Effects of Stocking Density on the Survival, Growth, and Stress Levels of the Juvenile Lined Seahorse (Hippocampus erectus) in Recirculating Aquaculture Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Seahorses
2.3. Experimental System
2.4. Water and Rearing Conditions
2.5. Stocking Density
2.6. Survival and Growth Measurements
2.7. Size Heterogeneity Analysis
2.8. Stress Level Determinations
2.9. Statistical Analysis
3. Results
3.1. Juveniles with a Body Height of 4.0 cm
3.1.1. Survival and Growth
3.1.2. Size Heterogeneity
3.1.3. Stress Level
3.2. Juveniles with a Body Height of 7.0 cm
3.2.1. Survival and Growth
3.2.2. Size Heterogeneity
3.2.3. Stress Level
3.3. Juveniles with a Body Height of 9.0 cm
3.3.1. Survival and Growth
3.3.2. Size Heterogeneity
3.3.3. Stress Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tacon, A.G.J.; Metian, M. Fish matters: Importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 2013, 21, 22–38. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Food matters: Fish, income, and food supply—A comparative analysis. Rev. Fish. Sci. Aquac. 2017, 26, 15–28. [Google Scholar] [CrossRef]
- Li, H.; Cui, Z.; Cui, H.; Bai, Y.; Yin, Z.; Qu, K. Hazardous substances and their removal in recirculating aquaculture systems: A review. Aquaculture 2023, 569, 739399. [Google Scholar] [CrossRef]
- Nie, X.; Mubashar, M.; Zhang, S.; Qin, Y.; Zhang, X. Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: A comprehensive review. J. Clean. Prod. 2020, 277, 124209. [Google Scholar] [CrossRef]
- Jasmin, M.Y.; Syukri, F.; Kamarudin, M.S.; Karim, M. Potential of bioremediation in treating aquaculture sludge: Review article. Aquaculture 2020, 519, 734905. [Google Scholar] [CrossRef]
- Calderini, M.L.; Stevčić, C.; Taipale, S.; Pulkkinen, K. Filtration of Nordic recirculating aquaculture system wastewater: Effects on microalgal growth, nutrient removal, and nutritional value. Algal Res. 2021, 60, 102486. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, B.; Shi, C.; Sun, G. Recirculating aquaculture systems in China-Current application and prospects. Fish. Aquac. J. 2015, 6, 134. [Google Scholar] [CrossRef]
- Xin, N.; Zhang, S.; Yang, Y.; Peng, L.; Yu, X.; Wang, Z. Analysis of the production cost of Epinephelus spp. in recirculating aquaculture system in northern China. Fish. Mod. 2018, 45, 50–54, (In Chinese with English abstract). [Google Scholar]
- Zhao, C. Turbot Factory Circulating Water Aquaculture and Water Aquaculture Economic Benefit Comparison Research. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2015. [Google Scholar]
- Koldewey, H.J.; Martin-Smith, K.M. A global review of seahorse aquaculture. Aquaculture 2010, 302, 131–152. [Google Scholar] [CrossRef]
- Vincent, A.C.J.; Foster, S.J.; Koldewey, H.J. Conservation and management of seahorses and other Syngnathidae. J. Fish Biol. 2011, 78, 1681–1724. [Google Scholar] [CrossRef]
- Cohen, F.P.A.; Valenti, W.C. Opportunities and constraints for developing low-cost aquaculture of seahorses in mangrove estuaries. Aquaculture 2019, 502, 121–127. [Google Scholar] [CrossRef]
- Kuo, T.C.; Vincent, A. Assessing the changes in international trade of marine fishes under CITES regulations—A case study of seahorses. Mar. Policy 2018, 88, 48–57. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Nader, M.M.; Salem, H.M.; El-Tahan, A.M.; Soliman, S.M.; Khafaga, A.F. Effect of environmental factors on growth performance of Nile tilapia (Oreochromis niloticus). Int. J. Biometeorol. 2022, 66, 2183–2194. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, X.; Zhou, W.; Chen, W.; Levy, T.; Wu, X. Stocking density affects culture performance and economic profit of adult all-female Chinese mitten crabs (Eriocheir sinensis) reared in earthen ponds. Aquaculture 2024, 581, 740352. [Google Scholar] [CrossRef]
- Andrade, T.; Afonso, A.; Pérez-Jiménez, A.; Oliva-Teles, A.; de las Heras, V.; Mancera, J.M.; Serradeiro, R.; Costas, B. Evaluation of different stocking densities in a Senegalese sole (Solea senegalensis) farm: Implications for growth, humoral immune parameters and oxidative status. Aquaculture 2015, 438, 6–11. [Google Scholar] [CrossRef]
- Long, L.; Zhang, H.; Ni, Q.; Liu, H.; Wu, F.; Wang, X. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp. Biochem. Phys. C 2019, 219, 25–34. [Google Scholar] [CrossRef]
- Zheng, J.; Qian, Y.; Zheng, X. Effects of stocking density on juvenile Amphioctopus fangsiao (Mollusca: Cephalopodasca: Cephalopoda): Survival, growth, behavior, stress tolerance and biochemical response. Aquaculture 2023, 567, 739243. [Google Scholar] [CrossRef]
- Lin, Q.; Lin, J.; Zhang, D. Breeding and juvenile culture of the lined seahorse, Hippocampus erectus Perry, 1810. Aquaculture 2008, 277, 287–292. [Google Scholar] [CrossRef]
- Huang, J.; Qin, G.; Zhang, B.; Tan, S.; Sun, J.; Lin, Q. Effects of food, salinity, and ammonia-nitrogen on the physiology of juvenile seahorse (Hippocampus erectus) in two typical culture models in China. Aquaculture 2020, 520, 734965. [Google Scholar] [CrossRef]
- Ramsay, J.M.; Feist, G.W.; Varga, Z.M.; Westerfield, M.; Kent, M.L.; Schreck, C.B. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio. Aquaculture 2006, 258, 565–574. [Google Scholar] [CrossRef]
- Sadoul, B.; Geffroy, B. Measuring cortisol, the major stress hormone in fishes. J. Fish Biol. 2019, 94, 540–555. [Google Scholar] [CrossRef] [PubMed]
- Lanfumey, L.; Mongeau, R.; Cohen-Salmon, C.; Hamon, M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci. Biobehav. Rev. 2008, 32, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Andrews, P.W.; Bharwani, A.; Lee, K.R.; Fox, M.; Thomson, J.A., Jr. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci. Biobehav. Rev. 2015, 51, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Lillesaar, C. The serotonergic system in fish. J. Chem. Neuroanat. 2011, 41, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, V.A.; Ebbesson, L.O.E. Pain and stress responses in farmed fish. Rev. Sci. Tech. Off. int. Epiz. 2014, 33, 245–253. [Google Scholar] [CrossRef]
- Vindas, M.A.; Johansen, I.B.; Folkedal, O.; Höglund, E.; Gorissen, M.; Flik, G.; Kristiansen, T.S.; Øverli, Ø. Brain serotonergic activation in growth-stunted farmed salmon: Adaption versus pathology. R. Soc. Open Sci. 2016, 3, 160030. [Google Scholar] [CrossRef]
- Lin, T.; Liu, X.; Xiao, D.; Zhang, D. Plasma levels of immune factors and sex steroids in the male seahorse Hippocampus erectus during a breeding cycle. Fish Physiol. Biochem. 2017, 43, 889–899. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- NCSS. One-Way Analysis of Variance; NCSS: Silver Spring, MD, USA, 2012; Available online: https://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/NCSS/One-Way_Analysis_of_Variance.pdf (accessed on 5 April 2024).
- Braun, N.; de Lima, R.L.; Baldisserotto, B.; Dafre, A.L.; de Oliveira Nuñer, A.P. Growth, biochemical and physiological responses of Salminus brasiliensis with different stocking densities and handling. Aquaculture 2010, 301, 22–30. [Google Scholar] [CrossRef]
- North, B.P.; Turnbull, J.F.; Ellis, T.; Porter, M.J.; Migaud, H.; Bron, J.; Bromage, N.R. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 2006, 255, 466–479. [Google Scholar] [CrossRef]
- Santos, G.A.; Schrama, J.W.; Mamauag, R.E.P.; Rombout, J.H.W.M.; Verreth, J.A.J. Chronic stress impairs performance, energy metabolism and welfare indicators in European seabass (Dicentrarchus labrax): The combined effects of fish crowding and water quality deterioration. Aquaculture 2010, 299, 73–80. [Google Scholar] [CrossRef]
- Li, W.; Li, D.; Yang, Q.; Liu, L.; Liu, J.; Lu, J.; Wang, Y.; Tang, R.; Li, L.; Zhang, X. Long-term crowding stress induces chronic inflammatory response and declines the immunity of grass carp (Ctenopharyngodon idella). Aquaculture 2023, 577, 739976. [Google Scholar] [CrossRef]
- Bi, B.; Yuan, Y.; Zhao, Y.; He, M.; Song, H.; Kong, L.; Gao, Y. Effect of crowding stress on growth performance, the antioxidant system and humoral immunity in hybrid sturgeon. Aquacult. Rep. 2023, 28, 101468. [Google Scholar] [CrossRef]
- Stevens, C.H.; Croft, D.P.; Paull, G.C.; Tyler, C.R. Stress and welfare in ornamental fishes: What can be learned from aquaculture? J. Fish Biol. 2017, 91, 409–428. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Lin, J.; Zhang, D.; Wang, Y. Weaning of juvenile seahorses Hippocampus erectus perry, 1810 from live to frozen food. Aquaculture 2009, 291, 224–229. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Guo, H.Y.; Zhang, X.M.; Zhang, X.M. Fish social hierarchy and its application in aquaculture and stock enhancement. Chin. J. Ecol. 2018, 37, 1257–1264. [Google Scholar] [CrossRef]
- Colléter, M.; Brown, C. Personality traits predict hierarchy rank in male rainbowfish social groups. Anim. Behav. 2011, 81, 1231–1237. [Google Scholar] [CrossRef]
- Akbaripasand, A.; Krkosek, M.; Lokman, P.M.; Closs, G.P. Does social status within a dominance hierarchy mediate individual growth, residency and relocation? Oecologia 2014, 176, 771–779. [Google Scholar] [CrossRef]
- Bessa, E.; Sadoul, B.; Mckenzie, D.J.; Geffroy, B. Group size, temperature and body size modulate the effects of social hierarchy on basal cortisol levels in fishes. Horm. Behav. 2021, 136, 105077. [Google Scholar] [CrossRef]
- Dou, S.Z.; Masuda, R.; Tanaka, M.; Tsukamoto, K. Size hierarchies affecting the social interactions and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 2004, 233, 237–249. [Google Scholar] [CrossRef]
- Wilson, A.J.; Grimmer, A.; Rosenthal, G.G. Causes and consequences of contest outcome: Aggressiveness, dominance and growth in the sheepshead swordtail, Xiphophorus birchmanni. Behav. Ecol. Sociobiol. 2013, 67, 1151–1161. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, D.; Lin, J. Effects of light intensity, stocking density, feeding frequency and salinity on the growth of sub-adult seahorses Hippocampus erectus Perry, 1810. Aquaculture 2009, 292, 111–116. [Google Scholar] [CrossRef]
- Planas, M.; Quintas, P.; Chamorro, A.; Silva, C. Female maturation, egg characteristics and fatty acids profile in the seahorse Hippocampus guttulatus. Anim. Reprod. Sci. 2010, 122, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, J.; Johnsson, J.I.; Bohlin, T. The competitive advantage of large body size declines with increasing group size in rainbow trout. J. Fish Biol. 1996, 49, 370–372. [Google Scholar] [CrossRef]
Stocking Density (inds/L) | p-Value | ||||
---|---|---|---|---|---|
1.0 | 0.8 | 0.6 | 0.4 | ||
Survival rate (%) | 71.18 ± 2.99 b | 90.88 ± 2.06 a | 92.79 ± 1.14 a | 94.00 ± 1.32 a | <0.001 |
Final BH (cm) | 6.03 ± 0.89 b | 6.16 ± 0.79 b | 6.87 ± 0.70 a | 6.95 ± 0.65 a | <0.001 |
Final WW (g) | 0.773 ± 0.325 b | 0.812 ± 0.289 b | 1.107 ± 0.304 a | 1.166 ± 0.286 a | <0.001 |
SGR | 3.99 ± 1.61 b | 4.24 ± 1.44 b | 5.36 ± 1.24 a | 5.56 ± 1.11 a | <0.001 |
K | 0.329 ± 0.025 b | 0.330 ± 0.022 b | 0.331 ± 0.024 b | 0.338 ± 0.022 a | 0.002 |
CV of final BH | 14.84 ± 0.70 a | 12.94 ± 0.91 b | 9.75 ± 0.99 c | 9.38 ± 0.85 c | <0.001 |
CV of final WW | 42.24 ± 3.21 a | 35.83 ± 2.72 b | 26.25 ± 3.13 c | 24.57 ± 2.91 c | <0.001 |
Stocking Density (inds/L) | p-Value | ||||
---|---|---|---|---|---|
0.6 | 0.5 | 0.4 | 0.3 | ||
Survival rate (%) | 76.38 ± 2.30 b | 83.40 ± 2.57 a | 84.63 ± 2.10 a | 87.83 ± 2.53 a | <0.001 |
Final BH (cm) | 8.49 ± 0.60 b | 8.69 ± 0.48 b | 8.98 ± 0.50 a | 9.04 ± 0.55 a | <0.001 |
Final WW (g) | 2.409 ± 0.679 c | 2.681 ± 0.569 b | 3.041 ± 0.575 a | 3.089 ± 0.624 a | <0.001 |
SGR | 2.31 ± 1.00 c | 2.73 ± 0.78 b | 3.16 ± 0.75 a | 3.20 ± 0.81 a | <0.001 |
K | 0.382 ± 0.038 c | 0.401 ± 0.032 b | 0.414 ± 0.028 a | 0.410 ± 0.027 a | <0.001 |
CV of final BH | 7.08 ± 0.30 a | 5.50 ± 0.50 b | 5.52 ± 0.48 b | 6.00 ± 0.30 b | <0.001 |
CV of final WW | 28.36 ± 1.36 a | 21.22 ± 1.88 b | 18.81 ± 1.13 b | 20.11 ± 1.10 b | <0.001 |
Stocking Density (inds/L) | p-Value | ||||
---|---|---|---|---|---|
0.4 | 0.3 | 0.2 | 0.1 | ||
Survival rate (%) | 95.94 ± 0.85 | 96.25 ± 0.83 | 97.25 ± 1.19 | 97.00 ± 1.41 | 0.331 |
Final BH (cm) | 10.53 ± 0.47 c | 10.71 ± 0.50 b | 10.87 ± 0.49 a | 10.93 ± 0.49 a | <0.001 |
Final WW (g) | 5.352 ± 0.792 c | 5.713 ± 0.941 b | 6.089 ± 1.014 a | 6.207 ± 1.035 a | <0.001 |
SGR | 1.86 ± 0.49 c | 2.07 ± 0.56 b | 2.27 ± 0.61 a | 2.34 ± 0.62 a | <0.001 |
K | 0.455 ± 0.021 b | 0.460 ± 0.019 b | 0.468 ± 0.023 a | 0.470 ± 0.024 a | <0.001 |
CV of final BH | 4.45 ± 0.42 | 4.66 ± 0.35 | 4.57 ± 0.31 | 4.53 ± 0.46 | 0.888 |
CV of final WW | 14.80 ± 0.62 | 16.53 ± 1.42 | 16.66 ± 1.43 | 16.72 ± 2.02 | 0.243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.; Li, S.; Zhang, D.; Liu, X.; Ren, Y. Effects of Stocking Density on the Survival, Growth, and Stress Levels of the Juvenile Lined Seahorse (Hippocampus erectus) in Recirculating Aquaculture Systems. Biology 2024, 13, 807. https://doi.org/10.3390/biology13100807
Lin T, Li S, Zhang D, Liu X, Ren Y. Effects of Stocking Density on the Survival, Growth, and Stress Levels of the Juvenile Lined Seahorse (Hippocampus erectus) in Recirculating Aquaculture Systems. Biology. 2024; 13(10):807. https://doi.org/10.3390/biology13100807
Chicago/Turabian StyleLin, Tingting, Siping Li, Dong Zhang, Xin Liu, and Yuanhao Ren. 2024. "Effects of Stocking Density on the Survival, Growth, and Stress Levels of the Juvenile Lined Seahorse (Hippocampus erectus) in Recirculating Aquaculture Systems" Biology 13, no. 10: 807. https://doi.org/10.3390/biology13100807
APA StyleLin, T., Li, S., Zhang, D., Liu, X., & Ren, Y. (2024). Effects of Stocking Density on the Survival, Growth, and Stress Levels of the Juvenile Lined Seahorse (Hippocampus erectus) in Recirculating Aquaculture Systems. Biology, 13(10), 807. https://doi.org/10.3390/biology13100807