Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain, Media and Cultivation Conditions
2.2. Bioinformatic Analysis of the Genome of G. polyisoprenivorans 135
2.3. Cultivation of G. Polyisoprenivorans Strain 135 and Evaluation of Its Efficiency as a Degrader of Aromatic Compounds
2.4. Measurement of Naphthalene Degradation Degree in the Medium
2.5. Detection of Naphthalene Metabolites
3. Results and Discussion
3.1. Cultural and Morphological Characteristics of the Strain G. polyisoprenivorans 135
3.2. Horizontal Gene Transfer (HGT) Regions in the Genome of G. polyisoprenivorans Strain 135
3.3. Pangenome Analysis of Strain 135 and Its Closest Relatives
3.3.1. The Pangenome of Coding Regions
3.3.2. The Pangenome of Non-Coding Regions
3.3.3. Search for Non-Coding RNAs in the Genome of G. polyisoprenivorans Strain 135
3.4. Growth Characteristics of Strain 135 on Aromatic Compounds
3.5. Assumptions about the Organization of Pathways and Mechanisms of Naphthalene Degradation in the Strain Gordonia Polyisoprenivorans 135
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Honda, M.; Suzuki, N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef]
- Magalhães, K.M.; Carreira, R.S.; Filho, J.S.R.; Rocha, P.P.; Santana, F.M.; Yogui, G.T. Polycyclic aromatic hydrocarbons (PAHs) in fishery resources affected by the 2019 oil spill in Brazil: Short-term environmental health and seafood safety. Mar. Pollut. Bull. 2022, 175, 113334. [Google Scholar] [CrossRef]
- Han, M.; Ma, A.; Dong, Z.; Yin, J.; Shao, B. Organochlorine pesticides and polycyclic aromatic hydrocarbons in serum of Beijing population: Exposure and health risk assessment. Sci. Total. Environ. 2023, 860, 160358. [Google Scholar] [CrossRef]
- Roszko, M.; Juszczyk, K.; Szczepańska, M.; Świder, O.; Szymczyk, K. Background levels of polycyclic aromatic hydrocarbons and legacy organochlorine pesticides in wheat sampled in 2017 and 2018 in Poland. Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef]
- Zhonghua, Z.; Zhang, L.; Wu, J. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments from lakes along the middle-lower reaches of the Yangtze River and the Huaihe River of China. Limnol. Oceanogr. 2015, 61, 47–60. [Google Scholar] [CrossRef]
- Dandajeh, H.A.; Talibi, M.; Ladommatos, N.; Hellier, P. Polycyclic aromatic hydrocarbon and soot emissions in a diesel engine and from a tube reactor. J. King Saud Univ. Eng. Sci. 2020, 34, 435–444. [Google Scholar] [CrossRef]
- Freeman, D.J.; Cattell, F.C.R. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 1990, 24, 1581–1585. [Google Scholar] [CrossRef]
- Lim, H.; Silvergren, S.; Spinicci, S.; Rad, F.M.; Nilsson, U.; Westerholm, R.; Johansson, C. Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden. Atmospheric Meas. Tech. 2022, 22, 11359–11379. [Google Scholar] [CrossRef]
- Lima, A.L.C.; Farrington, J.W.; Reddy, C.M. Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review. Environ. Forensics 2005, 6, 109–131. [Google Scholar] [CrossRef]
- Tan, Y.L.; Quanci, J.F.; Borys, R.D.; Quanci, M.J. Polycyclic aromatic hydrocarbons in smoke particles from wood and duff burning. Atmospheric Environ. Part A Gen. Top. 1992, 26, 1177–1181. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef]
- Rabani, M.S.; Habib, A.; Gupta, M.K. Polycyclic Aromatic Hydrocarbons: Toxic Effects and Their Bioremediation Strategies. In Bioremediation and Biotechnology, Vol 4: Techniques for Noxious Substances Remediation; Springer International Publishing: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Anan‘ina, L.N.; Yastrebova, O.V.; Demakov, V.A.; Plotnikova, E.G. Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhnekamsk salt mining region of Russia. Antonie van Leeuwenhoek 2011, 100, 309–316. [Google Scholar] [CrossRef]
- Cavalca, L.; Colombo, M.; Larcher, S.; Gigliotti, C.; Collina, E.; Andreoni, V. Survival and naphthalene-degrading activity of Rhodococcus sp. strain 1BN in soil microcosms. J. Appl. Microbiol. 2002, 92, 1058–1065. [Google Scholar] [CrossRef]
- Uz, I.; Duan, Y.; Ogram, A. Characterization of the naphthalene-degrading bacterium,Rhodococcus opacusM213. FEMS Microbiol. Lett. 2000, 185, 231–238. [Google Scholar] [CrossRef]
- Zeinali, M.; Vossoughi, M.; Ardestani, S. Degradation of phenanthrene and anthracene byNocardia otitidiscaviarumstrain TSH1, a moderately thermophilic bacterium. J. Appl. Microbiol. 2008, 105, 398–406. [Google Scholar] [CrossRef]
- Zeinali, M.; Vossoughi, M.; Ardestani, S.K. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere 2008, 72, 905–909. [Google Scholar] [CrossRef]
- Ausuri, J.; Vitale, G.A.; Coppola, D.; Esposito, F.P.; Buonocore, C.; de Pascale, D. Assessment of the Degradation Potential and Genomic Insights towards Phenanthrene by Dietzia psychralcaliphila JI1D. Microorganisms 2021, 9, 1327. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Sun, X.; Min, J.; Hu, X. High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3. Int. Biodeterior. Biodegradation 2017, 118, 110–118. [Google Scholar] [CrossRef]
- Venil, C.K.; Malathi, M.; Devi, P.R. Characterization of Dietzia maris AURCCBT01 from oil-contaminated soil for biodegradation of crude oil. 3 Biotech 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Kelley, I.; Freeman, J.P.; Cerniglia, C.E. Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation 1990, 1, 283–290. [Google Scholar] [CrossRef]
- Tirkey, S.R.; Ram, S.; Mishra, S. Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship breaking yard, Gujarat. Heliyon 2021, 7, e06334. [Google Scholar] [CrossRef]
- Ma, J.; Zhuang, Y.; Wang, Y.; Zhu, N.; Wang, T.; Xiao, H.; Chen, J. Update on new trend and progress of the mechanism of polycyclic aromatic hydrocarbon biodegradation by Rhodococcus, based on the new understanding of relevant theories: A review. Environ. Sci. Pollut. Res. 2023, 30, 93345–93362. [Google Scholar] [CrossRef]
- Peng, T.; Kan, J.; Hu, J.; Hu, Z. Genes and novel sRNAs involved in PAHs degradation in marine bacteria Rhodococcus sp. P14 revealed by the genome and transcriptome analysis. 3 Biotech 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Song, X.; Xu, Y.; Li, G.; Zhang, Y.; Huang, T.; Hu, Z. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar. Pollut. Bull. 2011, 62, 2122–2128. [Google Scholar] [CrossRef]
- Krivoruchko, A.; Kuyukina, M.; Peshkur, T.; Cunningham, C.J.; Ivshina, I. Rhodococcus Strains from the Specialized Collection of Alkanotrophs for Biodegradation of Aromatic Compounds. Molecules 2023, 28, 2393. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Y.-S. Fluorene degradation by Rhodococcus sp. A2-3 isolated from hydrocarbon contaminated sediment of the Pearl River estuary, China. Ecotoxicology 2021, 30, 929–935. [Google Scholar] [CrossRef]
- Ehiosun, K.I.; Godin, S.; Urios, L.; Lobinski, R.; Grimaud, R. Degradation of long-chain alkanes through biofilm formation by bacteria isolated from oil-polluted soil. Int. Biodeterior. Biodegrad. 2022, 175, 105508. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Liu, Y.; Wu, X. Biological Process of Alkane Degradation by Gordonia sihwaniensis. ACS Omega 2021, 7, 55–63. [Google Scholar] [CrossRef]
- Piccolo, L.L.; De Pasquale, C.; Fodale, R.; Puglia, A.M.; Quatrini, P. Involvement of an Alkane Hydroxylase System of Gordonia sp. Strain SoCg in Degradation of Solid n -Alkanes. Appl. Environ. Microbiol. 2011, 77, 1204–1213. [Google Scholar] [CrossRef]
- Akhtar, N.; Akhtar, K.; Ghauri, M.A. Biodesulfurization of Thiophenic Compounds by a 2-Hydroxybiphenyl-Resistant Gordonia sp. HS126-4N Carrying dszABC Genes. Curr. Microbiol. 2017, 75, 597–603. [Google Scholar] [CrossRef]
- Hu, T.; Yang, C.; Hou, Z.; Liu, T.; Mei, X.; Zheng, L.; Zhong, W. Phthalate Esters Metabolic Strain Gordonia sp. GZ-YC7, a Potential Soil Degrader for High Concentration Di-(2-ethylhexyl) Phthalate. Microorganisms 2022, 10, 641. [Google Scholar] [CrossRef]
- Kanaujiya, D.K.; Sivashanmugam, S.; Pakshirajan, K. Biodegradation and toxicity removal of phthalate mixture by Gordonia sp. in a continuous stirred tank bioreactor system. Environ. Technol. Innov. 2022, 26, 102324. [Google Scholar] [CrossRef]
- Nishioka, T.; Iwata, M.; Imaoka, T.; Mutoh, M.; Egashira, Y.; Nishiyama, T.; Shin, T.; Fujii, T. A Mono-2-Ethylhexyl Phthalate Hydrolase from a Gordonia sp. That Is Able To Dissimilate Di-2-Ethylhexyl Phthalate. Appl. Environ. Microbiol. 2006, 72, 2394–2399. [Google Scholar] [CrossRef]
- Drzyzga, O.; Fernández de las Heras, L.; Morales, V.; Navarro Llorens, J.M.; Perera, J. Cholesterol degradation by Gordonia cholesterolivorans. Appl. Environ. Microbiol. 2011, 77, 4802–4810. [Google Scholar] [CrossRef]
- Liu, N.; Maser, E.; Zhang, T. Genomic analysis of Gordonia polyisoprenivorans strain R9, a highly effective 17 beta-estradiol- and steroid-degrading bacterium. Chem. Interact. 2021, 350, 109685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ren, Y.; He, J.; Cheng, S.; Yuan, J.; Ge, F.; Li, W.; Zhang, Y.; Xie, G. Multiplicity of 3-ketosteroid Δ1-dehydrogenase enzymes in Gordonia neofelifaecis NRRL B-59395 with preferences for different steroids. Ann. Microbiol. 2015, 65, 1961–1971. [Google Scholar] [CrossRef]
- Chauhan, A.K.; Ahmad, A.; Singh, S.P.; Kumar, A. Biodesulfurization of benzonaphthothiophene by an isolated Gordonia sp. IITR100. Int. Biodeterior. Biodegrad. 2015, 104, 105–111. [Google Scholar] [CrossRef]
- Ahmad, A.; Chauhan, A.K.; Javed, S.; Kumar, A. Desulfurization of thianthrene by a Gordonia sp. IITR100. Biotechnol. Lett. 2014, 36, 2209–2214. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.; Marques, S.; Matos, J.; Tenreiro, R.; Gírio, F.M. Dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using recycled paper sludge hydrolyzate. Chemosphere 2008, 70, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.C.C.; Alviano, D.S.; Pádula, M.; Leitão, A.C.; Martins, O.B.; Ribeiro, C.M.S.; Sassaki, M.Y.M.; Matta, C.P.S.; Bevilaqua, J.; Sebastián, G.V.; et al. Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl. Microbiol. Biotechnol. 2005, 71, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Delegan, Y.; Kocharovskaya, Y.; Frantsuzova, E.; Streletskii, R.; Vetrova, A. Characterization and genomic analysis of Gordonia alkanivorans 135, a promising dibenzothiophene-degrading strain. Biotechnol. Rep. 2021, 29, e00591. [Google Scholar] [CrossRef]
- Young, C.-C.; Lin, T.-C.; Yeh, M.-S.; Shen, F.-T.; Chang, J.-S. Identification and Kinetic Characteristics of an Indigenous Diesel-degrading Gordonia alkanivorans Strain. World J. Microbiol. Biotechnol. 2005, 21, 1409–1414. [Google Scholar] [CrossRef]
- Isaac, P.; Martínez, F.L.; Bourguignon, N.; Sánchez, L.A.; Ferrero, M.A. Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. Int. Biodeterior. Biodegradation 2015, 101, 23–31. [Google Scholar] [CrossRef]
- Frantsuzova, E.; Bogun, A.; Shishkina, L.; Vetrova, A.; Solyanikova, I.; Delegan, Y. Pangenome Analysis and Physiological Characterization of Gordonia alkanivorans Strains Capable of Utilizing Persistent Organic Pollutants. Eng. Proc. 2023, 37, 110. [Google Scholar] [CrossRef]
- Kurniati, T.H.; Rusmana, I.; Suryani, A.; Mubarik, N.R. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10. Biosaintifika J. Biol. Biol. Educ. 2016, 8, 336. [Google Scholar] [CrossRef]
- Hu, F.-C.; Li, X.-Y.; Su, Z.-C.; Wang, X.-J.; Zhang, H.-W.; Sun, J.-D. Identification and degradation capability of three pyrene-degrading Gordonia sp. strains. Yingyong Shengtai Xuebao 2011, 22, 1857–1862. [Google Scholar]
- Emelyanova, E.V.; Souzina, N.E.; Polivtseva, V.N.; Reshetilov, A.N.; Solyanikova, I.P. Survival and biodegradation activity of Gordonia polyisoprenivorans 135: Basics of a biosensor receptor. Appl. Biochem. Microbiol. 2017, 53, 580–586. [Google Scholar] [CrossRef]
- Suzina, N.E.; Sorokin, V.V.; Polivtseva, V.N.; Klyueva, V.V.; Emelyanova, E.V.; Solyanikova, I.P. From Rest to Growth: Life Collisions of Gordonia polyisoprenivorans 135. Microorganisms 2022, 10, 465. [Google Scholar] [CrossRef]
- Frantsuzova, E.; Bogun, A.; Solomentsev, V.; Vetrova, A.; Streletskii, R.; Solyanikova, I.; Delegan, Y. Whole Genome Analysis and Assessment of the Metabolic Potential of Gordonia rubripertincta Strain 112, a Degrader of Aromatic and Aliphatic Compounds. Biology 2023, 12, 721. [Google Scholar] [CrossRef]
- Frantsuzova, E.; Solomentsev, V.; Vetrova, A.; Travkin, V.; Solyanikova, I.; Delegan, Y. Complete Genome Sequence of Gordonia polyisoprenivorans 135, a Promising Degrader of Aromatic Compounds. Genome Announc. 2023, 12, e0005823. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Ha, S.-M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Dereeper, A.; Summo, M.; Meyer, D.F. PanExplorer: A web-based tool for exploratory analysis and visualization of bacterial pan-genomes. Bioinformatics 2022, 38, 4412–4414. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.-Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Chao, J.; Li, Z.; Sun, Y.; Aluko, O.O.; Wu, X.; Wang, Q.; Liu, G. MG2C: A user-friendly online tool for drawing genetic maps. Mol. Hortic. 2021, 1, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.L.; Mullet, J.; Hindi, F.; Stoll, J.E.; Gupta, S.; Choi, M.; Keenum, I.; Vikesland, P.; Pruden, A.; Zhang, L. mobileOG-db: A Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements. Appl. Environ. Microbiol. 2022, 88, e0099122. [Google Scholar] [CrossRef] [PubMed]
- Vernikos, G.S.; Parkhill, J. Interpolated variable order motifs for identification of horizontally acquired DNA: Revisiting the Salmonella pathogenicity islands. Bioinformatics 2006, 22, 2196–2203. [Google Scholar] [CrossRef]
- A Thorpe, H.; Bayliss, S.C.; Sheppard, S.K.; Feil, E.J. Piggy: A rapid, large-scale pan-genome analysis tool for intergenic regions in bacteria. GigaScience 2018, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Tange, O. GNU Parallel 20200622 (‘Privacy Shield’). Zenodo. 2020. Available online: https://zenodo.org/records/3956817 (accessed on 15 March 2024).
- Di Salvo, M.; Puccio, S.; Peano, C.; Lacour, S.; Alifano, P. RhoTermPredict: An algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases. BMC Bioinform. 2019, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.-Q.; Zhang, Z.-Y.; Zhu, X.-J.; Lin, Y.; Chen, W.; Tang, H.; Lin, H. iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2018, 35, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Naville, M.; Ghuillot-Gaudeffroy, A.; Marchais, A.; Gautheret, D. ARNold: A web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011, 8, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Arias-Carrasco, R.; Vásquez-Morán, Y.; Nakaya, H.I.; Maracaja-Coutinho, V. StructRNAfinder: An automated pipeline and web server for RNA families prediction. BMC Bioinform. 2018, 19, 55–55:7. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Data Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 189–201. [Google Scholar] [CrossRef]
- Solyanikova, I.P.; Golovlev, E.L.; Lisnyak, O.V.; Golovleva, L.A. Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: Comparison with analogous en-zymes of the ordinary and modified ortho-cleavage pathways. Biochem. Biokhimiia 1999, 64, 824–831. [Google Scholar]
- Frantsuzova, E.; Bogun, A.; Vetrova, A.; Delegan, Y. Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens 2022, 11, 1496. [Google Scholar] [CrossRef]
- Woo, H.L.; Hazen, T.C. Enrichment of Bacteria From Eastern Mediterranean Sea Involved in Lignin Degradation via the Phenylacetyl-CoA Pathway. Front. Microbiol. 2018, 9, 922. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Zhou, S.; Lian, M. Microbial degradation of carbamazepine by a newly isolated of Gordonia polyophrenivorans. Environ. Technol. Innov. 2023, 32, 103322. [Google Scholar] [CrossRef]
- Chen, G.; Dong, W.; Wang, H.; Zhao, Z.; Wang, F.; Wang, F.; Nieto-Delgado, C. Carbamazepine degradation by visible-light-driven photocatalyst Ag3PO4/GO: Mechanism and pathway. Environ. Sci. Ecotechnol. 2021, 9, 100143. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Lei, J.; Liu, W.; Tong, M.; Liang, J. The degradation pathways of carbamazepine in advanced oxidation process: A mini review coupled with DFT calculation. Sci. Total. Environ. 2021, 779, 146498. [Google Scholar] [CrossRef] [PubMed]
- Vos, M.; Hesselman, M.C.; Beek, T.A.T.; van Passel, M.W.; Eyre-Walker, A. Rates of Lateral Gene Transfer in Prokaryotes: High but Why? Trends Microbiol. 2015, 23, 598–605. [Google Scholar] [CrossRef]
- Berthold, T.; Centler, F.; Hübschmann, T.; Remer, R.; Thullner, M.; Harms, H.; Wick, L.Y. Mycelia as a focal point for horizontal gene transfer among soil bacteria. Sci. Rep. 2016, 6, 36390. [Google Scholar] [CrossRef]
- Maheshwari, M.; Abulreesh, H.H.; Khan, M.S.; Ahmad, I.; Pichtel, J. Horizontal Gene Transfer in Soil and the Rhizosphere: Impact on Ecological Fitness of Bacteria. In Agriculturally Important Microbes for Sustainable Agriculture; Springer: Singapore, 2017; pp. 111–130. [Google Scholar] [CrossRef]
- Jung, C.; Crocker, F.; Eberly, J.; Indest, K. Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J. Appl. Microbiol. 2011, 110, 1449–1459. [Google Scholar] [CrossRef] [PubMed]
- Heine, T.; Zimmerling, J.; Ballmann, A.; Kleeberg, S.B.; Rückert, C.; Busche, T.; Winkler, A.; Kalinowski, J.; Poetsch, A.; Scholtissek, A.; et al. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. Appl. Environ. Microbiol. 2018, 84, e00154-18. [Google Scholar] [CrossRef]
- Yocca, A.E.; Edger, P.P. Machine learning approaches to identify core and dispensable genes in pangenomes. Plant Genome 2021, 15, e20135. [Google Scholar] [CrossRef]
- Gordienko, E.N.; Kazanov, M.D.; Gelfand, M.S. Evolution of Pan-Genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J. Bacteriol. 2013, 195, 2786–2792. [Google Scholar] [CrossRef]
- Rouli, L.; Merhej, V.; Fournier, P.-E.; Raoult, D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect. 2015, 7, 72–85. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, J.P.; Moran, N.A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 2011, 10, 13–26. [Google Scholar] [CrossRef]
- Ochman, H.; Caro-Quintero, A. Genome Size and Structure, Bacterial. In Encyclopedia of Evolutionary Biology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 179–185. [Google Scholar] [CrossRef]
- Abendroth, U.; Schmidtke, C.; Bonas, U. Small non-coding RNAs in plant-pathogenic Xanthomonas spp. RNA Biol. 2014, 11, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Schmidtke, C.; Findeiß, S.; Sharma, C.M.; Kuhfuß, J.; Hoffmann, S.; Vogel, J.; Stadler, P.F.; Bonas, U. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res. 2011, 40, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.L.C.; Johns, N.I.; Yang, A.; Velez-Cortes, F.; Smillie, C.S.; Smith, M.B.; Alm, E.J.; Wang, H.H. Genome and sequence determinants governing the expression of horizontally acquired DNA in bacteria. ISME J. 2020, 14, 2347–2357. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V. Horizontal transfer beyond genes. Proc. Natl. Acad. Sci. USA 2014, 111, 15865–15866. [Google Scholar] [CrossRef] [PubMed]
- Oren, Y.; Smith, M.B.; Johns, N.I.; Zeevi, M.K.; Biran, D.; Ron, E.Z.; Corander, J.; Wang, H.H.; Alm, E.J.; Pupko, T. Transfer of noncoding DNA drives regulatory rewiring in bacteria. Proc. Natl. Acad. Sci. USA 2014, 111, 16112–16117. [Google Scholar] [CrossRef] [PubMed]
- Gatti, D.L.; Palfey, B.A.; Lah, M.S.; Entsch, B.; Massey, V.; Ballou, D.P.; Ludwig, M.L. The Mobile Flavin of 4-OH Benzoate Hydroxylase. Science 1994, 266, 110–114. [Google Scholar] [CrossRef]
- Sherlock, M.E.; Breaker, R.R. Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria. Biochemistry 2017, 56, 359–363. [Google Scholar] [CrossRef]
- Sherlock, M.E.; Sadeeshkumar, H.; Breaker, R.R. Variant Bacterial Riboswitches Associated with Nucleotide Hydrolase Genes Sense Nucleoside Diphosphates. Biochemistry 2018, 58, 401–410. [Google Scholar] [CrossRef]
- Pahlke, J.; Dostálová, H.; Holátko, J.; Degner, U.; Bott, M.; Pátek, M.; Polen, T. The small 6C RNA of Corynebacterium glutamicum is involved in the SOS response. RNA Biol. 2016, 13, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J.; Rodgers, A.; Rose, G.; D’halluin, A.; Kipkorir, T.; Barker, D.; Waddell, S.J.; Arnvig, K.B. The Mycobacterium tuberculosis sRNA F6 Modifies Expression of Essential Chaperonins, GroEL2 and GroES. Microbiol. Spectr. 2021, 9, e0109521. [Google Scholar] [CrossRef] [PubMed]
- Kummer, C.; Schumann, P.; Stackebrandt, E. Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int. J. Syst. Evol. Microbiol. 1999, 49, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.-B.; Wang, C.-Y.; Lv, C.-Y.; Lun, Z.-M.; Zheng, C.-G. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water. Int. J. Environ. Res. Public Health 2017, 14, 215. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Sun, X.; Zhou, P.; Liu, R.; Liang, F.; Ma, Y. Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int. J. Syst. Evol. Microbiol. 2003, 53, 1643–1646. [Google Scholar] [CrossRef] [PubMed]
- Mullaeva, S.A.; Delegan, Y.A.; Streletskii, R.A.; Sazonova, O.I.; Petrikov, K.V.; Ivanova, A.A.; Dyatlov, I.A.; Shemyakin, I.G.; Bogun, A.G.; Vetrova, A.A. Pseudomonas veronii strain 7–41 degrading medium-chain n-alkanes and polycyclic aromatic hydrocarbons. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jacques, R.J.S.; Okeke, B.C.; Bento, F.M.; Peralba, M.C.R.; Camargo, F.A.O. Characterization of a Polycyclic Aromatic Hydrocarbon–Degrading Microbial Consortium from a Petrochemical Sludge Landfarming Site. Bioremediation J. 2007, 11, 1–11. [Google Scholar] [CrossRef]
- Lin, C.-L.; Shen, F.-T.; Tan, C.-C.; Huang, C.-C.; Chen, B.-Y.; Arun, A.; Young, C.-C. Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation. Microbiol. Res. 2012, 167, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Grund, E.; Denecke, B.; Eichenlaub, R. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol. 1992, 58, 1874–1877. [Google Scholar] [CrossRef]
- Tomás-Gallardo, L.; Gómez-Álvarez, H.; Santero, E.; Floriano, B. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB. Microb. Biotechnol. 2013, 7, 100–113. [Google Scholar] [CrossRef]
- Costa, D.M.; Gómez, S.V.; de Araújo, S.S.; Pereira, M.S.; Alves, R.B.; Favaro, D.C.; Hengge, A.C.; Nagem, R.A.; Brandão, T.A. Catalytic mechanism for the conversion of salicylate into catechol by the flavin-dependent monooxygenase salicylate hydroxylase. Int. J. Biol. Macromol. 2019, 129, 588–600. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Shi, Y.; Song, W.; Zhang, C. Cloning, Expression and Characterization of a Mesophilic Catechol 1,2-dioxygenase from Rhodococcus ruber OA1. Biotechnology 2016, 16, 10–18. [Google Scholar] [CrossRef]
- Roy, S.; Kästner, J. Catalytic Mechanism of Salicylate Dioxygenase: QM/MM Simulations Reveal the Origin of Unexpected Regioselectivity of the Ring Cleavage. Chem. A Eur. J. 2017, 23, 8949–8962. [Google Scholar] [CrossRef]
- Neidle, E.L.; Hartnett, C.; Ornston, L.N.; Bairoch, A.; Rekik, M.; Harayama, S. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J. Bacteriol. 1991, 173, 5385–5395. [Google Scholar] [CrossRef]
- Broderick, J.B. Catechol dioxygenases. Essays Biochem. 1999, 34, 173–189. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M.; Haeffner, F. Mechanism for Catechol Ring-Cleavage by Non-Heme Iron Extradiol Dioxygenases. J. Am. Chem. Soc. 2004, 126, 8919–8932. [Google Scholar] [CrossRef]
- Ge, F.; Li, W.; Chen, G.; Liu, Y.; Zhang, G.; Yong, B.; Wang, Q.; Wang, N.; Huang, Z.; Li, W.; et al. Draft Genome Sequence of Gordonia neofelifaecis NRRL B-59395, a Cholesterol-Degrading Actinomycete. J. Bacteriol. 2011, 193, 5045–5046. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Badaya, S.K.; Singh, R.; Lim, J.Y. Complete Genome Sequence of Gordonia sp. Strain JH63, Isolated from Human Skin. Genome Announc. 2020, 9, 10-1128. [Google Scholar] [CrossRef] [PubMed]
NBRC 16320 | JCM 10675 | ATCC BAA-14 | |
---|---|---|---|
Genbank acc. Number | BAEI00000000.1 | BBGD00000000.1 | JAAXPC000000000.1 |
Submitted | 01-DEC-2011 | 18-JUN-2014 | 06-APR-2020 |
Sequencing technology | Roche 454 | Ion PGM | Illumina NovaSeq |
Coverage | 16x | 35x | 206.9x |
GC% | 66.90 | 65.60 | 66.90 |
Contigs number | 113 | 2876 | 54 |
Total length, bp | 6,285,478 | 4,974,030 | 6,287,369 |
Strain Name | 135 | C | VH2 | R9 | HW436 |
---|---|---|---|---|---|
Genbank acc. Number | CP116236.1 | CP073075.1 | CP003119.1, CP003120.1 | CP072203.1 | ARVZ01 |
Total length, Mb | 5.99 | 5.93 | 5.84 | 6.03 | 6.33 |
Size of plasmid(s), kb | - | - | 174 | - | - |
CDS number | 5168 | 5147 | 5100 | 5286 | 5509 |
ANI value with type strain, % | 98.68 | 98.42 | 98.19 | 94.14 | 98.64 |
DDH value with type strain, % | 88.30 | 87.90 | 79.40 | 72.60 | 90.40 |
ANI value with the strain 135, % | - | 98.39 | 98.01 | 93.94 | 98.49 |
DDH value with the strain 135, % | - | 84.90 | 81.10 | 73.80 | 83.50 |
Gene Accession Number | Position in the Genome | Product Name | |
---|---|---|---|
1 | WCB38965.1 | 1730449..1731774 | aromatic ring-hydroxylating dioxygenase subunit alpha |
2 | WCB38968.1 | 1733415..1733933 | aromatic-ring-hydroxylating dioxygenase subunit beta |
3 | WCB38962.1 | 1727528..1728595 | extradiol ring-cleavage dioxygenase |
4 | WCB38964.1 | 1729905..1730231 | non-heme iron oxygenase ferredoxin subunit |
5 | WCB37763.1 | 226176..227519 | aromatic ring-hydroxylating dioxygenase subunit alpha |
6 | WCB38820.1 | 1559611..1560738 | aromatic ring-hydroxylating dioxygenase subunit alpha |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frantsuzova, E.; Bogun, A.; Kopylova, O.; Vetrova, A.; Solyanikova, I.; Streletskii, R.; Delegan, Y. Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. Biology 2024, 13, 339. https://doi.org/10.3390/biology13050339
Frantsuzova E, Bogun A, Kopylova O, Vetrova A, Solyanikova I, Streletskii R, Delegan Y. Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. Biology. 2024; 13(5):339. https://doi.org/10.3390/biology13050339
Chicago/Turabian StyleFrantsuzova, Ekaterina, Alexander Bogun, Olga Kopylova, Anna Vetrova, Inna Solyanikova, Rostislav Streletskii, and Yanina Delegan. 2024. "Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135" Biology 13, no. 5: 339. https://doi.org/10.3390/biology13050339
APA StyleFrantsuzova, E., Bogun, A., Kopylova, O., Vetrova, A., Solyanikova, I., Streletskii, R., & Delegan, Y. (2024). Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. Biology, 13(5), 339. https://doi.org/10.3390/biology13050339