Tree Physiological Variables as a Proxy of Heavy Metal and Platinum Group Elements Pollution in Urban Areas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Processing
2.2. Physiological Measurements
2.3. Chemical Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Air Quality in Europe—2017 Report—European Environmental Agency. Available online: https://www.eea.europa.eu/themes/publications/air-quality-in-europe-2017 (accessed on 29 May 2023).
- WHO. 2014. Burden of Disease from Ambient Air Pollution for 2012. Summary of Results, World Health Organization. Available online: http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf (accessed on 12 June 2023).
- EEA-Official Journal of the European Union. Regulation (UE) 2020/852 (2020). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32020R0852 (accessed on 14 June 2023).
- EEA. 2022. Available online: https://www.eea.europa.eu/ims/heavy-metal-emissions-in-europe (accessed on 14 June 2023).
- Yuan, Y.; Wu, Y.; Ge, X.; Nie, D.; Wang, M.; Zhou, H.; Chen, M. In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Sci. Total Environ. 2019, 678, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, A.; Faggion, B.; Ronchini, M.; Terzaghi, G.; Lanfranchi, M.; Chirico, N.; Cherchi, L. Platinum, palladium, and rhodium deposition to the Prunus laurus cerasus leaf surface as an indicator of the vehicular traffic pollution in the city of Varese area. Environ. Sci. Pollut. Res. 2009, 17, 665–673. [Google Scholar] [CrossRef]
- Bonanno, G.; Pavone, P. Leaves of Phragmites australis as potential atmospheric biomonitors of Platinum Group Elements. Ecotoxicol. Environ. Saf. 2015, 114, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Markert, B.A.; Breure, A.M.; Zechmeister, H.G. Definitions, strategies and principles for bioindication/biomonitoring of the environment. In Trace Metals and other Contaminants in the Environment; Elsevier: Amsterdam, The Netherlands, 2003; Volume 6, pp. 3–39. [Google Scholar] [CrossRef]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as bioindicator of heavy metal pollution in three European cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef]
- Carreras, H.A.; Cañas, M.S.; Pignata, M.L. Differences in responses to urban air pollutants by Ligustrum lucidum Ait. and Ligustrum lucidum Ait. f. tricolor (Rehd.) Rehd. Environ. Pollut. 1996, 93, 211–218. [Google Scholar] [CrossRef]
- Canas, M.S.; Carreras, H.A.; Orellana, L.; Pignata, M.L. Correlation between Environmental Conditions and Foliar Chemical Parameters in Ligustrum lucidum Ait. Exposed to Urban Air Pollutants. J. Environ. Manag. 1997, 49, 167–181. [Google Scholar] [CrossRef]
- Oliva, S.R.; Valdés, B. Ligustrum lucidum Ait. f. leaves as a bioindicator of the air-quality in a Mediterranean city. Environ. Monit. Assess. 2004, 96, 221–232. [Google Scholar] [CrossRef]
- Wang, I.-T.I.; Cheng, S.-F.; Tsai, S.-W. Determinations of airborne synthetic musks by polyurethane foam coupled with triple quadrupole gas chromatography tandem mass spectrometer. J. Chromatogr. A 2014, 1330, 61–68. [Google Scholar] [CrossRef]
- Busso, I.T.; Tames, F.; Silva, J.A.; Ramos, S.; Homem, V.; Ratola, N.; Carreras, H. Biomonitoring levels and trends of PAHs and synthetic musks associated with land use in urban environments. Sci. Total Environ. 2018, 618, 93–100. [Google Scholar] [CrossRef]
- García-Sánchez, I.E.; Barradas, V.L.; de León Hill, C.A.P.; Esperón-Rodríguez, M.; Pérez, I.R.; Ballinas, M. Effect of heavy metals and environmental variables on the assimilation of CO2 and stomatal conductance of Ligustrum lucidum, an urban tree from Mexico City. Urban For. Urban Green. 2019, 42, 72–81. [Google Scholar] [CrossRef]
- Graziani, N.S.; Tames, M.F.; Mateos, A.C.; Silva, J.A.; Ramos, S.; Homem, V.; Ratola, N.; Carreras, H. Estimation of urban POP and emerging SVOC levels employing Ligustrum lucidum leaves. Atmos. Pollut. Res. 2019, 10, 1524–1530. [Google Scholar] [CrossRef]
- Fellet, G.; Pošćić, F.; Licen, S.; Marchiol, L.; Musetti, R.; Tolloi, A.; Barbieri, P.; Zerbi, G. PAHs accumulation on leaves of six evergreen urban shrubs: A field experiment. Atmos. Pollut. Res. 2016, 7, 915–924. [Google Scholar] [CrossRef]
- Zheng, J.; Qu, X.; Hou, R.; Tang, X.; Xu, Z.; Huang, Z.; Wang, Z.; Zhang, W.; Yang, C.; Li, T. A comparative study of air pollution tolerance capabilities of four tree species in Xi’an city, China. Int. J. Environ. Sci. Technol. 2023, 1–10. [Google Scholar] [CrossRef]
- Darrall, N.M. The effect of air pollutants on physiological processes in plants. Plant Cell Environ. 1989, 12, 1–30. [Google Scholar] [CrossRef]
- Pourkhabbaz, A.; Rastin, N.; Olbrich, A.; Langenfeld-Heyser, R.; Polle, A. Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L. Bull. Environ. Contam. Toxicol. 2010, 85, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Chakraborty, A.; Sudarshan, M. A Review on Air Pollution Monitoring and Management Using Plants with Special Reference to Foliar Dust Adsorption and Physiological Stress Responses. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2489–2522. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Martínez-Abaigar, J.; Núñez-Olivera, E. Ecophysiology of photosynthetic pigments in aquatic bryophytes. In Bryology for the Twenty-First Century; Bates, J.W., Ashton, N.W., Duckett, J.G., Eds.; British Bryological Society: London, UK, 1998; pp. 277–292. [Google Scholar]
- Sen, A.; Khan, I.; Kundu, D.; Das, K.; Datta, J.K. Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species. Environ. Monit. Assess. 2017, 189, 262. [Google Scholar] [CrossRef] [PubMed]
- Näsholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48. [Google Scholar] [CrossRef]
- Kraiser, T.; Gras, D.E.; Gutiérrez, A.G.; González, B.; Gutiérrez, R.A. A holistic view of nitrogen acquisition in plants. J. Exp. Bot. 2011, 62, 1455–1466. [Google Scholar] [CrossRef]
- Booker, F.L.; Burkey, K.O.; Jones, A.M. Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L. Plant Cell Environ. 2012, 35, 1456–1466. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, C.K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol. Plant. 2021, 172, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Stiller, A.; Garrison, K.; Gurdyumov, K.; Kenner, J.; Yasmin, F.; Yates, P.; Song, B.-H. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int. J. Mol. Sci. 2021, 22, 8995. [Google Scholar] [CrossRef]
- Soviguidi, D.R.J.; Pan, R.; Liu, Y.; Rao, L.; Zhang, W.; Yang, X. Chlorogenic Acid Metabolism: The Evolution and Roles in Plant Response to Abiotic Stress. Phyton 2022, 91, 239–255. [Google Scholar] [CrossRef]
- Del-Castillo-Alonso, M.A.; Diago, M.P.; Monforte, L.; Tardáguila, J.; Martínez-Abaigar, J.; Núñez-Olivera, E. Effects of UV exclusion on the physiology and phenolic composition of leaves and berries of Vitis vinifera cv. Graciano. J. Sci. Food Agric. 2015, 95, 409–416. [Google Scholar] [CrossRef]
- Giráldez, P.; Crujeiras, R.M.; Fernández, J.; Aboal, J.R. Establishment of background pollution levels and spatial analysis of moss data on a regional scale. Sci. Total Environ. 2022, 839, 156182. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008; ISBN 3-900051-07-0. Available online: https://www.r-project.org/ (accessed on 20 July 2023).
- Johnstone, D.; Moore, G.; Tausz, M.; Nicolas, M. The measurement of plant vitality in landscape trees. Arboric. J. 2013, 35, 18–27. [Google Scholar] [CrossRef]
- Boquete, M.T.; Fernández, J.A.; Aboal, J.R.; Carballeira, A.; Martínez-Abaigar, J.; Tomás-Las-Heras, R.; Núñez-Olivera, E. Trace element concentrations in the moss Hypnum cupressiforme growing in a presumably unpolluted area. Chemosphere 2016, 158, 177–183. [Google Scholar] [CrossRef]
- Pacín, C.; Martínez-Abaigar, J.; Núñez-Olivera, E.; Aboal, J.R.; De Nicola, F.; Fernández, J. Polycyclic aromatic hydrocarbons (PAHs) levels in PM10 and bulk deposition using Mosspheres: A pilot study in an urban environment. Environ. Res. 2023, 223, 115406. [Google Scholar] [CrossRef] [PubMed]
- Otero, S.; Núñez-Olivera, E.; Martínez-Abaigar, J.; Tomás, R.; Arróniz-Crespo, M.; Beaucourt, N. Effects of cadmium and enhanced UV radiation on the physiology and the concentration of UV-absorbing compounds of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia. Photochem. Photobiol. Sci. 2006, 5, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.-P.; Xue, P.-Y.; Dong, J.-W.; Zhang, X.-M.; Sun, H.-X.; Geng, L.-P.; Luo, S.-X.; Zhao, J.-J.; Liu, W.-J. Contribution of PM2.5-Pb in atmospheric fallout to Pb accumulation in Chinese cabbage leaves via stomata. J. Hazard. Mater. 2021, 407, 124356. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Du, D.; Gan, Y.; Ji, S.; Wang, L.; Chang, M.; Liu, J. Foliar dust as a reliable environmental monitor of heavy metal pollution in comparison to plant leaves and soil in urban areas. Chemosphere 2022, 287, 132341. [Google Scholar] [CrossRef] [PubMed]
Variable | Min | Max | Median | MAD |
---|---|---|---|---|
As | 35.01 | 181.72 | 92.44 | 49.55 |
Cd | 3.26 | 123.88 | 23.66 | 9.93 |
Cu | 3.09 | 19.81 | 8.74 | 2.60 |
Hg | 5.36 | 34.74 | 15.66 | 3.82 |
Mn | 34.68 | 175.84 | 71.16 | 24.99 |
Ni | 88.11 | 1104.77 | 356.18 | 124.63 |
Pb | 87.70 | 435.65 | 224.43 | 59.93 |
Pd | 35.74 | 662.18 | 119.05 | 32.13 |
Rh | 1.09 | 14.24 | 2.86 | 0.67 |
Sb | 18.47 | 217.03 | 74.70 | 28.02 |
V | 71.11 | 226.87 | 154.36 | 26.79 |
Zn | 21.01 | 153.93 | 52.77 | 15.15 |
Chlorophyll | 24.49 | 45.86 | 36.45 | 3.29 |
Flavonoids | 0.62 | 1.92 | 1.21 | 0.25 |
Fv/Fm | 0.69 | 0.83 | 0.81 | 0.01 |
N (%) | 0.76 | 2.78 | 1.81 | 0.44 |
δ15N | −1.47 | 12.21 | 7.06 | 2.09 |
Element | F1 | F2 | F3 | Uniqueness |
---|---|---|---|---|
As | 0.427 | −0.057 | −0.093 | 0.742 |
Cd | 0.349 | −0.159 | −0.191 | 0.785 |
Cu | 0.238 | −0.395 | −0.560 | 0.353 |
Hg | 0.467 | 0.105 | 0.695 | 0.274 |
Mn | 0.356 | −0.251 | −0.096 | 0.630 |
Ni | 0.506 | −0.327 | −0.672 | 0.000 |
Pb | 0.905 | 0.055 | 0.129 | 0.130 |
Pd | −0.195 | −0.909 | 0.294 | 0.048 |
Rh | −0.185 | −0.928 | 0.320 | 0.000 |
Sb | 0.673 | 0.086 | 0.166 | 0.509 |
V | 0.673 | −0.051 | 0.258 | 0.478 |
Zn | 0.130 | −0.329 | 0.055 | 0.716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, Z.; Martínez-Abaigar, J.; Tomás-Las-Heras, R.; Fernández, J.Á.; Del-Castillo-Alonso, M.-Á.; Núñez-Olivera, E. Tree Physiological Variables as a Proxy of Heavy Metal and Platinum Group Elements Pollution in Urban Areas. Biology 2023, 12, 1180. https://doi.org/10.3390/biology12091180
Varela Z, Martínez-Abaigar J, Tomás-Las-Heras R, Fernández JÁ, Del-Castillo-Alonso M-Á, Núñez-Olivera E. Tree Physiological Variables as a Proxy of Heavy Metal and Platinum Group Elements Pollution in Urban Areas. Biology. 2023; 12(9):1180. https://doi.org/10.3390/biology12091180
Chicago/Turabian StyleVarela, Zulema, Javier Martínez-Abaigar, Rafael Tomás-Las-Heras, José Ángel Fernández, María-Ángeles Del-Castillo-Alonso, and Encarnación Núñez-Olivera. 2023. "Tree Physiological Variables as a Proxy of Heavy Metal and Platinum Group Elements Pollution in Urban Areas" Biology 12, no. 9: 1180. https://doi.org/10.3390/biology12091180
APA StyleVarela, Z., Martínez-Abaigar, J., Tomás-Las-Heras, R., Fernández, J. Á., Del-Castillo-Alonso, M. -Á., & Núñez-Olivera, E. (2023). Tree Physiological Variables as a Proxy of Heavy Metal and Platinum Group Elements Pollution in Urban Areas. Biology, 12(9), 1180. https://doi.org/10.3390/biology12091180