Investigation on Flavescence Dorée in North-Western Italy Identifies Map-M54 (16SrV-D/Map-FD2) as the Only Phytoplasma Genotype in Vitis vinifera L. and Reveals the Presence of New Putative Reservoir Plants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Surveys and Sample Collection in Vineyards and Surroundings
2.2. 16SrV Phytoplasma Detection
2.3. Molecular Typing and Evolutionary Relatedness of 16SrV Phytoplasma Strains
3. Results
3.1. Phytoplasmas Identified in Grapevines and Wild Plants
3.2. Phytoplasmas Identified in Insects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angelini, E.; Constable, F.; Duduk, B.; Fiore, N.; Quaglino, F.; Bertaccini, A. Grapevine phytoplasmas. In Characterisation and Epidemiology of Phytoplasma—Associated Diseases. Phytoplasmas: Plant Pathogenic Bacteria–I, 1st ed.; Rao, G.P., Bertaccini, A., Fiore, N., Liefting, L.W., Eds.; Springer Nature: Singapore, 2018; Volume 1, pp. 123–152. [Google Scholar]
- Belli, G.; Bianco, P.A.; Conti, M. Grapevine yellows: Past, present and future. J. Plant Pathol. 2010, 92, 303–326. [Google Scholar]
- Davis, R.E.; Dally, E.L. Revised subgroup classification of group 16SrV phytoplasmas and placement of Flavescence dorée-associated phytoplasmas in two distinct subgroups. Plant Dis. 2001, 85, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Chuche, J.; Thiéry, D. Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: A review. Agron. Sustain. Dev. 2014, 34, 381–403. [Google Scholar] [CrossRef]
- Arnaud, G.; Malembic-Maher, S.; Salar, P.; Bonnet, P.; Maixner, M.; Marcone, C.; Boudon-Padieu, E.; Foissac, X. Multilocus sequence typing confirms the close genetic interrelatedness of three distinct Flavescence dorée phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. App. Environ. Microbiol. 2007, 73, 4001–4010. [Google Scholar] [CrossRef]
- Casati, P.; Jermini, M.; Quaglino, F.; Corbani, G.; Schaerer, S.; Passera, A.; Bianco, P.A.; Rigamonti, I.E. New insights on Flavescence dorée phytoplasma ecology in the vineyard agro-ecosystem in southern Switzerland. Ann. Appl. Biol. 2017, 171, 37–51. [Google Scholar] [CrossRef]
- Plavec, J.; Budinšćak, Ž.; Križanac, I.; Škorić, D.; Foissac, X.; Šeruga Musić, M. Multilocus sequence typing reveals the presence of three distinct Flavescence dorée phytoplasma genetic clusters in Croatian vineyards. Plant. Pathol. 2019, 68, 18–30. [Google Scholar] [CrossRef]
- Rossi, M.; Pegoraro, M.; Ripamonti, M.; Abbà, S.; Beal, D.; Giraudo, A.; Veratti, F.; Malembic-Maher, S.; Salar, P.; Bosco, D.; et al. Genetic diversity of Flavescence dorée phytoplasmas at the vineyard scale. Appl. Environ. Microbiol. 2019, 85, e03123-18. [Google Scholar] [CrossRef] [PubMed]
- Malembic-Maher, S.; Desqué, D.; KhaliI, D.; Salar, P.; Bergey, B.; Danet, J.-L.; Duret, S.; Dubrana-Ourabah, M.-P.; Beven, L.; Ember, I.; et al. When a Palearctic bacterium meets a Nearctic insect vector: Genetic and ecological insights into the emergence of the grapevine Flavescence dorée epidemics in Europe. PLoS Path. 2020, 16, e1007967. [Google Scholar] [CrossRef] [PubMed]
- Krstić, O.; Cvrković, T.; Marinković, S.; Jakovljević, M.; Mitrović, M.; Toševski, I.; Jović, J. Genetic diversity of Flavescence dorée phytoplasmas in vineyards of Serbia: From the widespread occurrence of autochthonous Map-M51 to the emergence of endemic Map-FD2 (Vectotype II) and new Map-FD3 (Vectotype III) epidemic genotypes. Agronomy 2022, 12, 448. [Google Scholar] [CrossRef]
- Filippin, L.; Jović, J.; Cvrković, T.; Forte, V.; Clair, D.; Toševski, I.; Boudon-Padieu, E.; Borgo, M.; Angelini, E. Molecular characteristics of phytoplasmas associated with Flavescence dorée in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathol. 2009, 58, 826–837. [Google Scholar] [CrossRef]
- Strauss, G.; Reisenzein, H. First detection of Flavescence dorée phytoplasma in Phlogotettix cyclops (Hemiptera, Cicadellidae) and considerations on its possible role as vector in Austrian vineyards. Integr. Prot. Vitic. IOBC-WPRS Bull 2018, 139, 12–21. [Google Scholar]
- Belgeri, E.; Rizzoli, A.; Jermini, M.; Angelini, E.; Filippin, L.; Rigamonti, I.E. First report of Flavescence dorée phytoplasma identification and characterization in three species of leafhoppers. J. Plant Pathol. 2022, 104, 375–379. [Google Scholar] [CrossRef]
- Guerrieri, E.; Forte, V.; Belgeri, E.; Signorotto, M.; Filippin, L.; Burati, M.; Pavasini, M.; Angelini, E.; Mori, N. Presence and distribution of known, alternative and putative insect vectors of phytoplasmas associated with “Flavescence dorée” disease in Northeast Italy. Phytopath. Mollic. 2023, 13, 29–30. [Google Scholar] [CrossRef]
- Bressan, A.; Clair, D.; Sémétey, O.; Boudon-Padieu, E. Insect injection and artificial feeding bioassays to test the vector specificity of Flavescence dorée phytoplasma. Phytopathology 2006, 96, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Angelini, E.; Clair, D.; Borgo, M.; Bertaccini, A.; Boudon-Padieu, E. Flavescence dorée in France and Italy: Occurrence of closely related phytoplasma isolates and their near relationships to palatinate grapevine yellows and an alder yellows phytoplasma. Vitis 2001, 40, 79–86. [Google Scholar] [CrossRef]
- Marzachì, C.; Veratti, F.; Bosco, D. Direct PCR detection of phytoplasmas in experimentally infected insects. Ann. Appl. Biol. 1998, 133, 45–54. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Radonjić, S.; Krstić, O.; Cvrković, T.; Hrnčić, S.; Marinković, S.; Mitrović, M.; Toševski, I.; Jović, J. The first report on the occurrence of Flavescence dorée phytoplasma affecting grapevine in vineyards of Montenegro and an overview of epidemic genotypes in natural plant reservoirs. J. Plant Pathol. 2023, 105, 419–427. [Google Scholar] [CrossRef]
- Rizzoli, A.; Belgeri, E.; Jermini, M.; Conedera, M.; Filippin, L.; Angelini, E. Alnus glutinosa and Orientus ishidae (Matsumura, 1902) share phytoplasma genotypes linked to the ‘Flavescence dorée’ epidemics. J. Appl. Entomol. 2021, 145, 1015–1028. [Google Scholar] [CrossRef]
- Quaglino, F.; Zhao, Y.; Casati, P.; Bulgari, D.; Bianco, P.A.; Wei, W.; Davis, R.E. ‘Candidatus Phytoplasma solani’, a novel taxon associated with “stolbur” and “bois noir” related diseases of plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 2879–2894. [Google Scholar] [CrossRef]
- Fabre, A.; Danet, J.L.; Foissac, X. The “stolbur” phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene 2011, 472, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Constable, F.E.; Gibb, K.S.; Symons, R.H. The seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathol. 2003, 52, 267–276. [Google Scholar] [CrossRef]
- Zambon, Y.; Canel, A.; Bertaccini, A.; Contaldo, N. Molecular diversity of phytoplasmas associated with grapevine yellows disease in North-Eastern Italy. Phytopathology 2018, 108, 206–214. [Google Scholar] [CrossRef]
- Roggia, C.; Caciagli, L.; Galetto, L.; Pacifico, D.; Veratti, F.; Bosco, D.; Marzachì, C. Flavescence dorée phytoplasma titre in field-infected Barbera and Nebbiolo grapevines. Plant Pathol. 2014, 63, 31–41. [Google Scholar] [CrossRef]
- Ripamonti, M.; Pegoraro, M.; Rossi, M.; Bodino, N.; Beal, D.; Panero, L.; Marzachì, C.; Bosco, D. Prevalence of Flavescence dorée phytoplasma-infected Scaphoideus titanus in different vineyard agroecosystems of northwestern Italy. Insects 2020, 11, 301. [Google Scholar] [CrossRef]
- Moussa, A.; Guerrieri, E.; Torcoli, S.; Serina, F.; Quaglino, F.; Mori, N. I dentification of phytoplasmas associated with grapevine ‘bois noir’ and Flavescence dorée in inter-row groundcover vegetation used for green manure in Franciacorta vineyards. J. Plant Pathol. 2023, in press. [Google Scholar] [CrossRef]
- Trivellone, V.; Filippin, L.; Narduzzi-Wicht, B.; Angelini, E. A regional-scale survey to define the known and potential vectors of grapevine yellow phytoplasmas in vineyards South of Swiss Alps. Eur. J. Plant Pathol. 2016, 145, 915–927. [Google Scholar] [CrossRef]
- Trivellone, V.; Jermini, M.; Linder, C.; Cara, C.; Delabays, N.; Baumgaertner, J. Rôle de la flore du vignoble sur la distribution de Scaphoideus titanus. Rev. Suisse Vitic. Arboric. Hortic. 2013, 45, 222–228. [Google Scholar]
- Klejdysz, T.; Zwolińska, A.; Walczak, M.; Kobiałka, M. The first record of a potential pest Orientus ishidae (Matsumura, 1902) (Hemiptera: Cicadellidae) in Poland. J. Plant Protect. Res. 2017, 57, 107–112. [Google Scholar] [CrossRef]
Host | No. of 16SrV-Phytoplasma-Infected/Collected Samples | ||
---|---|---|---|
Gussago (BS) | Mombaruzzo (AT) | Valtellina (SO) | |
2019 | 2019 | 2021 | |
Vitis vinifera | 10/22 | 24/31 | 16/35 |
Vitis vinifera gone wild | 0/4 | 0/4 | |
Ailanthus altissima | 1/4 | 12/16 | |
Alnus glutinosa | 21/23 | ||
Carpinus betulus | 1/3 | 1/2 | |
Celtis australis | 0/2 | ||
Clematis vitalba | 0/7 | 0/6 | 0/15 |
Cornus sanguinea | 1/3 | 0/1 | |
Corylus avellana | 4/30 | 6/21 | |
Juglans regia | 3/9 | 0/5 | 1/16 |
Mespilus germanica | 0/1 | ||
Populus spp. | 0/4 | ||
Prunus armeniaca | 0/1 | ||
Prunus avium | 0/2 | 0/1 | |
Prunus cerasifera | 1/3 | ||
Prunus domestica | 6/8 | ||
Quercus sp. | 0/2 | ||
Robinia pseudoacacia | 1/6 | 4/30 | |
Rubus ulmifolius | 0/18 | 1/11 | |
Salix spp. | 2/2 | ||
Sambucus nigra | 1/1 | 4/4 | 0/8 |
Fieberiella florii in | 0/1 | ||
Fieberiella florii out | 0/2 | ||
Macrosteles sp. out | 1/1 | ||
Neoaliturus fenestratus in | 1/1 | ||
Orientus ishidae in | 0/25 | ||
Orientus ishidae out | 16/60 | ||
Scaphoideus titanus in | 20/45 | ||
Scaphoideus titanus out | 1/9 |
Host | Origin | 16SrV Phytoplasma Strain | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | M38 | M39 | M43 | M48 | M50 | M51 | M54 | M58 | M78 | M121 | Ca. P. ulmi | |
Vitis vinifera | BS, 2019 | 10 | ||||||||||
AT, 2019 | 24 | |||||||||||
SO, 2021 | 16 | |||||||||||
Ailanthus altissima | AT, 2019 | 1 | ||||||||||
SO, 2021 | 1 | 3 | 7 | 1 | ||||||||
Alnus glutinosa | SO, 2021 | 1 | 1 | 1 | 2 | 11 | 2 | 2 | 1 | |||
Carpinus betulus | BS, 2019 | 1 | ||||||||||
AT, 2019 | 1 | |||||||||||
Cornus sanguinea | BS, 2019 | 1 | ||||||||||
Corylus avellana | AT, 2019 | 1 | 3 | |||||||||
SO, 2021 | 1 | 2 | 3 | |||||||||
Juglans regia | BS, 2019 | 2 | 1 | |||||||||
SO, 2021 | 1 | |||||||||||
Prunus cerasifera | BS, 2019 | 1 | ||||||||||
Prunus domestica | BS, 2019 | 4 | 2 | |||||||||
Robinia pseudoacacia | AT, 2019 | 1 | ||||||||||
SO, 2021 | 1 | 3 | ||||||||||
Rubus ulmifolius | AT, 2019 | 1 | ||||||||||
Salix spp. | SO, 2021 | 2 | ||||||||||
Sambucus nigra | BS, 2019 | 1 | ||||||||||
AT, 2019 | 3 | 1 | ||||||||||
Macrosteles sp. out | SO, 2021 | 1 | ||||||||||
Neoaliturus fenestratus in | SO, 2021 | 1 | ||||||||||
Orientus ishidae out | SO, 2021 | 4 | 1 | 9 | 2 | |||||||
Scaphoideus titanus in | SO, 2021 | 6 | 14 | |||||||||
Scaphoideus titanus out | SO, 2021 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigamonti, I.E.; Salvetti, M.; Girgenti, P.; Bianco, P.A.; Quaglino, F. Investigation on Flavescence Dorée in North-Western Italy Identifies Map-M54 (16SrV-D/Map-FD2) as the Only Phytoplasma Genotype in Vitis vinifera L. and Reveals the Presence of New Putative Reservoir Plants. Biology 2023, 12, 1216. https://doi.org/10.3390/biology12091216
Rigamonti IE, Salvetti M, Girgenti P, Bianco PA, Quaglino F. Investigation on Flavescence Dorée in North-Western Italy Identifies Map-M54 (16SrV-D/Map-FD2) as the Only Phytoplasma Genotype in Vitis vinifera L. and Reveals the Presence of New Putative Reservoir Plants. Biology. 2023; 12(9):1216. https://doi.org/10.3390/biology12091216
Chicago/Turabian StyleRigamonti, Ivo Ercole, Martino Salvetti, Paola Girgenti, Piero Attilio Bianco, and Fabio Quaglino. 2023. "Investigation on Flavescence Dorée in North-Western Italy Identifies Map-M54 (16SrV-D/Map-FD2) as the Only Phytoplasma Genotype in Vitis vinifera L. and Reveals the Presence of New Putative Reservoir Plants" Biology 12, no. 9: 1216. https://doi.org/10.3390/biology12091216
APA StyleRigamonti, I. E., Salvetti, M., Girgenti, P., Bianco, P. A., & Quaglino, F. (2023). Investigation on Flavescence Dorée in North-Western Italy Identifies Map-M54 (16SrV-D/Map-FD2) as the Only Phytoplasma Genotype in Vitis vinifera L. and Reveals the Presence of New Putative Reservoir Plants. Biology, 12(9), 1216. https://doi.org/10.3390/biology12091216