Reverse Vaccinology Approach to Identify Novel and Immunogenic Targets against Streptococcus gordonii
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sequence Retrieval and Genome Selection
2.2. Collection of Surface Protein
2.3. Epitope Prediction
2.4. Prediction of B-Cell Epitopes
2.5. Prediction of T-Cell Epitope
2.6. Epitope Conservation Analysis
2.7. Population Coverage Prediction of T-Cell Epitopes
2.8. Construction of Multivalent Vaccine Design
2.9. Structure Prediction, Refinement, and Validation of Multi-epitope Vaccine
2.10. Validation of Vaccine 3D Structure
2.11. Molecular Docking with TLR2
2.12. Immune-Simulation
2.13. Gene Cloning
3. Results and Discussion
3.1. Sequence Retrieval and Genome Selection
3.2. Collection of Surface Proteins
3.3. B-cell Epitope Prediction and Selection
3.4. T-Cell Epitope Selection
3.5. Determination of Physiochemical Properties and Vital Features
3.6. Epitope Conservation Analysis
3.7. Multivalent Vaccine Design Construction
3.8. Antigenicity and Allergenicity Prediction of Multivalent Vaccine Construct
3.9. Physicochemical Properties and Solubility Determination of Primary Structure of Vaccine Construct
3.10. Structure Prediction, Refinement, and Validation of Multi-Epitope Vaccine
3.11. Tertiary Structure Prediction
3.12. Molecular Docking of Vaccine Protein with TLR2 and Its Structural Stability
3.13. Immune Simulation
3.14. Gene Cloning
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, O.J.; Kwon, Y.; Park, C.; So, Y.J.; Park, T.H.; Jeong, S.; Im, J.; Yun, C.H.; Han, S.H. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms 2020, 8, 1852. [Google Scholar] [CrossRef] [PubMed]
- Mosailova, N.; Truong, J.; Dietrich, T.; Ashurst, J. Streptococcus gordonii: A Rare Cause of Infective Endocarditis. Case Rep. Infect. Dis. 2019, 2019, 7127848. [Google Scholar] [CrossRef] [PubMed]
- Ngwu, J.N.; Uzoeto, H.O.; Emaimo, J.; Okorie, C.; Mohammed, I.D.; Edemekong, C.I.; Iroha, I.R. Antibiogram of Biofilm Forming Oral Streptococci Species Isolated from Dental Caries Patients Visiting Federal College of Dental Technology and Therapy, Enugu Nigeria. Int. J. Res. Reports Dent. 2022, 5, 12–25. [Google Scholar]
- Chávez De Paz, L.; Svensäter, G.; Dahlén, G.; Bergenholtz, G. Streptococci from root canals in teeth with apical periodontitis receiving endodontic treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2005, 100, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Back, C.R.; Sztukowska, M.N.; Till, M.; Lamont, R.J.; Jenkinson, H.F.; Nobbs, A.H.; Race, P.R. The Streptococcus gordonii Adhesin CshA Protein Binds Host Fibronectin via a Catch-Clamp Mechanism. J. Biol. Chem. 2017, 292, 1538–1549. [Google Scholar] [CrossRef] [PubMed]
- Nasir, S.N.; Iftikhar, A.; Zubair, F.; Alshammari, A.; Alharbi, M.; Alasmari, A.F.; Khan, A.; Waseem, M.; Ali, S.S.; Ali, L.; et al. Structural vaccinology-based design of multi-epitopes vaccine against Streptococcus gordonii and validation using molecular modeling and immune simulation approaches. Heliyon 2023, 9, e16148. [Google Scholar] [CrossRef] [PubMed]
- Ambrosioni, J.; Hernandez-Meneses, M.; Téllez, A.; Pericàs, J.; Falces, C.; Tolosana, J.; Vidal, B.; Almela, M.; Quintana, E.; Llopis, J.; et al. The Changing Epidemiology of Infective Endocarditis in the Twenty-First Century. Curr. Infect. Dis. Rep. 2017, 19, 21. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Delahaye, F.; Obadia, J.F.; Duval, X.; Selton-Suty, C.; Carteaux, J.P.; Hoen, B.; Alla, F. Aortic valve replacement for active infective endocarditis: 5-year survival comparison of bioprostheses, homografts and mechanical prostheses. Eur. J. Cardiothorac. Surg. 2010, 37, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Lima, B.P.; Kho, K.; Nairn, B.L.; Davies, J.R.; Svensäter, G.; Chen, R.; Steffes, A.; Vreeman, G.W.; Meredith, T.C.; Herzberg, M.C. Streptococcus gordonii Type I Lipoteichoic Acid Contributes to Surface Protein Biogenesis. mSphere 2019, 4, 10–1128. [Google Scholar] [CrossRef]
- Ko, E.B.; Kim, S.K.; Seo, H.S.; Yun, C.H.; Han, S.H. Serine-rich repeat adhesins contribute to Streptococcus gordonii-induced maturation of human dendritic cells. Front. Microbiol. 2017, 8, 232114. [Google Scholar] [CrossRef]
- Zheng, B.; Suleman, M.; Zafar, Z.; Ali, S.S.; Nasir, S.N.; Namra; Hussain, Z.; Waseem, M.; Khan, A.; Hassan, F.; et al. Towards an ensemble vaccine against the pegivirus using computational modelling approaches and its validation through in silico cloning and immune simulation. Vaccines 2021, 9, 818. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, W.; Yang, M.; Peng, D.; Chen, L. Development of a Streptococcus gordonii vaccine strain expressing Schistosoma japonicum Sj-F1 and evaluation of using this strain for intranasal immunization in mice. Parasitol. Res. 2013, 112, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Buchy, P.; Standaert, B.; Giaquinto, C.; Prado-Cohrs, D. Vaccine impact: Benefits for human health. Vaccine 2016, 34, 6707–6714. [Google Scholar] [CrossRef]
- Bencurova, E.; Gupta, S.K.; Oskoueian, E.; Bhide, M.; Dandekar, T. Omics and bioinformatics applied to vaccine development against Borrelia. Mol. Omi. 2018, 14, 330–340. [Google Scholar] [CrossRef]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 2014, 12, 7–8. [Google Scholar] [CrossRef]
- Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013, 41, W384. [Google Scholar] [CrossRef]
- Donati, C.; Rappuoli, R. Reverse vaccinology in the 21st century: Improvements over the original design. Ann. N. Y. Acad. Sci. 2013, 1285, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, K. Reverse Vaccinology Approach for Vaccine Development Against Streptococcus Agalactiae. Ph.D. Thesis, Capital University, Bexley, OH, USA, 2022. [Google Scholar]
- Munia, M.; Mahmud, S.; Mohasin, M.; Kibria, K.M.K. In silico design of an epitope-based vaccine against choline binding protein A of Streptococcus pneumoniae. Inform. Med. Unlocked 2021, 23, 100546. [Google Scholar] [CrossRef]
- Sana, M.; Javed, A.; Babar Jamal, S.; Junaid, M.; Faheem, M. Development of multivalent vaccine targeting M segment of Crimean Congo Hemorrhagic Fever Virus (CCHFV) using immunoinformatic approaches. Saudi J. Biol. Sci. 2022, 29, 2372–2388. [Google Scholar] [CrossRef]
- Priyadarshini, V.; Pradhan, D.; Munikumar, M.; Swargam, S.; Umamaheswari, A.; Rajasekhar, D. Genome-based approaches to develop epitope-driven subunit vaccines against pathogens of infective endocarditis. J. Biomol. Struct. Dyn. 2014, 32, 876–889. [Google Scholar] [CrossRef]
- Martinelli, D.D. In silico vaccine design: A tutorial in immunoinformatics. Healthc. Anal. 2022, 2, 100044. [Google Scholar] [CrossRef]
- Pyasi, S.; Sharma, V.; Dipti, K.; Jonniya, N.A.; Nayak, D. Immunoinformatics approach to design multi-epitope-subunit vaccine against bovine ephemeral fever disease. Vaccines 2021, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- Basheer, A.; Jamal, S.B.; Alzahrani, B.; Faheem, M. Development of a tetravalent subunit vaccine against dengue virus through a vaccinomics approach. Front. Immunol. 2023, 14, 1273838. [Google Scholar] [CrossRef] [PubMed]
- Lari, A.; Lari, N.; Biabangard, A. Immunoinformatics Approach to Design a Novel Subunit Vaccine Against Visceral Leishmaniasis. Int. J. Pept. Res. Ther. 2022, 28, 34. [Google Scholar] [CrossRef] [PubMed]
- Jamal, S.B.; Ismail, S.; Yousaf, R.; Qazi, A.S.; Iftikhar, S.; Abbasi, S.W. Exploring Novel 1-Hydroxynaphthalene-2-Carboxanilides Based Inhibitors Against C-Jun N-Terminal Kinases Through Molecular Dynamic Simulation and WaterSwap Analysis. Appl. Biochem. Biotechnol. 2023, 196, 1803–1819. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Amini-Khoei, H.; Tahmasebian, S.; Ghatrehsamani, M.; Ghatreh Samani, K.; Edalatpanah, Y.; Rostampur, S.; Salehi, M.; Ghasemi-Dehnoo, M.; Azadegan-Dehkordi, F.; et al. Designing a novel multi-epitope vaccine against Ebola virus using reverse vaccinology approach. Sci. Rep. 2022, 12, 7757. [Google Scholar] [CrossRef] [PubMed]
- Sanami, S.; Alizadeh, M.; Nosrati, M.; Dehkordi, K.A.; Azadegan-Dehkordi, F.; Tahmasebian, S.; Nosrati, H.; Arjmand, M.H.; Ghasemi-Dehnoo, M.; Rafiei, A.; et al. Exploring SARS-COV-2 structural proteins to design a multi-epitope vaccine using immunoinformatics approach: An in silico study. Comput. Biol. Med. 2021, 133, 104390. [Google Scholar] [CrossRef]
- Kim, S.K.; Im, J.; Ko, E.B.; Lee, D.; Seo, H.S.; Yun, C.H.; Han, S.H. Lipoteichoic acid of Streptococcus gordonii as a negative regulator of human dendritic cell activation. Front. Immunol. 2023, 14, 1056949. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.; Ali, A.; Akbar, H.; Sayaf, A.M.; Khan, A.; Wei, D.Q. Immunoinformatics approaches to explore Helicobacter Pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci. Rep. 2019, 9, 13321. [Google Scholar] [CrossRef]
Sr. # | Gene Name | Protein Name | Uniprot ID | Virulence | MW | Antigenicity | Allergenicity |
---|---|---|---|---|---|---|---|
1 | NC01_06050 | YSIRK_signal domain protein | A0A0A6S1K7 | Yes | 53,992.06 | 0.5118 | Non-allergen |
2 | CC_0349 | Peptidase C51 domain-containing protein | Q9AB82 | Yes | 28,305.13 | 0.3556 | Non-allergen |
3 | HMPREF9381_0242 | AraC family transcriptional regulator | F0HZA2 | Yes | 34,012.54 | 0.3336 | Non-allergen |
4 | gtf3 (nss) | Glycosyl transferase | Q9AEU1 | Yes | 38,007.40 | 0.3780 | Non-allergen |
5 | ftsI | Peptidoglycan D,D-transpeptidase FtsI | D0CCM7 | Yes | 67,659.05 | 0.6184 | Non-allergen |
Sr. # | Property | YSIRK_Signal Domain Protein | Peptidoglycan D,D-Transpeptidase FtsI |
---|---|---|---|
3 | Molecular weight | 53,992.06 kDa | 67,659.05 kDa |
4 | Number of amino acids | 469 | 610 |
5 | Theoretical pI value | 9.36 | 9.78 |
6 | Instability index | 44.23 | 37.64 |
7 | Aliphatic index | 44.73 | 89.69 |
8 | Gravy | −1.277 | −0.355 |
9 | Estimated half life | 30 h (mammalian reticulocytes, in vitro) >20 h (yeast, in vivo) >10 h (Escherichia coli, in vivo) | 30 h (mammalian reticulocytes, in vitro) >20 h (yeast, in vivo) >10 h (Escherichia coli, in vivo) |
10 | Atomic composition (Carbon, Hydrogen, Nitrogen, Oxygen, Sulfur) | C 2401 H 3676 N 686 O 730 S 5 | C 3002 H 4855 N 857 O 877 S 21 |
11 | Total number of negatively charged residues (Asp + Glu) | 66 | 55 |
12 | Total number of positively charged residues (Arg + Lys) | 79 | 81 |
13 | Protein solubility | 0.547 | 0.537 |
Sr. # | Protein Name | Uniprot ID | Molecular Function | Biological Function | Pathway |
---|---|---|---|---|---|
1 | YSIRK_signal domain protein | A0A0A6S1K7 | Carbohydrate binding, Glycopeptides alpha-N-acetylgalactosaminidase activity | No hits | |
2 | Peptidoglycan D,D-transpeptidase FtsI | D0CCM7 | Penicillin binding, peptidoglycan glycosyltransferase activity, serine-type D-Ala-D-Ala carboxypeptidase activity. | Cell wall organization, division septum assembly, FtsZ-dependent cytokinesis, peptidoglycan biosynthetic process, proteolysis, regulation of cell shape. | Cell wall biogenesis; peptidoglycan biosynthesis. |
Protein | Sequence/Epitope | Position | Score | Antigenicity | Allergenicity | Toxicity | Sub-Cellular Localization | MW |
---|---|---|---|---|---|---|---|---|
YSIRK_signal domain-containing protein | LWTPNGLTKGNENNAP | 120 | 0.83 | 0.4168 | Non-allergen | Non-toxic | Outside | 1725.88 |
Peptidoglycan D,D-transpeptidase FtsI | FDMWRFYLLWAVVLLC | 24 | 0.71 | 1.5824 | Non-allergen | Non-toxic | Outside | 2075.56 |
EPGENITLSIDSRLQY | 255 | 0.62 | 1.0752 | Non-allergen | Non-toxic | Outside | 1835 |
Protein | Peptide Sequence/Epitope | MHC-I Alleles | ic50 | Antigenicity |
---|---|---|---|---|
YSIRK_signal domain-containing protein | FYYPPFPDM | HLA-A*29:02, HLA-A*23:01, HLA-A*02:06, HLA-A*24:02, HLA-A*30:02, HLA-A*30:01, HLA-A*68:02, HLA-A*31:01, HLA-A*02:01, HLA-A*26:01, HLA-A*25:01, HLA-A*03:01, HLA-A*01:01, HLA-A*11:01, HLA-A*68:01, HLA-A*32:01 | 63.24 | 1.9204 |
REPFYYPPF | HLA-A*32:01, HLA-A*24:02, HLA-A*23:01, HLA-A*02:06, HLA-A*30:01, HLA-A*29:02, HLA-A*30:02, HLA-A*26:01, HLA-A*31:01, HLA-A*03:01, HLA-A*01:01, HLA-A*25:01, HLA-A*11:01, HLA-A*68:02, HLA-A*02:01, HLA-A*68:01 | 257.72 | 1.3015 | |
VQVDSVTEE | HLA-A*02:06, HLA-A*26:01, HLA-A*11:01, HLA-A*31:01, HLA-A*30:01, HLA-A*02:01, HLA-A*30:02, HLA-A*29:02, HLA-A*01:01, HLA-A*68:01, HLA-A*23:01, HLA-A*25:01, HLA-A*68:02, HLA-A*03:01, HLA-A*32:01, HLA-A*24:02 | 739.1 | 1.4495 | |
Peptidoglycan D,D-transpeptidase FtsI | WAVVLLCFV | HLA-A*02:06, HLA-A*68:02, HLA-A*02:01, HLA-A*30:01, HLA-A*31:01, HLA-A*01:01, HLA-A*68:01, HLA-A*30:02, HLA-A*29:02, HLA-A*26:01, HLA-A*23:01, HLA-A*03:01, HLA-A*25:01, HLA-A*11:01, HLA-A*24:02, HLA-A*32:01 | 14.9 | 1.2845 |
VLLCFVVLI | HLA-A*02:01, HLA-A*02:06, HLA-A*32:01, HLA-A*23:01, HLA-A*30:01, HLA-A*68:02, HLA-A*31:01, HLA-A*24:02, HLA-A*29:02, HLA-A*03:01, HLA-A*01:01, HLA-A*11:01, HLA-A*68:01, HLA-A*30:02, HLA-A*26:01, HLA-A*25:01 | 21.9 | 1.5192 | |
LWAVVLLCF | HLA-A*23:01, HLA-A*24:02, HLA-A*29:02, HLA-A*02:06, HLA-A*30:02, HLA-A*02:01, HLA-A*31:01, HLA-A*30:01, HLA-A*01:01, HLA-A*32:01, HLA-A*03:01, HLA-A*26:01, HLA-A*68:02, HLA-A*25:01, HLA-A*68:01, HLA-A*11:01 | 45.65 | 1.5198 | |
AVVLLCFVV | HLA-A*02:06, HLA-A*02:01, HLA-A*68:02, HLA-A*30:01, HLA-A*31:01, HLA-A*11:01, HLA-A*32:01, HLA-A*30:02, HLA-A*03:01, HLA-A*29:02, HLA-A*26:01, HLA-A*01:01, HLA-A*23:01, HLA-A*24:02, HLA-A*68:01, HLA-A*25:01 | 80.01 | 1.4047 |
Protein | Sequence/Epitope | MHC-II Alleles | ic50 | Antigenicity |
---|---|---|---|---|
YSIRK_signal domain-containing protein | APFVFKPESTPAPKL | HLA-DRB1*04:01, HLA-DRB1*08:02, HLA-DRB1*16:02, HLA-DRB1*08:01, HLA-DRB1*04:05, HLA-DRB1*01:01, HLA-DRB1*10:01, HLA-DRB1*04:04, HLA-DRB1*11:01, HLA-DRB1*07:01, HLA-DRB1*09:01, HLA-DRB1*13:02, HLA-DRB1*15:01, HLA-DRB1*04:02, HLA-DRB1*13:01, HLA-DRB1*04:03, HLA-DRB1*01:03, HLA-DRB1*03:01, HLA-DRB1*12:01 | 30.9 | 1.1214 |
PFVFKPESTPAPKLD | HLA-DRB1*04:01, HLA-DRB1*08:02, HLA-DRB1*16:02, HLA-DRB1*08:01, HLA-DRB1*04:05, HLA-DRB1*01:01, HLA-DRB1*10:01, HLA-DRB1*04:04, HLA-DRB1*11:01, HLA-DRB1*07:01, HLA-DRB1*09:01, HLA-DRB1*13:02, HLA-DRB1*15:01, HLA-DRB1*04:02, HLA-DRB1*13:01, HLA-DRB1*01:03, HLA-DRB1*03:01, HLA-DRB1*12:01, HLA-DRB1*04:03 | 33.1 | 1.3579 | |
FVFKPESTPAPKLDM | HLA-DRB1*04:01, HLA-DRB1*08:02, HLA-DRB1*08:01, HLA-DRB1*16:02, HLA-DRB1*01:01, HLA-DRB1*04:05, HLA-DRB1*10:01, HLA-DRB1*04:04, HLA-DRB1*07:01, HLA-DRB1*11:01, HLA-DRB1*09:01, HLA-DRB1*13:02, HLA-DRB1*15:01, HLA-DRB1*04:02, HLA-DRB1*13:01, HLA-DRB1*01:03, HLA-DRB1*12:01, HLA-DRB1*03:01, HLA-DRB1*04:03 | 39.8 | 1.4043 | |
Peptidoglycan D,D-transpeptidase FtsI | PGENITLSIDSRLQY | HLA-DRB1*03:01, HLA-DRB1*13:02, HLA-DRB1*09:01, HLA-DRB1*04:04, HLA-DRB1*15:01, HLA-DRB1*04:05, HLA-DRB1*12:01, HLA-DRB1*13:01, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*01:03, HLA-DRB1*01:01, HLA-DRB1*04:01, HLA-DRB1*04:03, HLA-DRB1*11:01, HLA-DRB1*16:02, HLA-DRB1*10:01, HLA-DRB1*08:01, HLA-DRB1*04:02 | 8.2 | 1.0722 |
GTMAYGYGLNATILQ | HLA-DRB1*09:01, HLA-DRB1*04:01, HLA-DRB1*01:01, HLA-DRB1*04:02, HLA-DRB1*15:01, HLA-DRB1*10:01, HLA-DRB1*04:03, HLA-DRB1*04:05, HLA-DRB1*16:02, HLA-DRB1*13:02, HLA-DRB1*07:01, HLA-DRB1*12:01, HLA-DRB1*08:02, HLA-DRB1*11:01, HLA-DRB1*04:04, HLA-DRB1*08:01, HLA-DRB1*01:03, HLA-DRB1*13:01, HLA-DRB1*03:01 | 11.8 | 1.0447 | |
VLLCFVVLIARAFYV | HLA-DRB1*04:03, HLA-DRB1*12:01, HLA-DRB1*01:03, HLA-DRB1*04:02, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB1*01:01, HLA-DRB1*08:01, HLA-DRB1*13:01, HLA-DRB1*13:02, HLA-DRB1*11:01, HLA-DRB1*16:02, HLA-DRB1*09:01, HLA-DRB1*08:02, HLA-DRB1*10:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*04:04, HLA-DRB1*04:05 | 26.3 | 0.9142 | |
AQIIGLTNSEGQGIE | HLA-DRB1*04:04, HLA-DRB1*04:05, HLA-DRB1*04:01, HLA-DRB1*04:03, HLA-DRB1*08:02, HLA-DRB1*10:01, HLA-DRB1*13:02, HLA-DRB1*07:01, HLA-DRB1*16:02, HLA-DRB1*01:01, HLA-DRB1*04:02, HLA-DRB1*12:01, HLA-DRB1*09:01, HLA-DRB1*15:01, HLA-DRB1*11:01, HLA-DRB1*13:01, HLA-DRB1*08:01, HLA-DRB1*01:03, HLA-DRB1*03:01 | 30.4 | 0.9963 |
Protein | Sequence/Epitope | Antigenicity | Allergenicity | Toxicity | Sub-Cellular Localization |
---|---|---|---|---|---|
YSIRK_signal domain-containing protein | APFVFKPESTPAPKL | 1.1214 | Non-allergen | Non-toxic | Outside |
PFVFKPESTPAPKLD | 1.3579 | Non-allergen | Non-toxic | Outside | |
FVFKPESTPAPKLDM | 1.4043 | Non-allergen | Non-toxic | Outside | |
Peptidoglycan D,D-transpeptidase FtsI | PGENITLSIDSRLQY | 1.0722 | Non-allergen | Non-toxic | Outside |
GTMAYGYGLNATILQ | 1.0447 | Non-allergen | Non-toxic | Outside | |
VLLCFVVLIARAFYV | 0.9142 | Non-allergen | Non-toxic | Outside | |
AQIIGLTNSEGQGIE | 0.9963 | Non-allergen | Non-toxic | Outside |
Sr. # | Structure 1 | Dist. [Å] | Structure 2 |
---|---|---|---|
1 | A: TYR 376 [HH] | 1.83 | B: SER 309 [O] |
2 | A: LYS 347 [HZ3] | 1.70 | B: THR 361 [OG1] |
3 | A: LYS 347 [HZ1] | 1.78 | B: THR 363 [OG1] |
4 | A: GLN 396 [HE22] | 2.46 | B: SER 409 [OG] |
5 | A: ASN 345 [OD1] | 1.67 | B: LYS 385 [HZ2] |
6 | A: GLU 369 [OE1] | 1.81 | B: LYS 385 [HZ3] |
7 | A: GLU 374 [OE1] | 2.05 | B: ARG 337 [HH21] |
8 | A: GLU 375 [OE2] | 1.79 | B: ARG 337 [HH22] |
9 | A: GLU 375 [OE2] | 2.12 | B: ARG 337 [HE] |
Sr. # | Structure 1 | Dist. [Å] | Structure 2 |
---|---|---|---|
1 | A: GLU 369 [OE1] | 2.69 | B: LYS 387 [NZ] |
2 | A: GLU 374 [OE1] | 2.78 | B: ARG 337 [NH2] |
3 | A: GLU 375 [OE1] | 3.26 | B: ARG 337 [NH2] |
4 | A: GLU 375 [OE2] | 2.69 | B: ARG 337 [NH2] |
5 | A: GLU 375 [OE2] | 2.93 | B: ARG 337 [NE] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, A.; Alzahrani, B.; Naz, S.; Basheer, A.; Bakhtiar, S.M.; Al-Asmari, F.; Jamal, S.B.; Faheem, M. Reverse Vaccinology Approach to Identify Novel and Immunogenic Targets against Streptococcus gordonii. Biology 2024, 13, 510. https://doi.org/10.3390/biology13070510
Abid A, Alzahrani B, Naz S, Basheer A, Bakhtiar SM, Al-Asmari F, Jamal SB, Faheem M. Reverse Vaccinology Approach to Identify Novel and Immunogenic Targets against Streptococcus gordonii. Biology. 2024; 13(7):510. https://doi.org/10.3390/biology13070510
Chicago/Turabian StyleAbid, Aneeqa, Badr Alzahrani, Shumaila Naz, Amina Basheer, Syeda Marriam Bakhtiar, Fahad Al-Asmari, Syed Babar Jamal, and Muhammad Faheem. 2024. "Reverse Vaccinology Approach to Identify Novel and Immunogenic Targets against Streptococcus gordonii" Biology 13, no. 7: 510. https://doi.org/10.3390/biology13070510
APA StyleAbid, A., Alzahrani, B., Naz, S., Basheer, A., Bakhtiar, S. M., Al-Asmari, F., Jamal, S. B., & Faheem, M. (2024). Reverse Vaccinology Approach to Identify Novel and Immunogenic Targets against Streptococcus gordonii. Biology, 13(7), 510. https://doi.org/10.3390/biology13070510