Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions
Simple Summary
Abstract
1. Introduction
2. HSPs and Microgravity: Exploring the Role of HSPs in Cellular Adaptation to Spaceflight
3. Cardiovascular System: The Role of HSPs in Endothelial Cell Survival
4. Muscular System: The Protective Role of HSPs Against Muscle Damage During Spaceflight
- An overall reduction in muscle mass, leading to skeletal muscle atrophy and resulting in a decrease in functional performance. In this regard, several studies have shown a loss of volume of 7% in space missions lasting between 9 and 16 days [38];
- A decline in protein synthesis and degradation of fine actin filaments due to microgravity and disuse, reducing contractile strength, speed, and muscle endurance. An increased loss of muscle strength has been observed, particularly in muscle groups involved in maintaining posture and walking (e.g., lower limb and trunk muscles) [39];
- A qualitative and quantitative change in muscle fibers [40]. Researchers analyzed biopsies of the vastus lateralis muscle of eight crew members, obtained 3 to 16 weeks before launch and after landing (within three hours) from missions lasting between 5 and 11 days [41]. Comparing the samples obtained after landing and before the flight, the results showed a relative proportion between slow and fast fibers in favor of the latter and a reduced capillary density.
5. Bones: HSPs and the Challenging Adaptation of Bones to Microgravity
6. Liver: Hepatic Alterations Lead to an Upregulation of HSP70 Expression in Microgravity Conditions
7. Kidney: Exploring the Fine-Tuning of the Kidneys’ Adaptive Mechanisms to Microgravity and the Relationship Between HSP70 and Oxidative Stress
8. The Immune System: The Role of HSPs in the Adaptation of the Immune System to Microgravity
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, S. The effects of microgravity and space radiation on cardiovascular health: From low-Earth orbit and beyond. IJC Heart Vasc. 2020, 30, 100595. [Google Scholar] [CrossRef] [PubMed]
- Thirsk, R.; Kuipers, A.; Mukai, C.; Williams, D. The space-flight environment: The International Space Station and beyond. CMAJ 2009, 180, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Afshinnekoo, E.; Scott, R.T.; MacKay, M.J.; Pariset, E.; Cekanaviciute, E.; Barker, R.; Gilroy, S.; Hassane, D.; Smith, S.M.; Zwart, S.R.; et al. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2021, 184, 6002. [Google Scholar] [CrossRef]
- Dunbar, B. What is Microgravity? NASA Content Administration: Washington, DC, USA, 2017. [Google Scholar]
- Tomsia, M.; Cieśla, J.; Śmieszek, J.; Florek, S.; Macionga, A.; Michalczyk, K.; Stygar, D. Long-term space missions’ effects on the human organism: What we do know and what requires further research. Front. Physiol. 2024, 15, 1284644. [Google Scholar] [CrossRef]
- Tran, Q.D.; Tran, V.; Toh, L.S.; Williams, P.M.; Tran, N.N.; Hessel, V. Space Medicines for Space Health. ACS Med. Chem. Lett. 2022, 13, 1231–1247. [Google Scholar] [CrossRef] [PubMed]
- Lackner, J.R. Motion sickness: More than nausea and vomiting. Exp. Brain Res. 2014, 232, 2493–2510. [Google Scholar] [CrossRef]
- Davis, J.R.; Jennings, R.T.; Beck, B.G.; Bagian, J.P. Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat. Space Environ. Med. 1993, 64 Pt 1, 230–233. [Google Scholar]
- Davis, J.R.; Jennings, R.T.; Beck, B.G. Comparison of treatment strategies for Space Motion Sickness. Acta Astronaut. 1993, 29, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Stroud, K.J.; Harm, D.L.; Klaus, D.M. Preflight virtual reality training as a countermeasure for space motion sickness and disorientation. Aviat. Space Environ. Med. 2005, 76, 352–356. [Google Scholar]
- Antonsen, E.L.; Connell, E.; Anton, W.; Reynolds, R.J.; Buckland, D.M.; Van Baalen, M. Updates to the NASA human system risk management process for space exploration. NPJ Microgravity 2023, 9, 72. [Google Scholar] [CrossRef]
- Dubey, A.; Prajapati, K.S.; Swamy, M.; Pachauri, V. Heat shock proteins: A therapeutic target worth to consider. Vet. World 2015, 8, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, S.; Khan, A.; Ali, M.; Khattak, A.M.; Gai, W.X.; Zhang, H.X.; Wei, A.M.; Gong, Z.H. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019, 20, 5321. [Google Scholar] [CrossRef] [PubMed]
- Timperio, A.M.; Egidi, M.G.; Zolla, L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). J. Proteom. 2008, 71, 391–411. [Google Scholar] [CrossRef] [PubMed]
- Evgen’ev, M.B. Heat shock proteins: A history of study in Russia. Cell Stress. Chaperones 2021, 26, 617–627. [Google Scholar] [CrossRef]
- Chen, B.; Feder, M.E.; Kang, L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol. Ecol. 2018, 27, 3040–3054. [Google Scholar] [CrossRef]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef]
- Corydon, T.J.; Schulz, H.; Richter, P.; Strauch, S.M.; Böhmer, M.; Ricciardi, D.A.; Wehland, M.; Krüger, M.; Erzinger, G.S.; Lebert, M.; et al. Current Knowledge about the Impact of Microgravity on Gene Regulation. Cells 2023, 12, 1043. [Google Scholar] [CrossRef]
- Prasad, B.; Richter, P.; Vadakedath, N.; Mancinelli, R.; Krüger, M.; Strauch, S.M.; Grimm, D.; Darriet, P.; Chapel, J.-P.; Cohen, J.; et al. Exploration of space to achieve scientific breakthroughs. Biotechnol. Adv. 2020, 43, 107572. [Google Scholar] [CrossRef]
- Najrana, T.; Sanchez-Esteban, J. Mechanotransduction as an Adaptation to Gravity. Front. Pediatr. 2016, 4, 140. [Google Scholar] [CrossRef]
- Narayanan, S.A. Gravity’s effect on biology. Front. Physiol. 2023, 14, 1199175. [Google Scholar] [CrossRef]
- Zupanska, A.K.; Denison, F.C.; Ferl, R.J.; Paul, A.L. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Am. J. Bot. 2013, 100, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Ogneva, I.V.; Belyakin, S.N.; Sarantseva, S.V. The Development of Drosophila Melanogaster under Different Duration Space Flight and Subsequent Adaptation to Earth Gravity. PLoS ONE 2016, 11, e0166885. [Google Scholar] [CrossRef] [PubMed]
- Hateley, S.; Hosamani, R.; Bhardwaj, S.R.; Pachter, L.; Bhattacharya, S. Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity. Genomics 2016, 108, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Pala, R.; Cruciani, S.; Manca, A.; Garroni, G.; El Faqir, M.A.; Lentini, V.; Capobianco, G.; Pantaleo, A.; Maioli, M. Mesenchymal Stem Cell Behavior under Microgravity: From Stress Response to a Premature Senescence. Int. J. Mol. Sci. 2023, 24, 7753. [Google Scholar] [CrossRef]
- Duscher, A.A.; Vroom, M.M.; Foster, J.S. Impact of modeled microgravity stress on innate immunity in a beneficial animal-microbe symbiosis. Sci. Rep. 2024, 14, 2912. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, A.; Locatelli, L.; Castiglioni, S.; Maier, J.A.M. The dynamic adaptation of primary human endothelial cells to simulated microgravity. FASEB J. 2019, 33, 5957–5966. [Google Scholar] [CrossRef]
- Locatelli, L.; Maier, J.A.M. Cytoskeletal Remodeling Mimics Endothelial Response to Microgravity. Front. Cell Dev. Biol. 2021, 9, 733573. [Google Scholar] [CrossRef]
- Provenzano, P.P.; Keely, P.J. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell Sci. 2011, 124 Pt 8, 1195–1205. [Google Scholar] [CrossRef]
- Cotrupi, S.; Maier, J.A. Is HSP70 upregulation crucial for cellular proliferative response in simulated microgravity? J. Gravit. Physiol. 2004, 11, P173–P176. [Google Scholar]
- Prasad, B.; Grimm, D.; Strauch, S.M.; Erzinger, G.S.; Corydon, T.J.; Lebert, M.; Magnusson, N.E.; Infanger, M.; Richter, P.; Krüger, M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int. J. Mol. Sci. 2020, 21, 9373. [Google Scholar] [CrossRef]
- Maier, J.A.; Cialdai, F.; Monici, M.; Morbidelli, L. The impact of microgravity and hypergravity on endothelial cells. Biomed. Res. Int. 2015, 2015, 434803. [Google Scholar] [CrossRef] [PubMed]
- Versari, S.; Villa, A.; Bradamante, S.; Maier, J.A. Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim. Biophys. Acta 2007, 1773, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Janmaleki, M.; Pachenari, M.; Seyedpour, S.M.; Shahghadami, R.; Sanati-Nezhad, A. Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell. Sci. Rep. 2016, 6, 32418. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.I.M.; Bertilaccio, M.T.S.; Ballabio, E.; Maier, J.A.M. Endothelial stress by gravitational unloading: Effects on cell growth and cytoskeletal organization. Biochim. Biophys. Acta 2003, 1642, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Fitts, R.H.; Trappe, S.W.; Costill, D.L.; Gallagher, P.M.; Creer, A.C.; Colloton, P.A.; Peters, J.R.; Romatowski, J.G.; Bain, J.L.; Riley, D.A. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J. Physiol. 2010, 588 Pt 18, 3567–3592. [Google Scholar] [CrossRef]
- Smith, R.C.; Cramer, M.S.; Mitchell, P.J.; Lucchesi, J.; Ortega, A.M.; Livingston, E.W.; Ballard, D.; Zhang, L.; Hanson, J.; Barton, K.; et al. Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength. PLoS ONE 2020, 15, e0230818. [Google Scholar] [CrossRef]
- Murgia, M.; Rittweger, J.; Reggiani, C.; Bottinelli, R.; Mann, M.; Schiaffino, S.; Narici, M.V. Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts. NPJ Microgravity 2024, 10, 60. [Google Scholar] [CrossRef]
- di Prampero, P.E.; Narici, M.V. Muscles in microgravity: From fibres to human motion. J. Biomech. 2003, 36, 403–412. [Google Scholar] [CrossRef]
- Gallagher, P.; Trappe, S.; Harber, M.; Creer, A.; Mazzetti, S.; Trappe, T.; Alkner, B.; Tesch, P. Effects of 84-days of bedrest and resistance training on single muscle fibre myosin heavy chain distribution in human vastus lateralis and soleus muscles. Acta Physiol. Scand. 2005, 185, 61–69. [Google Scholar] [CrossRef]
- Trappe, S.; Costill, D.; Gallagher, P.; Creer, A.; Peters, J.R.; Evans, H.; Riley, D.A.; Fitts, R.H. Exercise in space: Human skeletal muscle after 6 months aboard the International Space Station. J. Appl. Physiol. 2009, 106, 1159–1168. [Google Scholar] [CrossRef]
- Ishihara, A.; Roy, R.R.; Ohira, Y.; Ibata, Y.; Edgerton, V.R. Hypogravity-induced atrophy of rat slow-twitch muscle: Adaptation via increased mRNA levels of ubiquitin ligases. J. Appl. Physiol. 2003, 94, 911–918. [Google Scholar]
- Man, J.; Graham, T.; Squires-Donelly, G.; Laslett, A.L. The effects of microgravity on bone structure and function. NPJ Microgravity 2022, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, J.A.; Partridge, N.C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Sibonga, J.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.M.; Young, M.; Keyak, J.; Kohri, K.; et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone 2019, 128, 112037. [Google Scholar] [CrossRef]
- Cazzaniga, A.; Maier, J.A.M.; Castiglioni, S. Impact of simulated microgravity on human bone stem cells: New hints for space medicine. Biochem. Biophys. Res. Commun. 2016, 473, 181–186. [Google Scholar] [CrossRef]
- Hammond, T.G.; Allen, P.L.; Birdsall, H.H. Effects of Space Flight on Mouse Liver versus Kidney: Gene Pathway Analyses. Int. J. Mol. Sci. 2018, 19, 4106. [Google Scholar] [CrossRef]
- Jonscher, K.R.; Alfonso-Garcia, A.; Suhalim, J.L.; Orlicky, D.J.; Potma, E.O.; Ferguson, V.L.; Bouxsein, M.L.; Bateman, T.A.; Stodieck, L.S.; Levi, M.; et al. Spaceflight Activates Lipotoxic Pathways in Mouse Liver. PLoS ONE 2016, 11, e0152877. [Google Scholar]
- Zhang, Y.; Zhao, J.; Jing, J.; Zhang, R.; Zhou, X.; Gao, J.; Wang, J.; Li, Y.; Liu, X.; Wang, Q. Effects of Simulated Weightlessness on Metabolizing Enzymes and Pharmacokinetics of Folic Acid in SD Rats. Biol. Pharm. Bull. 2021, 44, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhou, J.; Li, C.; Wang, P.; Zhang, M.; Liu, Z.; Yi, Y.; Zhang, J. Effects of simulated weightlessness on liver Hsp70 and Hsp70mRNA expression in rats. Int. J. Clin. Exp. Med. 2010, 3, 48–54. [Google Scholar]
- Du, F.; Ding, Y.; Zou, J.; Li, Z.; Tian, J.; She, R.; Wang, D.; Wang, H.; Lv, D.; Chang, L. Morphology and Molecular Mechanisms of Hepatic Injury in Rats under Simulated Weightlessness and the Protective Effects of Resistance Training. PLoS ONE 2015, 10, e0127047. [Google Scholar] [CrossRef]
- Marshall-Goebel, K.; Laurie, S.S.; Alferova, I.V.; Arbeille, P.; Auñón-Chancellor, S.M.; Ebert, D.J.; Lee, S.M.C.; Macias, B.R.; Martin, D.S.; Pattarini, J.M.; et al. Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Netw. Open 2019, 2, e1915011, Erratum in JAMA Netw. Open 2020, 3, e1920195. [Google Scholar] [CrossRef] [PubMed]
- Drummer, C.; Norsk, P.; Heer, M. Water and sodium balance in space. Am. J. Kidney Dis. 2001, 38, 684–690. [Google Scholar] [CrossRef] [PubMed]
- De Santo, N.G.; Christensen, N.J.; Drummer, C.; Kramer, H.J.; Regnard, J.; Heer, M.; Cirillo, M.; Norsk, P. Fluid balance and kidney function in space: Introduction. Am. J. Kidney Dis. 2001, 38, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Navasiolava, N.; Yuan, M.; Murphy, R.; Robin, A.; Coupé, M.; Wang, L.; Alameddine, A.; Gauquelin-Koch, G.; Gharib, C.; Li, Y.; et al. Vascular and Microvascular Dysfunction Induced by Microgravity and Its Analogs in Humans: Mechanisms and Countermeasures. Front. Physiol. 2020, 11, 952. [Google Scholar] [CrossRef]
- Drummer, C.; Heer, M.; Herten, M.; Gerzer, R. Regulation of volume homeostasis in reduced gravity: Possible involvement of atrial natriuretic peptide, renal natriuretic peptide and cyclic GMP, Projektbericht, DLR-Interner Bericht. Anthrorack Spacelab Mission 1997, 22, 55–61. [Google Scholar]
- Pavlakou, P.; Dounousi, E.; Roumeliotis, S.; Eleftheriadis, T.; Liakopoulos, V. Oxidative Stress and the Kidney in the Space Environment. Int. J. Mol. Sci. 2018, 19, 3176. [Google Scholar] [CrossRef]
- Ding, Y.; Zou, J.; Li, Z.; Tian, J.; Abdelalim, S.; Du, F.; She, R.; Wang, D.; Tan, C.; Wang, H.; et al. Study of histopathological and molecular changes of rat kidney under simulated weightlessness and resistance training protective effect. PLoS ONE 2011, 6, e20008. [Google Scholar] [CrossRef]
- Siew, K.; Nestler, K.A.; Nelson, C.; D’Ambrosio, V.; Zhong, C.; Li, Z.; Grillo, A.; Wan, E.R.; Patel, V.; Overbey, E.; et al. Cosmic kidney disease: An integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction. Nat. Commun. 2024, 15, 4923. [Google Scholar] [CrossRef]
- Vasilopoulou, V.; Papanikolaou, P.; Raptis, S.; Elliopoulos, E.; Diamantopoulou, E.; Elkouris, M.; Moutzouris, D.; Tsoukalas, N.; Eleftheriadis, K.; Kourti, M.; et al. Space Medicine and Nephrology: The Lunar and Mars Missions of NASA and SpaceX. Int. J. Mol. Sci. 2018, 19, 3176. [Google Scholar]
- Crucian, B.; Sams, C. Immune system dysregulation during spaceflight: Clinical risk for exploration-class missions. J. Leukoc. Biol. 2009, 86, 1017–1018. [Google Scholar] [CrossRef]
- Crucian, B.; Stowe, R.; Mehta, S.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J. Clin. Immunol. 2013, 33, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Rooney, B.V.; Crucian, B.E.; Pierson, D.L.; Laudenslager, M.L.; Mehta, S.K. Herpes Virus Reactivation in Astronauts During Spaceflight and Its Application on Earth. Front. Microbiol. 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Ishii, H.; Endo, R.; Hamanaka, S.; Hidaka, N.; Miyauchi, M.; Hagiwara, N.; Miyao, T.; Yamamori, T.; Aiba, T.; Akiyama, N.; et al. Establishing a method for the cryopreservation of viable peripheral blood mononuclear cells in the International Space Station. NPJ Microgravity 2024, 10, 84. [Google Scholar] [CrossRef]
- Pestov, I.D.; Barber, A.J.; Crew, M.D.; Zeitlin, C.; Rabin, B.M. Mechanical environmental cues affect heat shock protein expression in human lymphocytes flown on board Space Shuttle Endeavour mission STS-77. J. Leukoc. Biol. 2001, 69, 755–761. [Google Scholar]
System/Organ | Proteins | Cells/Tissue | Action/Role or Event in Microgravity Condition | References |
---|---|---|---|---|
Cardiovascular system | TNXIP; HSP70; HSP27 | Cytoskeleton; endothelial cells | The simulated microgravity increases TXNIP, which may contribute to cytoskeletal alterations, and HSP70 and HSP27 help protect endothelial cells from cell death | [26,27,28,29] |
Microgravity stimulates endothelial cell growth by overexpressing heat-shock protein 70 and reducing interleukin-1 alpha, which inhibits cell growth | [32,33] | |||
Endothelial cells not experiencing gravity undergo cytoskeletal changes, reducing actin to prevent unnecessary fiber accumulation | [34] | |||
Muscular system | HSP27; HSP70; HSP84 | Muscular tissue | HSP gene expression in rat muscles decreased during hindlimb suspension and spaceflight, indicating an influence of mechanical and neural activity on HSP mRNA levels | [41] |
Bones | RUNX2 | Bone mesenchymalstem cells | Simulated microgravity upregulated several key proteins and transcription factors (such as RUNX2) in human bone mesenchymal stem cells compared to normal gravity | [45] |
Liver | Hepatocytes | Spaceflight can cause liver lipid accumulation and affect biotransformation capacity | [47,48] | |
HSP70 | Simulated weightlessness increases HSP70 expression in the liver of rats, particularly at 6 h of suspension | [49] | ||
The presence of inducible HSP70 in the liver increases during early spaceflight, providing cells with stress tolerance and stabilizing cellular processes | [50] | |||
Kidneys | A moderate HSP70 expression has a protective role, but overexpression could trigger cell necrosis | [57] | ||
HSP70 | Mitochondria; endothelial cells | The prolonged exposure to increased oxidative stress during and after spaceflights results in complex kidney damage | [58] | |
Immune system | HSP27; HSP70 | Lymphocytes | Mechanical and environmental factors in space affect the expression of HSPs in human lymphocytes, e.g., microgravity and launch vibrations influence HSP expression levels | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manna, O.M.; Burgio, S.; Picone, D.; Carista, A.; Pitruzzella, A.; Fucarino, A.; Bucchieri, F. Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. Biology 2024, 13, 921. https://doi.org/10.3390/biology13110921
Manna OM, Burgio S, Picone D, Carista A, Pitruzzella A, Fucarino A, Bucchieri F. Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. Biology. 2024; 13(11):921. https://doi.org/10.3390/biology13110921
Chicago/Turabian StyleManna, Olga Maria, Stefano Burgio, Domiziana Picone, Adelaide Carista, Alessandro Pitruzzella, Alberto Fucarino, and Fabio Bucchieri. 2024. "Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions" Biology 13, no. 11: 921. https://doi.org/10.3390/biology13110921
APA StyleManna, O. M., Burgio, S., Picone, D., Carista, A., Pitruzzella, A., Fucarino, A., & Bucchieri, F. (2024). Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. Biology, 13(11), 921. https://doi.org/10.3390/biology13110921