Travelling in Microphis (Teleostei: Syngnathidae) Otoliths with Two-Dimensional X-ray Fluorescence Maps: Twists and Turns on the Road to Strontium Incorporation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Synchrotron-Induced XRF Scanning and Data Acquisition
2.3. Best Use of Synchrotron Facility Allocation Time
2.4. Sr:Ca Ratio 2D Raster
2.5. Colour Map Tuning
‘Red-to-Slate Grey’ Sr:Ca Ratio Permutation
2.6. 3-3-2 RGB Image Conversion
2.7. Post-Treatment Computation for Sr:Ca Ratio Frequency Distribution
3. Results
3.1. Output Process
3.2. Otolith Sr:Ca Distribution of Discrete Zones
3.3. Environment Transition Signature in M. brachyurus and M. nicoleae
3.4. M. torrentius
3.5. M. cruentus
3.6. Added Value of 3-3-2 RGB Image Conversion Method
4. Discussion
4.1. M. brachyurus and M. nicoleae: Amphidromous Species
4.2. New Caledonian Microphis: A Versatile Lifestyle?
4.3. Advantages of 2D XRF Mapping When Addressing Biological Questions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hüssy, K.; Limburg, K.E.; De Pontual, H.; Thomas, O.R.; Cook, P.K.; Heimbrand, Y.; Blass, M.; Sturrock, A.M. Trace Element Patterns in Otoliths: The Role of Biomineralization. Rev. Fish. Sci. Aqua. 2021, 29, 445–477. [Google Scholar] [CrossRef]
- Campana, S.E.; Thorrold, S.R. Otoliths, Increments, and Elements: Keys to a Comprehensive Understanding of Fish Populations? Can. J. Fish. Aquat. Sci. 2001, 58, 30–38. [Google Scholar] [CrossRef]
- Teichert, N.; Valade, P.; Grondin, H.; Trichet, E.; Sardenne, F.; Gaudin, P. Pelagic Larval Traits of the Amphidromous Goby Sicyopterus lagocephalus Display Seasonal Variations Related to Temperature in La Réunion Island. Ecol. Freshw. Fish. 2016, 25, 234–247. [Google Scholar] [CrossRef]
- Taddese, F.; Reid, M.; Heim-Ballew, H.; Jarvis, M.G.; Closs, G.P. Otolith Chemistry of Triplefin Forsterygion nigripenne Indicates Estuarine Residency. Fish. Sci. 2021, 87, 271–281. [Google Scholar] [CrossRef]
- Lord, C.; Tabouret, H.; Claverie, F.; Pécheyran, C.; Keith, P. Femtosecond Laser Ablation ICP-MS Measurement of Otolith Sr:Ca and Ba:Ca Composition Reveal Differential use of Freshwater Habitats for Three Amphidromous Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species. J. Fish Biol. 2011, 79, 1304–1321. [Google Scholar] [CrossRef] [PubMed]
- Reis-Santos, P.; Gillanders, B.M.; Sturrock, A.M.; Izzo, C.; Oxman, D.S.; Lueders-Dumont, J.A.; Walther, B.D. Reading the Biomineralized Book of Life: Expanding Otolith Biogeochemical Research and Applications for Fisheries and Ecosystem-Based Management. Rev. Fish. Biol. Fisheries. 2023, 33, 411–449. [Google Scholar] [CrossRef]
- Haÿ, V.; Berland, S.; Medjoubi, K.; Somogyi, A.; Mennesson, M.I.; Keith, P.; Lord, C. Unmasking Pipefish Otolith Using Synchrotron-Based Scanning X-ray Fluorescence. Sci. Rep. 2023, 13, 4794. [Google Scholar] [CrossRef] [PubMed]
- Secor, D.; Rooker, J. Is Otolith Strontium a Useful Scalar of Life Cycles in Estuarine Fishes? Fish. Res. 2000, 46, 359–371. [Google Scholar] [CrossRef]
- Limburg, K.E.; Huang, R.; Bilderback, D.H. Fish Otolith Trace Element Maps: New Approaches with Synchrotron Microbeam X-ray Fluorescence. X-ray Spectrom. J. 2007, 36, 336–342. [Google Scholar] [CrossRef]
- Zimmerman, C.E. Relationship of otolith strontium-to-calcium ratios and salinity: Experimental validation for juvenile salmonids. Can. J. Fish. Aquat. Sci. 2005, 62, 88–97. [Google Scholar] [CrossRef]
- Zimmerman, C.E.; Swanson, H.K.; Volk, E.C.; Kent, A.J. Species and Life History Affect the Utility of Otolith Chemical Composition for Determining Natal Stream of Origin for Pacific Salmon. Trans. Am. Fish. Soc. 2013, 142, 1370–1380. [Google Scholar] [CrossRef]
- Feutry, P.; Castelin, M.; Ovenden, J.R.; Dettaï, A.; Robinet, T.; Cruaud, C.; Keith, P. Evolution of Diadromy in Fish: Insights from a Tropical Genus (Kuhlia Species). Am. Nat. 2013, 181, 52–63. [Google Scholar] [CrossRef]
- Arai, T. Early Life History and Recruitment Processes of a Tropical Anguillid Eel Anguilla marmorata to the Pacific Coast, as Revealed by Otolith Sr:Ca Ratios and Microstructure. Biology 2022, 11, 803. [Google Scholar] [CrossRef] [PubMed]
- Taillebois, L.; Tabouret, H.; Pecheyran, C.; Keith, P. Inputs from microchemistry to the understanding of three Sicydiinae species’ life cycle. Life. Environ. 2015, 65, 73–84. [Google Scholar]
- McDowall, R.M. On Amphidromy, a Distinct Form of Diadromy in Aquatic Organisms. Fish. Fish. 2007, 8, 1–13. [Google Scholar] [CrossRef]
- Keith, P.; Lord, C. Tropical Freshwater Gobies: Amphidromy as a Life Cycle. In The Biology of Gobies; Patzner, R.A., Van Tassel, J.L., Kapoor, B.G., Eds.; Science Publishers: Jersey, UK; Enfield, NH, USA, 2011; pp. 243–277. [Google Scholar]
- Keith, P. Biology and Ecology of Amphidromous Gobiidae of the Indo-Pacific and the Caribbean Regions. J. Fish. Biol. 2003, 63, 831–847. [Google Scholar] [CrossRef]
- Van der Laan, R.; Eschmeyer, W.N.; Fricke, R. Family-Group Names of Recent Fishes. Zootaxa 2014, 3882, 1–230. [Google Scholar] [CrossRef] [PubMed]
- Haÿ, V.; Mennesson, M.I.; Lord, C.; Keith, P. Why Several When One Can Unite Them All? Integrative Taxonomic Revision of Indo-Pacific Freshwater Pipefish (Nerophinae). J. Linn. Soc. London Zool. 2023, 198, 923–956. [Google Scholar] [CrossRef]
- Vincent, A.C.J.; Foster, S.J.; Koldewey, H.J. Conservation and Management of Seahorses and Other Syngnathidae. J. Fish. Biol. 2011, 78, 1681–1724. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, H.; Feng, G.; Liu, Y.; Han, Z.; Zhao, F.; Ye, Q.; Hu, W.; Song, C. Evaluation of the Effectiveness of Marking Juvenile Takifugu obscurus Otoliths With Strontium. Fishes 2022, 7, 371. [Google Scholar] [CrossRef]
- Ferreira, I.; Daros, F.A.; Moreira, C.; Feijó, D.; Rocha, A.; Mendez-Vicente, A.; Pisonero, J.; Correia, A.T. Is Chelidonichthys lucerne (Linnaeus, 1758) a Marine Estuarine-Dependent Fish? Insights from Saccular Otolith Microchemistry. Fishes 2023, 8, 383. [Google Scholar] [CrossRef]
- Kerr, L.A.; Campana, S.E. Chemical Composition of Fish Hard Parts as a Natural Marker of Fish Stocks. In Stock Identification Methods, 2nd ed.; Cadrin, S.X., Kerr, L.A., Mariani, S., Eds.; Elsevier: Boston, MA, USA, 2014; pp. 205–234. [Google Scholar]
- Walther, B.D.; Limburg, K.E. The Use of Otolith Chemistry to Characterize Diadromous Migrations. J. Fish. Biol. 2012, 81, 796–825. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, W.N.; Chang, C.W.; Wang, C.H.; Shiao, J.C.; Iizuka, Y.; Yang, Y.J.; You, C.F.; Lozys, L. Misidentification of the Migratory History of Anguillid Eels by Sr/Ca Ratios of Vaterite Otoliths. Mar. Ecol. Prog. Ser. 2007, 348, 285–295. [Google Scholar] [CrossRef]
- de Pontual, H.; MacKenzie, K.M.; Tabouret, H.; Daverat, F.; Mahé, K.; Pecheyran, C.; Hüssy, K. Heterogeneity of Otolith Chemical Composition from Two-Dimensional Mapping: Relationship With Biomineralization Mechanisms and Implications for Microchemistry Analyses. J. Fish. Biol. 2024, 104, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Thorrold, S.R.; Shuttleworth, S. In Situ Analysis of Trace Elements and Isotope Ratios in Fish Otoliths Using Laser Ablation Sector Field Inductively Coupled Plasma Mass Spectrometry. Can. J. Fish. Aquat. Sci. 2000, 57, 232–242. [Google Scholar] [CrossRef]
- FitzGerald, J.L.; Thorrold, S.R.; Bailey, K.M.; Brown, A.L.; Severin, K.P. Elemental Signatures in Otoliths of Larval Walleye Pollock (Theragra chalcogramma) From the Northeast Pacific Ocean. Fish. Bull. 2004, 102, 604–616. [Google Scholar]
- Limburg, K.E.; Elfman, M. Insights From Two-Dimensional Mapping of Otolith Chemistry. J. Fish. Biol. 2017, 90, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Dimasi, E.; Sarikaya, M. Synchrotron X-ray Microbeam Diffraction From Abalone Shell. J. Mater. Res. 2004, 19, 1471–1476. [Google Scholar] [CrossRef]
- Bottini, C.; Dapiaggi, M.; Erba, E.; Faucher, G.; Rotiroti, N. High Resolution Spatial Analyses of Trace Elements in Coccoliths Reveal New Insights into Element Incorporation in Coccolithophore Calcite. Sci. Rep. 2020, 10, 9825. [Google Scholar] [CrossRef]
- Cuif, J.P.; Dauphin, Y.; Lo, C.; Medjoubi, K.; Saulnier, D.; Somogyi, A. Synchrotron-Based HR-Fluorescence and Mineralogical Mapping of the Initial Growth Stages of Polynesian Cultivated Pearls Disprove the ‘Reversed Shell’ Concept. Minerals 2022, 12, 172. [Google Scholar] [CrossRef]
- Adams, F.; Janssens, K.; Snigirev, A. Microscopic X-ray Fluorescence Analysis and Related Methods with Laboratory and Synchrotron Sources. J. Anal. At. Spectrom. 1998, 13, 319–331. [Google Scholar] [CrossRef]
- Hedges, K.J.; Ludsin, S.A.; Frayer, B.J. Effects of Ethanol Preservation on Otolith Microchemistry. J. Fish Biol. 2004, 64, 923–937. [Google Scholar] [CrossRef]
- Somogyi, A.; Medjoubi, K.; Baranton, G.; Le Roux, V.; Ribbens, M.; Polack, F.; Philippot, P.; Samama, J.P. Optical Design and Multi-Scale Scanning Spectro-Microscopy Possibilities at the Nanoscopium Beamline of Synchrotron Soleil. J. Synchrotron Radiat. 2015, 22, 1118–1129. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, A.; Medjoubi, K.; Messaoudi, C.; Marco, S.; Somogyi, A. MMX-I: Data-Processing Software for Multimodal X-Ray Imaging and Tomography. J. Synchrotron Rad. 2016, 23, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Van Grieken, R.; Markowicz, A. (Eds.) Handbook of X-ray Spectrometry; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J.A.A. Multiplatform Code for the Analysis of Energy-Dispersive X-Ray Fluorescence Spectra. Spectroc. Acta Part B At. Spectrosc. 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Keith, P.; Boseto, D.; Lord, C. Freshwater Fish of the Solomon Islands; Société Française d’Ichtyologie: Paris, France, 2021; pp. 1–173. [Google Scholar]
- Caesar, M.; Grandcolas, P.; Pellens, R. Outstanding micro-endemism in New Caledonia: More Than One Out of Ten Animal Species Have a Very Restricted Distribution Range. PLoS ONE 2017, 12, e0181437. [Google Scholar] [CrossRef] [PubMed]
- Tabouret, H.; Tomadin, M.; Taillebois, L.; Iida, M.; Lord, C.; Pécheyran, C.; Keith, P. Amphidromy and Marine Larval Phase of Ancestral Gobioids Rhyacichthys guilberti and Protogobius attiti (Teleostei: Rhyacichthyidae). Mar. Freshw. Res. 2014, 65, 776–783. [Google Scholar] [CrossRef]
- Heim-Ballew, H.; Moody, K.N.; Blum, M.J.; McIntyre, P.B.; Hogan, J.D. Migratory Flexibility in Native Hawai’ian Amphidromous fishes. J. Fish Biol. 2020, 96, 456–468. [Google Scholar] [CrossRef]
- Liao, T.Y.; Huang, W.C.; Iizuka, Y.; Chou, M.T.; Shiao, J.C. Facultative Amphidromy and Pelagic Larval Duration Plasticity of Rhinogobius formosanus (Teleostei, Gobioidei). ZooKeys 2020, 951, 91. [Google Scholar] [CrossRef]
- Lisi, P.J.; Hogan, J.D.; Holt, G.; Moody, K.N.; Wren, J.L.; Kobayashi, D.R.; Blum, M.J.; McIntyre, P.B. Stream and Ocean Hydrodynamics Mediate Partial Migration Strategies in an amphidromous Hawaiian goby. Ecology 2022, 103, e3800. [Google Scholar] [CrossRef] [PubMed]
- Closs, G.P.; Hicks, A.S.; Jellyman, P.G. Life Histories of Closely Related Amphidromous and Non-Migratory Fish Species: A Trade-off Between Egg Size and Fecundity. Freshw. Biol. 2013, 58, 1162–1177. [Google Scholar] [CrossRef]
- Hogan, J.D.; Blum, M.J.; Gilliam, J.F.; Bickford, N.; McIntyre, P.B. Consequences of Alternative Dispersal Strategies in a Putatively Amphidromous Fish. Ecology 2014, 95, 2397–2408. [Google Scholar] [CrossRef]
- Iida, M.; Watanabe, S.; Tsukamoto, K. Oceanic Larval Duration and Recruitment Mechanism of the Amphidromous Fish Sicyopterus japonicus (Gobioidei: Sicydiinae). Reg. Stud. Mar. Sci. 2015, 1, 25–33. [Google Scholar] [CrossRef]
- Brown, R.J.; Severin, K.P. Elemental Distribution within Polymorphic Inconnu (Stenodus leucichthys) Otoliths is Affected by Crystal Structure. Can. J. Fish. Aquat. Sci. 1999, 56, 1898–1903. [Google Scholar] [CrossRef]
- Melancon, S.; Fryer, B.J.; Ludsin, S.A.; Gagnon, J.E.; Yang, Z. Effects of Crystal Structure on the Uptake of Metals by Lake Trout (Salvelinus namaycush) Otoliths. Can. J. Fish. Aquat. Sci. 2005, 62, 2609–2619. [Google Scholar] [CrossRef]
- Elsdon, T.S.; Gillanders, B.M. Relationship Between Water and Otolith Elemental Concentrations in Juvenile Black Bream Acanthopagrus butcheri. Mar. Ecol. Prog. Ser. 2003, 260, 263–272. [Google Scholar] [CrossRef]
- Elsdon, T.S.; Gillanders, B.M. Consistency of Patterns Between Laboratory Experiments and Field Collected Fish in Otolith Chemistry: An Example and Applications for Salinity Reconstructions. Mar. Freshw. Res. 2005, 56, 609–617. [Google Scholar] [CrossRef]
- Reis-Santos, P.; Tanner, S.E.; Elsdon, T.S.; Cabral, H.N.; Gillanders, B.M. Effects of Temperature, Salinity and Water Composition on Otolith Elemental Incorporation of Dicentrarchus labrax. J. Exp. Mar. Biol. Ecol. 2013, 446, 245–252. [Google Scholar] [CrossRef]
- Walther, B.D.; Kingsford, M.J.; O’Callaghan, M.D.; McCulloch, M.T. Interactive Effects of Ontogeny, Food Ration and Temperature on Elemental Incorporation in Otoliths of a Coral Reef Fish. Environ. Biol. Fish 2010, 89, 441–451. [Google Scholar] [CrossRef]
- Thomas, O.R.B.; Ganio, K.; Roberts, B.R.; Swearer, S.E. Trace Element–Protein Interactions in Endolymph From the Inner Ear of Fish: Implications for Environmental Reconstructions Using Fish Otolith Chemistry. Metallomics 2017, 9, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Izzo, C.; Reis-Santos, P.; Gillanders, B.M. Otolith Chemistry Does not Just Reflect Environmental Conditions: A Meta-Analytic Evaluation. Fish Fish. 2018, 19, 441–454. [Google Scholar] [CrossRef]
- Fablet, R.; Pecquerie, L.; de Pontual, H.; Høie, H.; Millner, R.; Mosegaard, H.; Kooijman, S.A. Shedding Light on Fish Otolith Biomineralization Using a Bioenergetic Approach. PLoS ONE 2011, 6, e27055. [Google Scholar] [CrossRef] [PubMed]
- Jessop, B.; Cairns, D.; Thibault, I.; Tzeng, W. Life History of American Eel Anguilla rostrata: New Insights From Otolith Microchemistry. Aquat. Biol. 2008, 1, 205–216. [Google Scholar] [CrossRef]
- Brown, R.J.; Severin, K.P. Otolith Chemistry Analyses Indicate That Water Sr:Ca is the Primary Factor Influencing Otolith Sr:Ca for Freshwater And Diadromous Fish But Not for Marine Fish. Can. J. Fish. Aquat. Sci. 2009, 66, 1790–1808. [Google Scholar] [CrossRef]
- de Pontual, H.; Lagardere, F.; Amara, R.; Bohn, M.; Ogor, A. Influence of Ontogenetic and Environmental Changes in the Otolith Microchemistry of Juvenile Sole (Solea solea). J. Sea Res. 2003, 50, 199–211. [Google Scholar] [CrossRef]
- Morales-Nin, B.; Swan, S.C.; Gordon, J.D.M.; Palmer, M.; Geffen, A.J.; Shimmield, T.; Sawyer, T. Age-Related Trends in Otolith Chemistry of Merluccius merluccius from the North-Eastern Atlantic Ocean and the Western Mediterranean Sea. Mar. Freshw. Res. 2005, 56, 599–607. [Google Scholar] [CrossRef]
- Hughes, J.M.; Stewart, J.; Gillanders, B.M.; Collins, D.; Suthers, I.M. Relationship Between Otolith Chemistry and Age in a Widespread Pelagic Teleost Arripis trutta: Influence of Adult Movements on Stock Structure and Implications for Management. Mar. Freshw. Res. 2016, 67, 224–237. [Google Scholar] [CrossRef]
- Grammer, G.L.; Morrongiello, J.R.; Izzo, C.; Hawthorne, P.J.; Middleton, J.F.; Gillanders, B.M. Coupling Biogeochemical Tracers with Fish Growth Reveals Physiological and Environmental Controls on Otolith Chemistry. Ecol. Monogr. 2017, 87, 487–507. [Google Scholar] [CrossRef]
- Söllner, C.; Burghammer, M.; Busch-Nentwich, E.; Berger, J.; Schwarz, H.; Riekel, C.; Nicolson, T. Control of Crystal Size and Lattice Formation by Starmaker In Otolith Biomineralization. Science 2003, 302, 282–286. [Google Scholar] [CrossRef]
- Taillebois, L.; Keith, P.; Valade, P.; Torres, P.; Baloche, S.; Dufour, S.; Rousseau, K. Involvement of Thyroid Hormones in the Control of Larval Metamorphosis in Sicyopterus lagocephalus (Teleostei: Gobioidei) at the Time of River Recruitment. Gen. Comp. Endocrinol. 2011, 173, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Otter, L.M.; Agbaje, O.; Kilburn, M.R.; Lenz, C.; Henry, H.; Trimby, P.; Hoppe, P.; Jacob, D.E. Insights into Architecture, Growth Dynamics, and Biomineralization From Pulsed Sr-Labelled Katelysia rhytiphora Shells (Mollusca, Bivalvia). Biogeosciences 2019, 16, 3439–3455. [Google Scholar] [CrossRef]
Species | ID | SL | Sex | Country | Island | River | Scan | Collection Number |
---|---|---|---|---|---|---|---|---|
M. brachyurus | JP48 | 175.75 | F | Japan | Okinawa | Genka | 8067 | MNHN-IC-2023-0276 |
M. brachyurus | JP44 | 187.81 | F | Japan | Okinawa | Genka | 8079 | MNHN-IC-2021-0320 |
M. brachyurus | JP35 | 173.66 | M | Japan | Okinawa | Teima | 8080 | MNHN-IC-2023-0274 |
M. brachyurus | JP32 | 165.12 | F | Japan | Okinawa | Teima | 8091 | MNHN-IC-2023-0275 |
M. brachyurus | JP33 | 180.69 | M | Japan | Okinawa | Teima | 8094 | MNHN-IC-2023-0275 |
M. brachyurus | 17765 | 129.38 | M | Papua New Guinea | New Britain | Rangihi | 3928 | MNHN-IC-2021-0318 |
M. brachyurus | 17766 | 122.49 | F | Papua New Guinea | New Britain | Rangihi | 3943 | MNHN-IC-2021-0318 |
M. brachyurus | 19190 | 101.98 | F | Solomon Islands | Kolombangara | Vaqe | 3916 | MNHN-IC-2021-0331 |
M. brachyurus | RTNC033 | 124.32 | F | New Caledonia | Grande Terre | Creek Baie Nord | 8072 | MNHN-IC-2023-0273 |
M. brachyurus | RTNC117 | 168.60 | M | New Caledonia | Grande Terre | Pwé hiit | 8075 | MNHN-IC-2023-0272 |
M. brachyurus | RTNC145 | 120.41 | F | New Caledonia | Grande Terre | Garana | 8081 | MNHN-IC-2023-0277 |
M. brachyurus | RTNC139 | 105.57 | F | New Caledonia | Grande Terre | Garana | 8083 | MNHN-IC-2021-0322 |
M. brachyurus | RTNC109 | 131.88 | M | New Caledonia | Grande Terre | Pwé hiit | 8099 | MNHN-IC-2023-0272 |
M. brachyurus | PFV52 | 125.32 | F | French Polynesia | Tahiti | Papenoo | 3912 | MNHN-IC-2023-0050 |
M. brachyurus | PFV06 | 105.02 | F | French Polynesia | Tahiti | Papenoo | 3913 | MNHN-IC-2023-0051 |
M. brachyurus | PFV39 | 109.36 | M | French Polynesia | Tahiti | Papenoo | 3915 | MNHN-IC-2023-0052 |
M. brachyurus | PFV42 | 104.15 | F | French Polynesia | Tahiti | Papenoo | 3933 | MNHN-IC-2023-0053 |
M. nicoleae | 19055 | 82.26 | M | Papua New Guinea | New Britain | Walindi | 3917 | MNHN-IC-2023-0045 |
M. nicoleae | 19183 | 69.41 | F | Papua New Guinea | New Britain | Gavuvu | 3939 | MNHN-IC-2023-0446 |
M. nicoleae | 19176 | 90.86 | M | Papua New Guinea | New Britain | Gavuvu | 3940 | MNHN-IC-2023-0446 |
M. nicoleae | 17693 | 93.66 | M | Papua New Guinea | New Britain | Hoskins | 3922 | MNHN-IC-2021-0338 |
M. nicoleae | 14962 | 64.37 | F | Solomon Islands | Ranongga | Ovana | 3918 | MNHN-IC-2021-0336 |
M. nicoleae | 14961 | 83.33 | F | Solomon Islands | Ranongga | Ovana | 3919 | MNHN-IC-2021-0036 |
M. nicoleae | 18253 | 97.65 | M | Solomon Islands | Santa Isabel | Rakata | 3920 | MNHN-IC-2023-0047 |
M. nicoleae | 18268 | 103.90 | M | Solomon Islands | Santa Isabel | Rakata | 3924 | MNHN-IC-2023-0048 |
M. torrentius | RTNC119 | 84.82 | F | New Caledonia | Grande Terre | Garana | 8073 | MNHN-IC-2021-0335 |
M. torrentius | RTNC118 | 89.69 | M | New Caledonia | Grande Terre | Garana | 8077 | MNHN-IC-2021-0335 |
M. torrentius | RTNC114C | 86.15 | M | New Caledonia | Grande Terre | Pwé hiit | 8084 | MNHN-IC-2021-0334 |
M. cruentus | RTNC080 | 112 | F | New Caledonia | Grande Terre | Carénage | 8068 | MNHN-IC-2021-0348 |
M. cruentus | RTNC107 | 149.66 | M | New Caledonia | Grande Terre | Ouenghi | 8066 | MNHN-IC-2021-0349 |
M. cruentus | RTNC106 | 110.23 | F | New Caledonia | Grande Terre | Ouenghi | 8069 | MNHN-IC-2021-0349 |
M. cruentus | RTNC108 | 168.60 | F | New Caledonia | Grande Terre | Ouenghi | 8071 | MNHN-IC-2021-0349 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lord, C.; Haÿ, V.; Medjoubi, K.; Berland, S.; Keith, P. Travelling in Microphis (Teleostei: Syngnathidae) Otoliths with Two-Dimensional X-ray Fluorescence Maps: Twists and Turns on the Road to Strontium Incorporation. Biology 2024, 13, 446. https://doi.org/10.3390/biology13060446
Lord C, Haÿ V, Medjoubi K, Berland S, Keith P. Travelling in Microphis (Teleostei: Syngnathidae) Otoliths with Two-Dimensional X-ray Fluorescence Maps: Twists and Turns on the Road to Strontium Incorporation. Biology. 2024; 13(6):446. https://doi.org/10.3390/biology13060446
Chicago/Turabian StyleLord, Clara, Vincent Haÿ, Kadda Medjoubi, Sophie Berland, and Philippe Keith. 2024. "Travelling in Microphis (Teleostei: Syngnathidae) Otoliths with Two-Dimensional X-ray Fluorescence Maps: Twists and Turns on the Road to Strontium Incorporation" Biology 13, no. 6: 446. https://doi.org/10.3390/biology13060446
APA StyleLord, C., Haÿ, V., Medjoubi, K., Berland, S., & Keith, P. (2024). Travelling in Microphis (Teleostei: Syngnathidae) Otoliths with Two-Dimensional X-ray Fluorescence Maps: Twists and Turns on the Road to Strontium Incorporation. Biology, 13(6), 446. https://doi.org/10.3390/biology13060446