FOXO in Lymnaea: Its Probable Involvement in Memory Consolidation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Rearing and Food Deprivation
2.2. Identification of LymFOXO
2.3. Real-Time PCR
2.4. Immunohistochemistry
2.5. Conditioned Taste Aversion Paradigm
2.6. Drug Administration
2.7. Statistics
3. Results
3.1. Deduced Amino Acid Sequence of LymFOXO
3.2. Confirmation of the Presence of LymFOXO mRNA in the Lymnaea CNS
3.3. Confirmation of the Presence of LymFOXO Protein in the Lymnaea CNS
3.4. Behavioral Changes Due to CTA
3.5. Change in the Localization of LymFOXO Protein in Lymnaea CNS after Food Deprivation, CTA Training, and Insulin Application
3.6. Change in the LymFOXO mRNA Expression Level in Lymnaea CNS after Food Deprivation and Insulin Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, W.Q.; Alkon, D.L. Role of insulin and insulin receptor in learning and memory. Mol. Cell. Endocrinol. 2001, 177, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Tomioka, M.; Pereira, S.; Sellings, L.; Iino, Y.; van der Kooy, D. Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory retrieval. J. Neurosci. 2010, 30, 8001–8011. [Google Scholar] [CrossRef] [PubMed]
- Chambers, D.B.; Androschuk, A.; Rosenfelt, C.; Langer, S.; Harding, M.; Bolduc, F.V. Insulin signaling is acutely required for long-term memory in Drosophila. Front. Neural Circuits 2015, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Nakai, J.; Chikamoto, N.; Fujimoto, K.; Totani, Y.; Hatakeyama, D.; Dyakonova, V.E.; Ito, E. Insulin and memory in invertebrates. Front. Behav. Neurosci. 2022, 16, 882932. [Google Scholar] [CrossRef] [PubMed]
- Dakic, T.; Jevdjovic, T.; Lakic, I.; Ruzicic, A.; Jasnic, N.; Djurasevic, S.; Djordjevic, J.; Vujovic, P. The expression of insulin in the central nervous system: What have we learned so far? Int. J. Mol. Sci. 2023, 24, 6586. [Google Scholar] [CrossRef]
- Paradis, S.; Ailion, M.; Toker, A.; Thomas, J.H.; Ruvkun, G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 1999, 13, 1438–1452. [Google Scholar] [CrossRef] [PubMed]
- Pierce, S.B.; Costa, M.; Wisotzkey, R.; Devadhar, S.; Homburger, S.A.; Buchman, A.R.; Ferguson, K.C.; Heller, J.; Platt, D.M.; Pasquinelli, A.A.; et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 2001, 15, 672–686. [Google Scholar] [CrossRef]
- Li, W.; Kennedy, S.G.; Ruvkun, G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev. 2003, 17, 844–858. [Google Scholar] [CrossRef]
- Tomioka, M.; Adachi, T.; Suzuki, H.; Kunitomo, H.; Schafer, W.R.; Iino, Y. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 2006, 51, 613–625. [Google Scholar] [CrossRef]
- Murphy, C.T.; Hu, P.J. Insulin/insulin-like growth factor signaling in C. elegans. WormBook 2013, 1–43. [Google Scholar] [CrossRef]
- Kaletsky, R.; Lakhina, V.; Arey, R.; Williams, A.; Landis, J.; Ashraf, J.; Murphy, C.T. The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature 2016, 529, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Webb, A.E. Neuronal functions of FOXO/DAF-16. Nutr. Healthy Aging 2017, 4, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, D.S.; Gershman, B.; Tu, M.P.; Palmer, M.; Tatar, M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004, 429, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Vellai, T.; McCulloch, D.; Gems, D.; Kovács, A.L. Effects of sex and insulin/insulin-like growth factor-1 signaling on performance in an associative learning paradigm in Caenorhabditis elegans. Genetics 2006, 174, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Baugh, L.R.; Sternberg, P.W. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr. Biol. 2006, 16, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Hibshman, J.D.; Doan, A.E.; Moore, B.T.; Kaplan, R.E.; Hung, A.; Webster, A.K.; Bhatt, D.P.; Chitrakar, R.; Hirschey, M.D.; Baugh, L.R. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival. eLife 2017, 6, e30057. [Google Scholar] [CrossRef] [PubMed]
- Brunet, A.; Bonni, A.; Zigmond, M.J.; Lin, M.Z.; Juo, P.; Hu, L.S.; Anderson, M.J.; Arden, K.C.; Blenis, J.; Greenberg, M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999, 96, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Nakai, J.; Totani, Y.; Hatakeyama, D.; Dyakonova, V.E.; Ito, E. Another example of conditioned taste aversion: Case of snails. Biology 2020, 9, 422. [Google Scholar] [CrossRef]
- Nakai, J.; Totani, Y.; Kojima, S.; Sakakibara, M.; Ito, E. Features of behavioral changes underlying conditioned taste aversion in the pond snail Lymnaea stagnalis. Invert. Neurosci. 2020, 20, 8. [Google Scholar] [CrossRef]
- Azami, S.; Wagatsuma, A.; Sadamoto, H.; Hatakeyama, D.; Usami, T.; Fujie, M.; Koyanagi, R.; Azumi, K.; Fujito, Y.; Lukowiak, K.; et al. Altered gene activity correlated with long-term memory formation of conditioned taste aversion in Lymnaea. J. Neurosci. Res. 2006, 84, 1610–1620. [Google Scholar] [CrossRef]
- Murakami, J.; Okada, R.; Sadamoto, H.; Kobayashi, S.; Mita, K.; Sakamoto, Y.; Yamagishi, M.; Hatakeyama, D.; Otsuka, E.; Okuta, A.; et al. Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis. J. Neurosci. 2013, 33, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Totani, Y.; Nakai, J.; Dyakonova, V.E.; Lukowiak, K.; Sakakibara, M.; Ito, E. Induction of LTM following an insulin injection. eNeuro 2020, 7, ENEURO.0088-20.2020. [Google Scholar] [CrossRef] [PubMed]
- Sadamoto, H.; Takahashi, H.; Okada, T.; Kenmoku, H.; Toyota, M.; Asakawa, Y. De novo sequencing and transcriptome analysis of the central nervous system of mollusc Lymnaea stagnalis by deep RNA sequencing. PLoS ONE 2012, 7, e42546. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Totani, Y.; Nakai, J.; Chikamoto, N.; Namiki, K.; Hatakeyama, D.; Ito, E. Identification of putative molecules for adiponectin and adiponectin receptor and their roles in learning and memory in Lymnaea stagnalis. Biology 2023, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- Totani, Y.; Nakai, J.; Hatakeyama, D.; Dyakonova, V.E.; Lukowiak, K.; Ito, E. CNS serotonin content mediating food deprivation-enhanced learning is regulated by hemolymph tryptophan concentration and autophagic flux in the pond snail. Nutr. Neurosci. 2023, 26, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Croll, R.P.; Chiasson, B.J. Postembryonic development of serotoninlike immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J. Comp. Neurol. 1989, 280, 122–142. [Google Scholar] [CrossRef] [PubMed]
- Oike, A.; Kodama, M.; Nakamura, Y.; Nakamura, M. A Threshold dosage of testosterone for female-to-male sex reversal in Rana rugosa frogs. J. Exp. Zool. A Ecol. Genet. Physiol. 2016, 325, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Jonas, E.A.; Knox, R.J.; Kaczmarek, L.K.; Schwartz, J.H.; Solomon, D.H. Insulin receptor in Aplysia neurons: Characterization, molecular cloning, and modulation of ion currents. J. Neurosci. 1996, 16, 1645–1658. [Google Scholar] [CrossRef]
- Jonas, E.A.; Knox, R.J.; Smith, T.C.; Wayne, N.L.; Connor, J.A.; Kaczmarek, L.K. Regulation by insulin of a unique neuronal Ca2+ pool and of neuropeptide secretion. Nature 1997, 385, 343–346. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Zhao, H.; Wang, Q.; Pan, Y. FoxO gene family evolution in vertebrates. BMC Evol. Biol. 2009, 9, 222. [Google Scholar] [CrossRef]
- Klotz, L.O.; Sánchez-Ramos, C.; Prieto-Arroyo, I.; Urbánek, P.; Steinbrenner, H.; Monsalve, M. Redox regulation of FoxO transcription factors. Redox Biol. 2015, 6, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Ekizceli, G.; Inan, S.; Oktem, G.; Onur, E.; Ozbilgin, K. Immunohistochemical determination of mTOR pathway molecules in ovaries and uterus in rat estrous cycle stages. Histol. Histopathol. 2020, 35, 1337–1351. [Google Scholar] [CrossRef] [PubMed]
- Jünger, M.A.; Rintelen, F.; Stocker, H.; Wasserman, J.D.; Végh, M.; Radimerski, T.; Greenberg, M.E.; Hafen, E. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2003, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, T.; Iino, Y.; Tomioka, M. DAF-16/FOXO promotes taste avoidance learning independently of axonal insulin-like signaling. PLoS Genet. 2019, 15, e1008297. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, H.; Daitoku, H.; Hatta, M.; Tanaka, K.; Fukamizu, A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl. Acad. Sci. USA 2003, 100, 11285–11290. [Google Scholar] [CrossRef] [PubMed]
- Accili, D.; Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004, 117, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Brunet, A.; Sweeney, L.B.; Sturgill, J.F.; Chua, K.F.; Greer, P.L.; Lin, Y.; Tran, H.; Ross, S.E.; Mostoslavsky, R.; Cohen, H.Y.; et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303, 2011–2015. [Google Scholar] [CrossRef] [PubMed]
- Motta, M.C.; Divecha, N.; Lemieux, M.; Kamel, C.; Chen, D.; Gu, W.; Bultsma, Y.; McBurney, M.; Guarente, L. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004, 116, 551–563. [Google Scholar] [CrossRef]
- Spinelli, M.; Fusco, S.; Grassi, C. Brain insulin resistance and hippocampal plasticity: Mechanisms and biomarkers of cognitive decline. Front. Neurosci. 2019, 13, 788. [Google Scholar] [CrossRef]
- Daitoku, H.; Hatta, M.; Matsuzaki, H.; Aratani, S.; Ohshima, T.; Miyagishi, M.; Nakajima, T.; Fukamizu, A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. USA 2004, 101, 10042–10047. [Google Scholar] [CrossRef]
- Matsuzaki, H.; Daitoku, H.; Hatta, M.; Aoyama, H.; Yoshimochi, K.; Fukamizu, A. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl. Acad. Sci. USA 2005, 102, 11278–11283. [Google Scholar] [CrossRef] [PubMed]
- Wondisford, A.R.; Xiong, L.; Chang, E.; Meng, S.; Meyers, D.J.; Li, M.; Cole, P.A.; He, L. Control of Foxo1 gene expression by co-activator P300. J. Biol. Chem. 2014, 289, 4326–4333. [Google Scholar] [CrossRef] [PubMed]
- Sadamoto, H.; Sato, H.; Kobayashi, S.; Murakami, J.; Aonuma, H.; Ando, H.; Fujito, Y.; Hamano, K.; Awaji, M.; Lukowiak, K.; et al. CREB in the pond snail Lymnaea stagnalis: Cloning, gene expression, and function in identifiable neurons of the central nervous system. J. Neurobiol. 2004, 58, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, D.; Sunada, H.; Totani, Y.; Watanabe, T.; Felletár, I.; Fitchett, A.; Eravci, M.; Anagnostopoulou, A.; Miki, R.; Okada, A.; et al. Molecular and functional characterization of an evolutionarily conserved CREB-binding protein in the Lymnaea CNS. FASEB J. 2022, 36, e22593. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, M.; Daitoku, H.; Hatta, M.; Matsuzaki, H.; Umemura, S.; Fukamizu, A. Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. Int. J. Mol. Med. 2003, 12, 503–508. [Google Scholar] [CrossRef] [PubMed]
- van der Heide, L.P.; Smidt, M.P. Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends Biochem. Sci. 2005, 30, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, K.C.; Fofaria, N.M.; Gupta, P.; Srivastava, S.K. CBP-mediated FOXO-1 acetylation inhibits pancreatic tumor growth by targeting SirT. Mol. Cancer Ther. 2014, 13, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Silveira, W.A.; Gonçalves, D.A.; Machado, J.; Lautherbach, N.; Lustrino, D.; Paula-Gomes, S.; Pereira, M.G.; Miyabara, E.H.; Sandri, M.; Kettelhut, I.C.; et al. cAMP-dependent protein kinase inhibits FoxO activity and regulates skeletal muscle plasticity in mice. FASEB J. 2020, 34, 12946–12962. [Google Scholar] [CrossRef]
- McLaughlin, C.N.; Broihier, H.T. Keeping neurons young and foxy: FoxOs promote neuronal plasticity. Trends Genet. 2018, 34, 65–78. [Google Scholar] [CrossRef]
- Deshe, N.; Eliezer, Y.; Hoch, L.; Itskovits, E.; Bokman, E.; Ben-Ezra, S.; Zaslaver, A. Inheritance of associative memories and acquired cellular changes in C. elegans. Nat. Commun. 2023, 14, 4232. [Google Scholar] [CrossRef]
Gene Name | Accession Number | Forward or Reverse | Primer Sequence 5′-3′ |
---|---|---|---|
FOXO (i) | FX227609.1 | Forward | CGAACCCCAAACAAGAGCG |
FX199776.1 | Reverse | TGCTGCTTTGGGTATGGAGG | |
FOXO (ii) | FX199776.1 | Forward | GGAGGTGACCAATTCCAGCA |
FX217506.1 | Reverse | CCCAGAGGTGAGTGGTTTCC | |
3′ RACE adaptor | - | - | GCGAGCACAGAATTAATACGACTCATATAGGTTTTTTTTTTTTVN |
3′ RACE FOXO-specific outer | - | Forward | TCTGTGAACACACAGCAGCA |
3′ RACE outer | - | Reverse | GCGAGCACAGAATTAATACGACT |
3′ RACE FOXO-specific inner | FX217506.1 | Forward | GCAGCAGGCTTCTATACTTCG |
3′ RACE inner | - | Reverse | CGCGGATCCGAATTAATACGACTCACTATAGG |
Gene Name | Accession Number |
---|---|
Aplysia californica forkhead box protein O | XP_005112460.1 |
Biomphalaria glabrata forkhead box protein O-like | KAI8758266.1 |
Bombyx mori forkhead box sub-group O | AFD99125.1 |
Caenorhabditis elegans DAF-16 | AAC47803.1 |
Crassostrea hongkongensis forkhead box O protein | APG29285.1 |
Drosophila melanogaster forkhead box, sub-group O, isoform B | NP_996205.1 |
Elysia marginata forkhead box O protein | GFR80317.1 |
Gigantopelta aegis forkhead box protein O-like | XP_041351714.1 |
Haliotis discus hannai FoxO | QOI08485.1 |
Homo sapiens forkhead box protein O1 | NP_002006.2 |
Homo sapiens forkhead box protein O3 isoform 1 | NP_001446.1 |
Homo sapiens forkhead box protein O4 isoform 1 | NP_005929.2 |
Homo sapiens forkhead box protein O6 | NP_001278210.2 |
Lymnaea stagnalis FOXO | LC773945.1 |
Mus musculus forkhead box protein O1 | NP_062713.2 |
Mus musculus forkhead box protein O3 | NP_001363896.1 |
Mus musculus forkhead box protein O4 | NP_061259.1 |
Mus musculus forkhead box protein O6 | NP_918949.1 |
Paramuricea clavata forkhead box O-like isoform X1 | CAB3987597.1 |
Pomacea canaliculata forkhead box protein O-like | XP_025097678.1 |
Sinonovacula constricta FOXO | AYW35875.1 |
Xenopus laevis forkhead box protein O1 | NP_001086417.1 |
Xenopus laevis forkhead box protein O3 | NP_001086418.1 |
Xenopus laevis forkhead box protein O4 L homolog | NP_001154870.1 |
Xenopus laevis forkhead box protein O6 S homolog | NP_001152754.1 |
Gene Name | Accession Number of Query Sequence | Accession Number of Lymnaea | Amino Acid Identity |
---|---|---|---|
LymG6Pase | Aplysia californica G6Pase (XM_005094411.3) | FX188931.1 | 60.0% |
LymPEPCK | Crassostrea gigas PEPCK (NM_001305293.1) | FX183226.1 | 73.7% |
LymCatalase | Aplysia californica Catalase (XM_005090003.3) | FX188459.1 | 79.1% |
LymPI3K | Aplysia californica PI3KCA (XM_013086940.2) | FX182614.1 | 84.3% |
LymAKT | Aplysia californica AKT (XM_035970173.1) | FX187320.1 | 94.3% |
LymmTOR | Aplysia californica mTOR (XM_013080183.2) | FX180237.1 | 90.2% |
Gene Name | Accession Number | Forward or Reverse | Primer Sequence 5′-3′ | Product Size (bp) |
---|---|---|---|---|
LymFOXO | LC773945.1 | Forward | CCTCCATACCCAAAGCAGCA | 182 |
Reverse | CACTGAACAAGCCCTTTGCC | |||
LymG6Pase | FX188931.1 | Forward | CCACGTCAACGGTGAACCTA | 258 |
Reverse | AGCACACGTTTTCCGACTGA | |||
LymPEPCK | FX183226.1 | Forward | GATGCCCACGACCAGTACAA | 192 |
Reverse | TCCATCCCTCATCTCTGGCA | |||
LymCatalase | FX188459.1 | Forward | TGGGACTTCTTCACTCTGCG | 136 |
Reverse | TCTCAGCCTTGTTGACCAGC | |||
LymPI3KCA | FX182614.1 | Forward | CTCAAGTCCACGATGGGACC | 153 |
Reverse | AACAGCTGAAGATTGCCCCA | |||
LymAKT | FX187320.1 | Forward | GATGACCAGCAGACTGGACC | 119 |
Reverse | CTGCCGATGTGCTGAGGTAA | |||
LymmTOR | FX180237.1 | Forward | TGCAGCAGATCCAGCAGAAA | 274 |
Reverse | AAGCGGTTATCTCGCCTAGC | |||
18s rRNA | Z73984.1 | Forward | CTCCTTCGTGCTAGGGATTG | 106 |
Reverse | GTACAAAGGGCAGGGACGTA | |||
β-actin | KX387884.1 | Forward | GCAGAAGGAAATCACAGCACTGG | 114 |
Reverse | GTGGAGAGAGAGGCAAGGATGG | |||
β-tubulin | KX387888.1 | Forward | CAAGCGCATCTCTGAGCAGTT | 108 |
Reverse | TTGGATTCCGCCTCTGTGAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakai, J.; Namiki, K.; Fujimoto, K.; Hatakeyama, D.; Ito, E. FOXO in Lymnaea: Its Probable Involvement in Memory Consolidation. Biology 2023, 12, 1201. https://doi.org/10.3390/biology12091201
Nakai J, Namiki K, Fujimoto K, Hatakeyama D, Ito E. FOXO in Lymnaea: Its Probable Involvement in Memory Consolidation. Biology. 2023; 12(9):1201. https://doi.org/10.3390/biology12091201
Chicago/Turabian StyleNakai, Junko, Kengo Namiki, Kanta Fujimoto, Dai Hatakeyama, and Etsuro Ito. 2023. "FOXO in Lymnaea: Its Probable Involvement in Memory Consolidation" Biology 12, no. 9: 1201. https://doi.org/10.3390/biology12091201
APA StyleNakai, J., Namiki, K., Fujimoto, K., Hatakeyama, D., & Ito, E. (2023). FOXO in Lymnaea: Its Probable Involvement in Memory Consolidation. Biology, 12(9), 1201. https://doi.org/10.3390/biology12091201