Exposure to Waterpipe Smoke Disrupts Erythrocyte Homeostasis of BALB/c Mice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and WPS Exposure
2.2. Blood Collection and Biochemical Analysis of Plasma and Erythrocytes
3. Statistics
4. Results
4.1. Effect of WPS on Plasma Levels of CRP, LPO, SOD, and NO
4.2. Effect of WPS on Erythrocyte Count and Hematocrit
4.3. Effect of WPS on Red Blood Cell Osmotic Fragility
4.4. Effect of WPS on Erythrocyte Levels of LDH, LPO, GSH, Catalase, and NO
4.5. Effect of WPS on Erythrocyte Levels of ATPase, Intracellular Ca2+, Annexin V Binding, and Calpain
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qasim, H.; Alarabi, A.B.; Alzoubi, K.H.; Karim, Z.A.; Alshbool, F.Z.; Khasawneh, F.T. The effects of hookah/waterpipe smoking on general health and the cardiovascular system. Environ. Health Prev. Med. 2019, 24, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jawad, M.; Charide, R.; Waziry, R.; Darzi, A.; Ballout, R.A.; Akl, E.A. The prevalence and trends of waterpipe tobacco smoking: A systematic review. PLoS ONE 2018, 13, e0192191. [Google Scholar] [CrossRef] [PubMed]
- Chaouachi, K. More rigor needed in systematic reviews on “waterpipe” (hookah, narghile, shisha) smoking. Chest 2011, 139, 1250–1251. [Google Scholar] [CrossRef] [PubMed]
- El-Zaatari, Z.M.; Chami, H.A.; Zaatari, G.S. Health effects associated with waterpipe smoking. Tob. Control 2015, 24, i31–i43. [Google Scholar] [CrossRef] [PubMed]
- Salloum, R.G.; Thrasher, J.F.; Kates, F.R.; Maziak, W. Water pipe tobacco smoking in the United States: Findings from the National Adult Tobacco Survey. Prev. Med. 2015, 71, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Duncan, D.T.; Shahawy, O.E.; Shearston, J.A.; Lee, L.; Tamura, K.; Sherman, S.E.; Weitzman, M. Analysis of state-specific prevalence, regional differences, and correlates of hookah use in US adults, 2012–2013. Nicotine Tob. Res. 2017, 19, 1365–1374. [Google Scholar] [PubMed]
- Nemmar, A.; Raza, H.; Yuvaraju, P.; Beegam, S.; John, A.; Yasin, J.; Hameed, R.S.; Adeghate, E.; Ali, B.H. Nose-only water-pipe smoking effects on airway resistance, inflammation, and oxidative stress in mice. J. Appl. Physiol. 2013, 115, 1316–1323. [Google Scholar] [CrossRef]
- Nemmar, A.; Al-Salam, S.; Yuvaraju, P.; Beegam, S.; Yasin, J.; Ali, B.H. Chronic exposure to water-pipe smoke induces alveolar enlargement, DNA damage and impairment of lung function. Cell. Physiol. Biochem. 2016, 38, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Messner, B.; Bernhard, D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 509–515. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Barua, R.S. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef]
- Waziry, R.; Jawad, M.; Ballout, R.A.; Al Akel, M.; Akl, E.A. The effects of waterpipe tobacco smoking on health outcomes: An updated systematic review and meta-analysis. Int. J. Epidemiol. 2017, 46, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Al-Kubati, M.; Al-Kubati, A.S.; Al’Absi, M.; Fišer, B. The short-term effect of water-pipe smoking on the baroreflex control of heart rate in normotensives. Auton. Neurosci. 2006, 126, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Hakim, F.; Hellou, E.; Goldbart, A.; Katz, R.; Bentur, Y.; Bentur, L. The acute effects of water-pipe smoking on the cardiorespiratory system. Chest 2011, 139, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Alomari, M.A.; Khabour, O.F.; Alzoubi, K.H.; Shqair, D.M.; Stoner, L. Acute vascular effects of waterpipe smoking: Importance of physical activity and fitness status. Atherosclerosis 2015, 240, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Alarabi, A.B.; Karim, Z.A.; Ramirez, J.E.M.; Hernandez, K.R.; Lozano, P.A.; Rivera, J.O.; Alshbool, F.Z.; Khasawneh, F.T. Short-term exposure to waterpipe/hookah smoke triggers a hyperactive platelet activation state and increases the risk of thrombogenesis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 335–349. [Google Scholar] [CrossRef]
- Nemmar, A.; Yuvaraju, P.; Beegam, S.; Ali, B.H. Short-term nose-only water-pipe (shisha) smoking exposure accelerates coagulation and causes cardiac inflammation and oxidative stress in mice. Cell. Physiol. Biochem. 2015, 35, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Yuvaraju, P.; Beegam, S.; John, A.; Raza, H.; Ali, B.H. Cardiovascular effects of nose-only water-pipe smoking exposure in mice. Am. J. Physiol.-Heart Circ. Physiol. 2013, 305, H740–H746. [Google Scholar] [CrossRef] [PubMed]
- Miri-Moghaddam, E.; Mirzaei, R.; Arab, M.-R.; Kaikha, S. The effects of water pipe smoking on hematological parameters in rats. Int. J. Hematol.-Oncol. Stem Cell Res. 2014, 8, 37. [Google Scholar] [PubMed]
- Gangopadhyay, S.; Vijayan, V.K.; Bansal, S.K. Lipids of erythrocyte membranes of COPD patients: A quantitative and qualitative study. COPD J. Chronic Obstr. Pulm. Dis. 2012, 9, 322–331. [Google Scholar] [CrossRef]
- Johnson, R.M.; Ravindranath, Y.; el-Alfy, M.; Goyette, G., Jr. Oxidant damage to erythrocyte membrane in glucose-6-phosphate dehydrogenase deficiency: Correlation with in vivo reduced glutathione concentration and membrane protein oxidation. Blood 1994, 83, 1117–1123. [Google Scholar] [CrossRef]
- Asgary, S.; Naderi, G.H.; Ghannady, A. Effects of cigarette smoke, nicotine and cotinine on red blood cell hemolysis and their-SH capacity. Exp. Clin. Cardiol. 2005, 10, 116. [Google Scholar] [PubMed]
- Germini, F.; Debono, V.B.; Page, D.; Zuk, V.; Kucher, A.; Cotoi, C.; Hobson, N.; Sevestre, M.; Skinner, M.W.; Iorio, A. User-centered development and testing of the online patient-reported outcomes, burdens, and experiences (PROBE) survey and the myPROBE app and integration with the Canadian bleeding disorder registry: Mixed methods study. JMIR Hum. Factors 2022, 9, e30797. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Al-Salam, S.; Yuvaraju, P.; Beegam, S.; Yasin, J.; Ali, B.H. Chronic exposure to water-pipe smoke induces cardiovascular dysfunction in mice. Am. J. Physiol.-Heart Circ. Physiol. 2017, 312, H329–H339. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Review Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic. Res. 2005, 39, 797–815. [Google Scholar] [CrossRef] [PubMed]
- Radisic, R.; Owens, S.D.; Manire, C.A.; Montgomery, N.; Mader, D.; Zirkelbach, B.; Stacy, N.I. Red blood cell osmotic fragility in healthy loggerhead and green sea turtles. J. Vet. Diagn. Investig. 2020, 32, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Zahediasl, S.; Habibi, G.; Ghasemi, A.; Pashaei, R.S.; Shiva, N. Hematological parameters and osmotic fragility of red blood cells in experimentally induced hyperthyroidism in rats. Int. J. Endocrinol. Metab. 2010, 8, 74–78. [Google Scholar]
- Metta, S.; Uppala, S.; Basalingappa, D.R.; Badeti, S.R.; Gunti, S.S. Impact of smoking on erythrocyte indices and oxidative stress in acute myocardial infarction. J. Dr. NTR Univ. Health Sci. 2015, 4, 159–164. [Google Scholar] [CrossRef]
- Metta, S.; Basalingappa, D.R.; Uppala, S.; Mitta, G. Erythrocyte antioxidant defenses against cigarette smoking in ischemic heart disease. J. Clin. Diagn. Res. JCDR 2015, 9, BC08. [Google Scholar] [CrossRef] [PubMed]
- Bhakuni, P.; Chandra, M.; Misra, M.K. Oxidative stress parameters in erythrocytes of post-reperfused patients with myocardial infarction. J. Enzym. Inhib. Med. Chem. 2005, 20, 377–381. [Google Scholar] [CrossRef]
- Ferdous, Z.; Beegam, S.; Tariq, S.; Ali, B.H.; Nemmar, A. The In Vitro Effect of Polyvinylpyrrolidone and Citrate Coated Silver Nanoparticles on Erythrocytic Oxidative Damage and Eryptosis. Cell. Physiol. Biochem. 2018, 49, 1577–1588. [Google Scholar] [CrossRef]
- Qasim, N.; Mahmood, R. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood. PLoS ONE 2015, 10, e0141975. [Google Scholar] [CrossRef] [PubMed]
- Foller, M.; Mahmud, H.; Gu, S.; Wang, K.; Floride, E.; Kucherenko, Y.; Luik, S.; Laufer, S.; Lang, F. Participation of leukotriene C4 in the regulation of suicidal erythrocyte death. Acta Physiol. Pol. 2009, 12, 135. [Google Scholar]
- Pignatelli, P.; Lenti, L.; Sanguigni, V.; Frati, G.; Simeoni, I.; Gazzaniga, P.P.; Pulcinelli, F.M.; Violi, F. Carnitine inhibits arachidonic acid turnover, platelet function, and oxidative stress. Am. J. Physiol.-Heart Circ. Physiol. 2003, 284, H41–H48. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Abed, M.; Lang, E.; Föller, M. Oxidative stress and suicidal erythrocyte death. Antioxid. Redox Signal. 2014, 21, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Ali, B.H. Comparative study on pulmonary toxicity in mice induced by exposure to unflavoured and apple-and strawberry-flavoured tobacco waterpipe smoke. Oxidative Med. Cell. Longev. 2020, 2020, 6450450. [Google Scholar] [CrossRef] [PubMed]
- Khabour, O.F.; Alzoubi, K.H.; Al-Sawalha, N.; Ahmad, M.B.; Shihadeh, A.; Eissenberg, T. The effect of chronic exposure to waterpipe tobacco smoke on airway inflammation in mice. Life Sci. 2018, 200, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Zaaba, N.E.; Yasin, J.; Ali, B.H. Waterpipe tobacco smoke inhalation triggers thrombogenicity, cardiac inflammation and oxidative stress in mice: Effects of flavouring. Int. J. Mol. Sci. 2020, 21, 1291. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, K.H.; Halboup, A.M.; Alomari, M.A.; Khabour, O.F. The neuroprotective effect of vitamin E on waterpipe tobacco smoking-induced memory impairment: The antioxidative role. Life Sci. 2019, 222, 46–52. [Google Scholar] [CrossRef]
- Nemmar, A.; Beegam, S.; Yuvaraju, P.; Yasin, J.; Ali, B.H.; Adeghate, E. Nose-only water-pipe smoke exposure in mice elicits renal histopathological alterations, inflammation, oxidative stress, DNA damage, and apoptosis. Front. Physiol. 2020, 11, 46. [Google Scholar] [CrossRef]
- Rababa’h, A.M.; Sultan, B.B.; Alzoubi, K.H.; Khabour, O.F.; Ababneh, M.A. Exposure to waterpipe smoke induces renal functional and oxidative biomarkers variations in mice. Inhal. Toxicol. 2016, 28, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Charab, M.A.; Abouzeinab, N.S.; Moustafa, M.E. The protective effect of selenium on oxidative stress induced by waterpipe (narghile) smoke in lungs and liver of mice. Biol. Trace Elem. Res. 2016, 174, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawalha, N.A.; Almahmmod, Y.M.; Alzoubi, K.H.; Khabour, O.F.; Alyacoub, W.N. Influence of prenatal waterpipe tobacco smoke exposure on reproductive hormones and oxidative stress of adult male offspring rats. Andrologia 2019, 51, e13318. [Google Scholar] [CrossRef] [PubMed]
- Mesaros, C.; Arora, J.S.; Wholer, A.; Vachani, A.; Blair, I.A. 8-Oxo-2′-deoxyguanosine as a biomarker of tobacco-smoking-induced oxidative stress. Free Radic. Biol. Med. 2012, 53, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Arja, C.; Surapaneni, K.M.; Raya, P.; Adimoolam, C.; Balisetty, B.; Kanala, K.R. Oxidative stress and antioxidant enzyme activity in S outh I ndian male smokers with chronic obstructive pulmonary disease. Respirology 2013, 18, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Haddad, L.; Kelly, D.L.; Weglicki, L.S.; Barnett, T.E.; Ferrell, A.V.; Ghadban, R. A systematic review of effects of waterpipe smoking on cardiovascular and respiratory health outcomes. Tob. Use Insights 2016, 9, TUI-S39873. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.G.; Nagababu, E.; Rifkind, J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 2014, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Maurya, P.K.; Kumar, P.; Chandra, P. Biomarkers of oxidative stress in erythrocytes as a function of human age. World J. Methodol. 2015, 5, 216. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, C.; Silva-Herdade, A. Erythrocyte nitric oxide. In Novel Prospects in Oxidative and Nitrosative Stress; IntechOpen: London, UK, 2018; pp. 131–146. [Google Scholar]
- Rifai, N.; Ridker, P.M. High-sensitivity C-reactive protein: A novel and promising marker of coronary heart disease. Clin. Chem. 2001, 47, 403–411. [Google Scholar] [CrossRef]
- Cafolla, A.; Dragoni, F.; Girelli, G.; Tosti, M.E.; Costante, A.; Pastorelli, D.; Bedogni, G.; Scott, S. Folate status in Italian blood donors: Relation to gender and smoking. Haematologica 2000, 85, 694–698. [Google Scholar]
- Raftos, J.E.; Whillier, S.; Kuchel, P.W. Glutathione synthesis and turnover in the human erythrocyte: Alignment of a model based on detailed enzyme kinetics with experimental data. J. Biol. Chem. 2010, 285, 23557–23567. [Google Scholar] [CrossRef] [PubMed]
- Aliko, V.; Qirjo, M.; Sula, E.; Morina, V.; Faggio, C. Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish Shellfish. Immunol. 2018, 76, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.A.; Pattison, D.I.; Bottle, S.E.; Keddie, D.J.; Davies, M.J. Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals. Chem. Res. Toxicol. 2008, 21, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Pannuru, P.; Vaddi, D.R.; Kindinti, R.R.; Varadacharyulu, N. Increased erythrocyte antioxidant status protects against smoking induced hemolysis in moderate smokers. Hum. Exp. Toxicol. 2011, 30, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Toth, K.M.; Berger, E.M.; Beehler, C.J.; Repine, J.E. Erythrocytes from cigarette smokers contain more glutathione and catalase and protect endothelial cells from hydrogen peroxide better than do erythrocytes from nonsmokers. Am. Rev. Respir. Dis. 1986, 134, 281–284. [Google Scholar] [PubMed]
- Solak, Z.A.; Kabaroğlu, C.; Cok, G.; Parıldar, Z.; Bayındır, Ü.; Özmen, D.; Bayındır, O. Effect of different levels of cigarette smoking on lipid peroxidation, glutathione enzymes and paraoxonase 1 activity in healthy people. Clin. Exp. Med. 2005, 5, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Orhan, H.; Evelo, C.T.; Sahin, G. Erythrocyte antioxidant defense response against cigarette smoking in humans—The glutathione S-transferase vulnerability. J. Biochem. Mol. Toxicol. 2005, 19, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Nagy, O.; Tóthová, C.; Chovanová, F. Clinical and Diagnostic Significance of Lactate Dehydrogenase and Its Isoenzymes in Animals. Vet. Med. Int. 2020, 2020, 5346483. [Google Scholar] [CrossRef] [PubMed]
- Mahfooz, K.; Vasavada, A.M.; Joshi, A.; Pichuthirumalai, S.; Andani, R.; Rajotia, A.; Hans, A.; Mandalia, B.; Dayama, N.; Younas, Z.; et al. Waterpipe Use and Its Cardiovascular Effects: A Systematic Review and Meta-Analysis of Case-Control, Cross-Sectional, and Non-Randomized Studies. Cureus 2023, 15, e34802. [Google Scholar] [CrossRef]
- Rule, C.S.; Patrick, M.; Sandkvist, M. Measuring in vitro ATPase activity for enzymatic characterization. JoVE (J. Vis. Exp.) 2016, 114, e54305. [Google Scholar]
- Padmavathi, P.; Reddy, V.D.; Kavitha, G.; Paramahamsa, M.; Varadacharyulu, N. Chronic cigarette smoking alters erythrocyte membrane lipid composition and properties in male human volunteers. Nitric Oxide 2010, 23, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Padmavathi, P.; Reddy, V.D.; Maturu, P.; Varadacharyulu, N. Smoking-induced alterations in platelet membrane fluidity and Na+/K+-ATPase activity in chronic cigarette smokers. J. Atheroscler. Thromb. 2010, 17, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, E.; du Plooy, J.N.; Bester, J. A comprehensive review on eryptosis. Cell. Physiol. Biochem. 2016, 39, 1977–2000. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Lang, K.S.; Lang, P.A.; Huber, S.M.; Wieder, T. Mechanisms and significance of eryptosis. Antioxid. Redox Signal. 2006, 8, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Lang, E.; Föller, M. Physiology and pathophysiology of eryptosis. Transfus. Med. Hemotherapy 2012, 39, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, H.; Ruifrok, W.P.T.; Westenbrink, B.D.; Cannon, M.V.; Vreeswijk-Baudoin, I.; van Gilst, W.H.; Sillje, H.H.W.; de Boer, R.A. Suicidal erythrocyte death, eryptosis, as a novel mechanism in heart failure-associated anaemia. Cardiovasc. Res. 2013, 98, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Solá, E.; Vayá, A.; Martínez, M.; Moscardó, A.; Corella, D.; Santaolaria, M.L.; España, F.; Hernández-Mijares, A. Erythrocyte membrane phosphatidylserine exposure in obesity. Obesity 2009, 17, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Wiewiora, M.; Piecuch, J.; Sedek, L.; Mazur, B.; Sosada, K. The effects of obesity on CD47 expression in erythrocytes. Cytom. Part B Clin. Cytom. 2017, 92, 485–491. [Google Scholar] [CrossRef]
- Lang, E.; Qadri, S.M.; Jilani, K.; Zelenak, C.; Lupescu, A.; Schleicher, E.; Lang, F. Carbon Monoxide–Sensitive Apoptotic Death of Erythrocytes. Basic Clin. Pharmacol. Toxicol. 2012, 111, 348–355. [Google Scholar] [CrossRef]
- Restivo, I.; Attanzio, A.; Giardina, I.C.; Di Gaudio, F.; Tesoriere, L.; Allegra, M. Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int. J. Mol. Sci. 2022, 23, 14730. [Google Scholar] [CrossRef] [PubMed]
- Attanzio, A.; Frazzitta, A.; Vasto, S.; Tesoriere, L.; Pintaudi, A.M.; Livrea, M.A.; Cilla, A.; Allegra, M. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology 2019, 411, 43–48. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdous, Z.; Beegam, S.; Zaaba, N.E.; Nemmar, A. Exposure to Waterpipe Smoke Disrupts Erythrocyte Homeostasis of BALB/c Mice. Biology 2024, 13, 453. https://doi.org/10.3390/biology13060453
Ferdous Z, Beegam S, Zaaba NE, Nemmar A. Exposure to Waterpipe Smoke Disrupts Erythrocyte Homeostasis of BALB/c Mice. Biology. 2024; 13(6):453. https://doi.org/10.3390/biology13060453
Chicago/Turabian StyleFerdous, Zannatul, Sumaya Beegam, Nur E. Zaaba, and Abderrahim Nemmar. 2024. "Exposure to Waterpipe Smoke Disrupts Erythrocyte Homeostasis of BALB/c Mice" Biology 13, no. 6: 453. https://doi.org/10.3390/biology13060453
APA StyleFerdous, Z., Beegam, S., Zaaba, N. E., & Nemmar, A. (2024). Exposure to Waterpipe Smoke Disrupts Erythrocyte Homeostasis of BALB/c Mice. Biology, 13(6), 453. https://doi.org/10.3390/biology13060453