scholar] [CrossRef]
- Relaix, F.; Zammit, P.S. Satellite cells are essential for skeletal muscle regeneration: The cell on the edge returns centre stage. Development 2012, 139, 2845–2856. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-F.; Lee, C.-W.; Wu, H.-H.; Lin, W.-T.; Lee, O.K. Immunometabolism of macrophages regulates skeletal muscle regeneration. Front. Cell Dev. Biol. 2022, 10, 948819. [Google Scholar] [CrossRef]
- Hashimoto, D.; Chow, A.; Noizat, C.; Teo, P.; Beasley, M.B.; Leboeuf, M.; Becker, C.D.; See, P.; Price, J.; Lucas, D.; et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38, 792–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef]
- Nobs, S.P.; Kopf, M. Tissue-resident macrophages: Guardians of organ homeostasis. Trends Immunol. 2021, 42, 495–507. [Google Scholar] [CrossRef]
- Panci, G.; Chazaud, B. Inflammation during post-injury skeletal muscle regeneration. Semin. Cell Dev. Biol. 2021, 119, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.-L.; Rybalko, V.; Baker, A.B.; Suggs, L.J.; Farrar, R.P. Recruitment and therapeutic application of macrophages in skeletal muscles after hind limb ischemia. J. Vasc. Surg. 2018, 67, 1908–1920.e1. [Google Scholar] [CrossRef] [PubMed]
- Krasniewski, L.K.; Chakraborty, P.; Cui, C.Y.; Mazan-Mamczarz, K.; Dunn, C.; Piao, Y.; Fan, J.; Shi, C.; Wallace, T.; Nguyen, C. Single-cell analysis of skeletal muscle macrophages reveals age-associated functional subpopulations. Elife 2022, 11, e77974. [Google Scholar] [CrossRef] [PubMed]
- Al Saedi, A.; Bermeo, S.; Plotkin, L.; Myers, D.E.; Duque, G. Mechanisms of palmitate-induced lipotoxicity in osteocytes. Bone 2019, 127, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Rauen, M.; Hao, D.; Müller, A.; Mückter, E.; Bollheimer, L.C.; Nourbakhsh, M. Free Fatty Acid Species Differentially Modulate the Inflammatory Gene Response in Primary Human Skeletal Myoblasts. Biology 2021, 10, 1318. [Google Scholar] [CrossRef] [PubMed]
- Suganami, T.; Nishida, J.; Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor α. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2062–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, M.; Karlsen, A.; Mehling, J.; Soendenbroe, C.; Mackey, A.L.; Hyldahl, R.D. Aging is associated with an altered macrophage response during human skeletal muscle regeneration. Exp. Gerontol. 2022, 169, 111974. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.-Y.; Ferrucci, L.; Gorospe, M. Macrophage Involvement in Aging-Associated Skeletal Muscle Regeneration. Cells 2023, 12, 1214. [Google Scholar] [CrossRef]
- Hao, D.; Becker, N.; Mückter, E.; Müller, A.; Pishnamaz, M.; Bollheimer, L.C.; Hildebrand, F.; Nourbakhsh, M. In Vitro Model of Human Skeletal Muscle Tissue for the Study of Resident Macrophages and Stem Cells. Biology 2022, 11, 936. [Google Scholar] [CrossRef]
- Hong, X.; Campanario, S.; Ramírez-Pardo, I.; Grima-Terrén, M.; Isern, J.; Muñoz-Cánoves, P. Stem cell aging in the skeletal muscle: The importance of communication. Ageing Res. Rev. 2021, 73, 101528. [Google Scholar] [CrossRef]
- Laurentius, T.; Raffetseder, U.; Fellner, C.; Kob, R.; Nourbakhsh, M.; Floege, J.; Bertsch, T.; Bollheimer, L.C.; Ostendorf, T. High-fat diet-induced obesity causes an inflammatory microenvironment in the kidneys of aging Long-Evans rats. J. Inflamm. 2019, 16, 14. [Google Scholar] [CrossRef] [Green Version]
- Moraes, L.A.; Ampomah, P.B.; Lim, L.H.K. Annexin A1 in inflammation and breast cancer: A new axis in the tumor microenvironment. Cell Adhes. Migr. 2018, 12, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Lesault, P.-F.; Theret, M.; Magnan, M.; Cuvellier, S.; Niu, Y.; Gherardi, R.K.; Tremblay, J.P.; Hittinger, L.; Chazaud, B. Macrophages Improve Survival, Proliferation and Migration of Engrafted Myogenic Precursor Cells into MDX Skeletal Muscle. PLoS ONE 2012, 7, e46698. [Google Scholar] [CrossRef]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscle Ligaments Tendons J. 2019, 03, 346–350. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef] [PubMed]
- Pillon, N.J.; Bilan, P.J.; Fink, L.N.; Klip, A. Cross-talk between skeletal muscle and immune cells: Muscle-derived mediators and metabolic implications. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E453–E465. [Google Scholar] [CrossRef]
- Thornell, L.-E. Sarcopenic obesity: Satellite cells in the aging muscle. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 22–27. [Google Scholar] [CrossRef]
- Zhou, S.; Han, L.; Wu, Z. A Long Journey before Cycling: Regulation of Quiescence Exit in Adult Muscle Satellite Cells. Int. J. Mol. Sci. 2022, 23, 1748. [Google Scholar] [CrossRef]
- Herberg, S.; Shi, X.; Johnson, M.H.; Hamrick, M.W.; Isales, C.M.; Hill, W.D. Stromal cell-derived factor-1β mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS ONE 2013, 8, e58207. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, W.; Bragg, R.; Elmansi, A.M.; McGee-Lawrence, M.E.; Isales, C.M.; Hamrick, M.W.; Hill, W.D.; Fulzele, S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019, 123, 154783. [Google Scholar] [CrossRef]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef]
- Dick, S.A.; Wong, A.; Hamidzada, H.; Nejat, S.; Nechanitzky, R.; Vohra, S.; Mueller, B.; Zaman, R.; Kantores, C.; Aronoff, L.; et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 2022, 7, eabf7777. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Schmidt, S.V.; Sander, J.; Draffehn, A.; Krebs, W.; Quester, I.; de Nardo, D.; Gohel, T.; Emde, M.; Schmidleithner, L. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014, 40, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Nambo-Venegas, R.; Palacios-González, B.; Mas-Oliva, J.; Aurioles-Amozurrutia, A.K.; Cruz-Rangel, A.; Moreno, A.; Hidalgo-Miranda, A.; Rodríguez-Dorantes, M.; Vadillo-Ortega, F.; Xicohtencatl-Cortes, J.; et al. Conversion of M1 Macrophages to Foam Cells: Transcriptome Differences Determined by Sex. Biomedicines 2023, 11, 490. [Google Scholar] [CrossRef] [PubMed]
Participant | Sex | Age (Years) | BMI (kg/m2) | T2D | Sample Source | M1 Macrophage Markers | M2 Macrophage Markers | Stem Cells | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CD80+ (n) | MARCO+ (n) | CD11c+ (n) | CD163+ (n) | CD206+ (n) | PTGER3+ (n) | PAX7+ (n) | MyoD+ (n) | ||||||
P1 | F | 79 | 22.8 | No | 1 | 26.0 | 24.5 | 19.0 | 27.0 | 26.7 | 18.5 | 22.5 | 18.0 |
P2 | F | 67 | 46.9 | No | 3 | 19.0 | 19.0 | 32.0 | 9.5 | 22.5 | 34.0 | 23.5 | 14.0 |
P3 | M | 71 | 35.1 | Yes | 1 | 36.5 | 25.5 | 47.0 | 40.5 | 60.5 | 24.0 | 17.0 | 15.0 |
P4 | F | 69 | 24.8 | No | 1 | 46.5 | 12.0 | 19.3 | 18.3 | 35.0 | 20.7 | 10.5 | 5.0 |
P5 | F | 55 | 16.7 | No | 2 | 7.5 | 11.0 | 17.5 | 12.0 | 13.5 | 12.0 | 7.5 | 8.5 |
P6 | F | 64 | 33.8 | No | 2 | 24.0 | 21.5 | 8.5 | 7.0 | 31.5 | 21.5 | 6.0 | 15.0 |
P7 | M | 15 | 17.3 | No | 2 | 11.5 | 23.5 | 76.5 | 7.0 | 30.0 | 1.5 | 1.0 | 3.5 |
P8 | M | 75 | 30.5 | No | 4 | 7.7 | 32.3 | 17.0 | 14.5 | 17.0 | 19.5 | 21.5 | 16.0 |
P9 | F | 60 | 22.1 | No | 2 | 15.3 | 20.3 | 20.5 | 8.0 | 19.7 | 20.0 | 9.0 | 5.0 |
P10 | F | 57 | 22.3 | No | 4 | 11.0 | 20.0 | 12.0 | 11.0 | 14.3 | 10.0 | 10.0 | 13.5 |
P11 | M | 54 | 40.1 | No | 4 | 7.5 | 30.0 | 62.0 | 13.0 | 64.0 | 26.5 | 5.0 | 11.5 |
P12 | F | 55 | 22.6 | No | 2 | 3.5 | 16.0 | 36.5 | 1.5 | 37.5 | 9.0 | 2.0 | 2.5 |
P13 | F | 69 | 22.3 | No | 2 | 32.5 | 32.5 | 67.5 | 10.0 | 17.5 | 16.0 | 23.5 | 25.0 |
P14 | M | 66 | 26.8 | No | 3 | 9.5 | 18.0 | 21.5 | 6.5 | 23.0 | 24.5 | 4.5 | 6.5 |
P15 | F | 70 | 20.0 | No | 2 | 11.5 | 34.0 | 32.0 | 9.0 | 55.0 | 14.0 | 16.0 | 12.0 |
P16 | F | 82 | 30.5 | No | 1 | 32.5 | 49.0 | 138.5 | 54.0 | 142.0 | 46.0 | 87.0 | 90.5 |
P17 | M | 66 | 33.6 | No | 1 | 49.0 | 39.5 | 82.5 | 9.5 | 23.0 | 10.0 | 10.5 | 12.0 |
P18 | M | 67 | 28.6 | No | 2 | 26.5 | 36.0 | 33.7 | 22.5 | 15.0 | 29.5 | 24.0 | 34.5 |
P19 | F | 22 | 20.3 | No | 2 | 54.5 | 28.5 | 34.0 | 25.0 | 52.0 | 23.5 | 21.0 | 15.5 |
P20 | M | 65 | 24.2 | No | 2 | 39.5 | 45.0 | 25.5 | 27.5 | 25.0 | 12.0 | 22.0 | 21.5 |
Participants | IL-1α (pg/mL) | IL-1RA (pg/mL) | IL-4 (pg/mL) | IL-6 (pg/mL) | IL-8 (pg/mL) | IL-15 (pg/mL) | IL-17A (pg/mL) | IL-21 (pg/mL) | MCP-1 (pg/mL) | RANTES (pg/mL) | IL-22 (pg/mL) | CXCL12α (pg/mL) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P3 | 0.09 | 1419.09 | 83.4 | 178.71 | 12.15 | 15.69 | 0.03 | 10.83 | 68.61 | 117.3 | 0.03 | 883.71 |
P4 | 0.13 | 324.55 | 9.98 | 39.95 | 2.2 | 29.15 | 0.27 | 0.01 | 61.38 | 57.91 | 0.01 | 624.34 |
P5 | 1.45 | 3408.88 | 9.98 | 36.38 | 24.77 | 1.87 | 1.94 | 0.01 | 112.63 | 63.7 | 0.01 | 667.18 |
P7 | 0.3 | 2693.18 | 11.75 | 37.59 | 22.32 | 1.67 | 1.49 | 0.15 | 104.22 | 95.2 | 0.42 | 698.87 |
P8 | 3.72 | 9960.9 | 31.68 | 100.71 | 194.31 | 9.36 | 1.98 | 4.23 | 1047.99 | 307.95 | 2.01 | 1257.9 |
P9 | 0.3 | 2461.8 | 31.68 | 112.77 | 34.35 | 70.05 | 1.35 | 39.09 | 161.73 | 257.76 | 5.85 | 1584.45 |
P10 | 0.21 | 7195.47 | 29.91 | 112.83 | 115.35 | 101.01 | 2.52 | 6.09 | 362.55 | 209.07 | 3.15 | 1609.02 |
P11 | 7.89 | 9729.93 | 0 | 50.88 | 39.99 | 38.04 | 7.32 | 0.03 | 238.44 | 132.21 | 0.03 | 826.77 |
P13 | 0.96 | 14,250.84 | 29.94 | 90.84 | 394.74 | 126.96 | 2.22 | 0.03 | 1056.24 | 209.31 | 0.54 | 1941.87 |
P14 | 0.82 | 2522.2 | 9.39 | 29.43 | 69.27 | 11.02 | 0.64 | 0.19 | 181.34 | 82.26 | 1.85 | 326.47 |
P15 | 1.05 | 7109.25 | 28.17 | 77.1 | 73.92 | 29.55 | 1.92 | 0.03 | 784.26 | 248.7 | 0.03 | 2066.04 |
P16 | 0.06 | 1718.93 | 10.57 | 25.28 | 25.97 | 5.45 | 0.84 | 0.01 | 67.65 | 91.89 | 0.01 | 624.59 |
P17 | 0.07 | 136.88 | 9.68 | 20.26 | 1.88 | 3.32 | 0.27 | 0.01 | 16.11 | 91.31 | 0.01 | 682.36 |
P18 | 0.27 | 3412.05 | 26.43 | 53.19 | 58.47 | 46.35 | 32.7 | 0.03 | 335.46 | 253.5 | 0.03 | 2437.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Hao, D.; Becker, N.; Müller, A.; Pishnamaz, M.; Bollheimer, L.C.; Hildebrand, F.; Nourbakhsh, M. Unsaturated Long-Chain Fatty Acids Activate Resident Macrophages and Stem Cells in a Human Skeletal Muscle Tissue Model. Biology 2023, 12, 1111. https://doi.org/10.3390/biology12081111
Chen X, Hao D, Becker N, Müller A, Pishnamaz M, Bollheimer LC, Hildebrand F, Nourbakhsh M. Unsaturated Long-Chain Fatty Acids Activate Resident Macrophages and Stem Cells in a Human Skeletal Muscle Tissue Model. Biology. 2023; 12(8):1111. https://doi.org/10.3390/biology12081111
Chicago/Turabian StyleChen, Xiaoying, Dandan Hao, Nils Becker, Aline Müller, Miguel Pishnamaz, Leo Cornelius Bollheimer, Frank Hildebrand, and Mahtab Nourbakhsh. 2023. "Unsaturated Long-Chain Fatty Acids Activate Resident Macrophages and Stem Cells in a Human Skeletal Muscle Tissue Model" Biology 12, no. 8: 1111. https://doi.org/10.3390/biology12081111
APA StyleChen, X., Hao, D., Becker, N., Müller, A., Pishnamaz, M., Bollheimer, L. C., Hildebrand, F., & Nourbakhsh, M. (2023). Unsaturated Long-Chain Fatty Acids Activate Resident Macrophages and Stem Cells in a Human Skeletal Muscle Tissue Model. Biology, 12(8), 1111. https://doi.org/10.3390/biology12081111