Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Databases
2.2. Eligible Criteria and Study Selection
3. Ceramides and Other Sphingolipids
4. The Implications of High Fructose/Glucose Consumption
5. Inflammation and Oxidative Stress: A Path of No Return?
6. The Role of mTOR
7. GLMD and Metainflammation: A Systemic Imbalance
8. GLMD and Cardiovascular Diseases: The Final Connection
9. Important Acknowledgments to Improve the Treatment of Metabolic Diseases and Cardiovascular Diseases
10. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Yang, Y.Q.; Meng, F.Y.; Liu, X.; Zhang, M.; Gu, W.; Yan, H.L.; Yu, J.; Yang, X.X. Distinct metabonomic signatures of Polygoni Multiflori Radix Praeparata against glucolipid metabolic disorders. J. Pharm. Pharmacol. 2021, 73, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Balasundaram, P. Public Health Considerations Regarding Obesity. In StatPearls; Disclosure: Palanikumar Balasundaram declares no relevant financial relationships with ineligible companies; Ineligible Companies: Treasure Island, FL, USA, 2024. [Google Scholar]
- Kantowski, T.; Schulze Zur Wiesch, C.; Aberle, J.; Lautenbach, A. Obesity management: Sex-specific considerations. Arch. Gynecol. Obstet. 2024, 309, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Kajita, K.; Ishii, I.; Mori, I.; Asano, M.; Fuwa, M.; Morita, H. Sphingosine 1-Phosphate Regulates Obesity and Glucose Homeostasis. Int. J. Mol. Sci. 2024, 25, 932. [Google Scholar] [CrossRef]
- Sheer, A.J.; Lo, M.C. Counseling Patients With Obesity. In StatPearls; Disclosure: Margaret Lo declares no relevant financial relationships with ineligible companies; Ineligible Companies: Treasure Island, FL, USA, 2024. [Google Scholar]
- Ye, D.W.; Rong, X.L.; Xu, A.M.; Guo, J. Liver-adipose tissue crosstalk: A key player in the pathogenesis of glucolipid metabolic disease. Chin. J. Integr. Med. 2017, 23, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Ren, J.; Zhang, J.; Zheng, J.; Zhang, Q.; Tian, Y.; Zhang, Y.; Jiang, Y.; Zhang, W. Lactobacillus paracasei JY062 Alleviates Glucolipid Metabolism Disorders via the Adipoinsular Axis and Gut Microbiota. Nutrients 2024, 16, 267. [Google Scholar] [CrossRef]
- Xiong, P.; Zhang, F.; Liu, F.; Zhao, J.; Huang, X.; Luo, D.; Guo, J. Metaflammation in glucolipid metabolic disorders: Pathogenesis and treatment. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 161, 114545. [Google Scholar] [CrossRef]
- Thompson, D.; Mahmood, S.; Morrice, N.; Kamli-Salino, S.; Dekeryte, R.; Hoffmann, P.A.; Doherty, M.K.; Whitfield, P.D.; Delibegovic, M.; Mody, N. Fenretinide inhibits obesity and fatty liver disease but induces Smpd3 to increase serum ceramides and worsen atherosclerosis in LDLR(−/−) mice. Sci. Rep. 2023, 13, 3937. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Guo, Q.; Xie, W.; Zhan, X.; Chen, Q.; Xie, X.; Sun, R.; Cao, Z.; Jiang, Y.; et al. Associations among carotid plaque progression, cerebrovascular/cardiovascular diseases and LDL-C/non-HDL-C goal achievement in diabetic patients: A retrospective cohort study. J. Diabetes Complicat. 2023, 37, 108381. [Google Scholar] [CrossRef]
- Balram, A.; Thapa, S.; Chatterjee, S. Glycosphingolipids in Diabetes, Oxidative Stress, and Cardiovascular Disease: Prevention in Experimental Animal Models. Int. J. Mol. Sci. 2022, 23, 15442. [Google Scholar] [CrossRef]
- Twarda-Clapa, A.; Olczak, A.; Bialkowska, A.M.; Koziolkiewicz, M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022, 11, 1312. [Google Scholar] [CrossRef]
- Pal, R.; Bhadada, S.K. AGEs accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review. Bone 2023, 176, 116884. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Toyomura, T.; Mori, S. Regulation of inflammatory response based on interaction among AGEs, DAMPs, and/or cytokines. Nihon Yakurigaku Zasshi 2022, 157, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef] [PubMed]
- Peña, J.S.; Ramanujam, R.K.; Risman, R.A.; Tutwiler, V.; Berthiaume, F.; Vazquez, M. Neurovascular Relationships in AGEs-Based Models of Proliferative Diabetic Retinopathy. Bioengineering 2024, 11, 63. [Google Scholar] [CrossRef] [PubMed]
- Wasim, R.; Mahmood, T.; Siddiqui, M.H.; Ahsan, F.; Shamim, A.; Singh, A.; Shariq, M.; Parveen, S. Aftermath of AGE-RAGE Cascade in the pathophysiology of cardiovascular ailments. Life Sci. 2022, 307, 120860. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Huang, W.; Zhang, J.; He, L.; Chen, S.; Zhu, S.; Sang, Y.; Liu, K.; Hou, G.; Chen, B.; et al. Downregulation of VEGFA accelerates AGEs-mediated nucleus pulposus degeneration through inhibiting protective mitophagy in high glucose environments. Int. J. Biol. Macromol. 2024, 262, 129950. [Google Scholar] [CrossRef]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef]
- Li, M.; Yang, L.; Wang, R.; Li, L.; Zhang, Y.; Li, L.; Jin, N.; Huang, Y.; Kong, Z.; Francis, F.; et al. Stereoselective cardiotoxic effects of metconazole on zebrafish (Danio rerio) based on AGE-RAGE signalling pathway. Sci. Total. Environ. 2024, 912, 169304. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K. AGE-RAGE Stress and Coronary Artery Disease. Int. J. Angiol. 2021, 30, 4–14. [Google Scholar] [CrossRef]
- Arivazhagan, L.; Popp, C.J.; Ruiz, H.H.; Wilson, R.A.; Manigrasso, M.B.; Shekhtman, A.; Ramasamy, R.; Sevick, M.A.; Schmidt, A.M. The RAGE/DIAPH1 axis: Mediator of obesity and proposed biomarker of human cardiometabolic disease. Cardiovasc. Res. 2024, 119, 2813–2824. [Google Scholar] [CrossRef]
- Han, W.; Yang, S.; Xiao, H.; Wang, M.; Ye, J.; Cao, L.; Sun, G. Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders. Int. J. Mol. Sci. 2022, 23, 15627. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, F.; Yuan, L. ACE2 Regulates Glycolipid Metabolism in Multiple Tissues. Front. Biosci. 2024, 29, 17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Gao, Y.; Yang, F.; Deng, H.; Wang, Y.; Yuan, L. Angiotensin-converting enzyme 2 improves hepatic insulin resistance by regulating GABAergic signaling in the liver. J. Biol. Chem. 2022, 298, 102603. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Shi, T.T.; Zhang, C.H.; Jin, W.Z.; Song, L.N.; Zhang, Y.C.; Liu, J.Y.; Yang, F.Y.; Rotimi, C.N.; Xu, A.; et al. ACE2 pathway regulates thermogenesis and energy metabolism. eLife 2022, 11, e72266. [Google Scholar] [CrossRef] [PubMed]
- Sheng, R.; Li, Y.; Wu, Y.; Liu, C.; Wang, W.; Han, X.; Li, Y.; Lei, L.; Jiang, X.; Zhang, Y.; et al. A pan-PPAR agonist E17241 ameliorates hyperglycemia and diabetic dyslipidemia in KKAy mice via up-regulating ABCA1 in islet, liver, and white adipose tissue. Biomed. Pharmacother. 2024, 172, 116220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guan, G.; Liu, J.; Hu, W.; Jin, P. Gut microbiota dysbiosis and decreased levels of acetic and propionic acid participate in glucocorticoid-induced glycolipid metabolism disorder. mBio 2024, 15, e0294323. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Li, X.Y.; Yao, L.Y.; Mbadhi, M.; Chen, S.J.; Lv, Y.X.; Bao, X.; Chen, L.; Chen, S.Y.; et al. Vagus nerve stimulation-induced stromal cell-derived factor-l alpha participates in angiogenesis and repair of infarcted hearts. ESC Heart. Fail. 2023, 10, 3311–3329. [Google Scholar] [CrossRef] [PubMed]
- Greiner, T.U.; Koh, A.; Peris, E.; Bergentall, M.; Johansson, M.E.V.; Hansson, G.C.; Drucker, D.J.; Bäckhed, F. GLP-1R signaling modulates colonic energy metabolism, goblet cell number and survival in the absence of gut microbiota. Mol. Metab. 2024, 83, 101924. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.Z.; Wan, J.Y.; Yuan, C.S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef]
- Park, B.; Bakbak, E.; Teoh, H.; Krishnaraj, A.; Dennis, F.; Quan, A.; Rotstein, O.D.; Butler, J.; Hess, D.A.; Verma, S. GLP-1 receptor agonists and vascular protection. Am. J. Physiol. Circ. Physiol. 2024, 326, H1159–H1176. [Google Scholar] [CrossRef]
- Laurindo, L.F.; Barbalho, S.M.; Guiguer, E.L.; da Silva Soares de Souza, M.; de Souza, G.A.; Fidalgo, T.M.; Araújo, A.C.; de Souza Gonzaga, H.F.; de Bortoli Teixeira, D.; de Oliveira Silva Ullmann, T.; et al. GLP-1a: Going beyond Traditional Use. Int. J. Mol. Sci. 2022, 23, 739. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zheng, J.; Wang, J.; Li, B.; Huang, W. Inhibition of Hyperglycemia and Hyperlipidemia by Blocking Toll-like Receptor 4: Comparison of Wild-Type and Toll-like Receptor 4 Gene Knockout Mice on Obesity and Diabetes Modeling. Biology 2024, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhang, Y.; Li, H.; Wang, F.; Yao, S. Toll-like receptor 4: A potential therapeutic target for multiple human diseases. Biomed. Pharmacother. 2023, 166, 115338. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Kang, M.; Li, C.; Zheng, W.; Guo, Q. VNN1 overexpression in pancreatic cancer cells inhibits paraneoplastic islet function by increasing oxidative stress and inducing β-cell dedifferentiation. Oncol. Rep. 2023, 49, 6. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Xu, J.; Shi, Y.; Wang, X.; Gu, S.; Xie, L. VNN1 as a potential biomarker for sepsis diagnosis and its implications in immune infiltration and tumor prognosis. Front. Med. 2023, 10, 1236484. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Cui, Y.; Guo, F.; Zhu, Y.; Zhang, X.; Shang, D.; Dong, D.; Xiang, H. Vanin1 (VNN1) in chronic diseases: Future directions for targeted therapy. Eur. J. Pharmacol. 2024, 962, 176220. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Bello, F.; Franco, M.; Perez-Mendez, O.; Donis-Maturano, L.; Zarco-Olvera, G.; Bautista-Perez, R. Sphingolipid metabolism and its relationship with cardiovascular, renal and metabolic diseases. Arch. Cardiol. Mex. 2023, 93, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.A.; Buzinari, T.C.; Lino, R.L.B.; Araujo, H.S.S.; Anibal, F.F.; Verzola, R.M.M.; Bagnato, V.S.; Inada, N.M.; Rodrigues, G.J. Profile of IL-6 and TNF in Foam Cell Formation: An Improved Method Using Fluorescein Isothiocyanate (FITC) Probe. Arq. Bras. Cardiol. 2022, 119, 533–541. [Google Scholar] [CrossRef]
- Di Pietro, P.; Izzo, C.; Abate, A.C.; Iesu, P.; Rusciano, M.R.; Venturini, E.; Visco, V.; Sommella, E.; Ciccarelli, M.; Carrizzo, A.; et al. The Dark Side of Sphingolipids: Searching for Potential Cardiovascular Biomarkers. Biomolecules 2023, 13, 168. [Google Scholar] [CrossRef]
- Dusing, P.; Heinrich, N.N.; Al-Kassou, B.; Gutbrod, K.; Dormann, P.; Nickenig, G.; Jansen, F.; Zietzer, A. Analysis of circulating ceramides and hexosylceramides in patients with coronary artery disease and type II diabetes mellitus. BMC Cardiovasc. Disord. 2023, 23, 454. [Google Scholar] [CrossRef]
- Manzo, O.L.; Nour, J.; Sasset, L.; Marino, A.; Rubinelli, L.; Palikhe, S.; Smimmo, M.; Hu, Y.; Bucci, M.R.; Borczuk, A.; et al. Rewiring Endothelial Sphingolipid Metabolism to Favor S1P Over Ceramide Protects From Coronary Atherosclerosis. Circ. Res. 2024, 134, 990–1005. [Google Scholar] [CrossRef] [PubMed]
- Parveen, F.; Bender, D.; Law, S.H.; Mishra, V.K.; Chen, C.C.; Ke, L.Y. Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells 2019, 8, 1573. [Google Scholar] [CrossRef]
- Pulkoski-Gross, M.J.; Obeid, L.M. Molecular mechanisms of regulation of sphingosine kinase 1. Biochim. Et Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Łukaszuk, B.; Supruniuk, E.; Chabowski, A.; Mikłosz, A. Adipose tissue place of origin and obesity influence sphingolipid signaling pathway in the adipocytes differentiated from ADMSCs isolated from morbidly obese women. Biochem. Pharmacol. 2024, 223, 116158. [Google Scholar] [CrossRef] [PubMed]
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; Defronzo, R.A.; Kirwan, J.P. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009, 58, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Tallon, C.; Bell, B.J.; Malvankar, M.M.; Deme, P.; Nogueras-Ortiz, C.; Eren, E.; Thomas, A.G.; Hollinger, K.R.; Pal, A.; Mustapic, M.; et al. Inhibiting tau-induced elevated nSMase2 activity and ceramides is therapeutic in an Alzheimer’s disease mouse model. Transl. Neurodegener. 2023, 12, 56. [Google Scholar] [CrossRef]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; März, W.; Scharnagl, H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Mandal, N.; Asuzu, P.; Stentz, F.; Wan, J.; Dagogo-Jack, S. Ceramides and other sphingolipids as predictors of incident dysglycemia (CASPID): Design, methods, and baseline characteristics. Exp. Biol. Med. 2023, 248, 1393–1402. [Google Scholar] [CrossRef]
- Cai, Z.; Deng, L.; Fan, Y.; Ren, Y.; Ling, Y.; Tu, J.; Cai, Y.; Xu, X.; Chen, M. Dysregulation of Ceramide Metabolism Is Linked to Iron Deposition and Activation of Related Pathways in the Aorta of Atherosclerotic Miniature Pigs. Antioxidants 2023, 13, 4. [Google Scholar] [CrossRef]
- Franco, M.; Cano-Martínez, A.; Ramos-Godínez, M.D.P.; López-Marure, R.; Donis-Maturano, L.; Sosa, J.S.; Bautista-Pérez, R. Immunolocalization of Sphingolipid Catabolism Enzymes along the Nephron: Novel Early Urinary Biomarkers of Renal Damage. Int. J. Mol. Sci. 2023, 24, 16633. [Google Scholar] [CrossRef]
- Pan, H.; Guo, Z.; Lv, P.; Hu, K.; Wu, T.; Lin, Z.; Xue, Y.; Zhang, Y.; Guo, Z. Proline/serine-rich coiled-coil protein 1 inhibits macrophage inflammation and delays atherosclerotic progression by binding to Annexin A2. Clin. Transl. Med. 2023, 13, e1220. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, J.L.; Tatum, S.M.; Holland, W.L.; Summers, S.A. Ceramides are Fuel Gauges on the Drive to Cardiometabolic Disease. Physiol. Rev. 2024, 104, 1061–1119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.J.; Xu, R.; Wang, X.P.; Zhao, X.Y.; Fang, Y.; Chen, Y.P.; Ma, S.; Di, X.H.; Wu, W.; et al. Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts. Redox Biol. 2023, 68, 102944. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, Y.; Liu, Z.; Lu, Y.; Jiang, Y.; Cao, K.; Zhou, N.; Wang, D.; Zhang, C.; Zhou, N.; et al. Hepatic glycogenesis antagonizes lipogenesis by blocking S1P via UDPG. Science 2024, 383, eadi3332. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Chen, Z.; Wang, Q.; Li, B.; Wei, Y.; Li, Y.; Lin, J.; Cheng, W.; Guo, Y.; Wu, S.; et al. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab. 2024, 36, 839–856.e8. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Wang, B.; Wu, X.; Cheng, J.; Ye, J.; Wang, C.; Zhu, H.; Liu, X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front. Immunol. 2024, 15, 1362459. [Google Scholar] [CrossRef]
- Stephenson, M.C.; Krishna, L.; Pannir Selvan, R.M.; Tai, Y.K.; Kit Wong, C.J.; Yin, J.N.; Toh, S.J.; Torta, F.; Triebl, A.; Fröhlich, J.; et al. Magnetic field therapy enhances muscle mitochondrial bioenergetics and attenuates systemic ceramide levels following ACL reconstruction: Southeast Asian randomized-controlled pilot trial. J. Orthop. Transl. 2022, 35, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Yu, Q.; Shao, L.; Sun, Y.; Li, X.; Dai, R. Alteration of Mitochondrial Lipidome and Its Potential Effect on Apoptosis, Mitochondrial Reactive Oxygen Species Production, and Muscle Oxidation in Beef during Early Postmortem. J. Agric. Food Chem. 2022, 70, 8064–8074. [Google Scholar] [CrossRef]
- Gilloteaux, J.; Nicaise, C.; Sprimont, L.; Bissler, J.; Finkelstein, J.A.; Payne, W.R. Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages. Ultrastruct. Pathol. 2021, 45, 346–375. [Google Scholar] [CrossRef]
- Reidy, P.T.; McKenzie, A.I.; Mahmassani, Z.; Morrow, V.R.; Yonemura, N.M.; Hopkins, P.N.; Marcus, R.L.; Rondina, M.T.; Lin, Y.K.; Drummond, M.J. Skeletal muscle ceramides and relationship with insulin sensitivity after 2 weeks of simulated sedentary behaviour and recovery in healthy older adults. J. Physiol. 2018, 596, 5217–5236. [Google Scholar] [CrossRef]
- Peterson, L.R.; Jiang, X.; Chen, L.; Goldberg, A.C.; Farmer, M.S.; Ory, D.S.; Schaffer, J.E. Alterations in plasma triglycerides and ceramides: Links with cardiac function in humans with type 2 diabetes. J. Lipid Res. 2020, 61, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Liu, S.; Nie, L.; Hu, H.; Liu, Y.; Yang, J. The interactions and biological pathways among metabolomics products of patients with coronary heart disease. Biomed. Pharmacother. Biomed. Pharmacother. 2024, 173, 116305. [Google Scholar] [CrossRef] [PubMed]
- Brady, E.M.; Cao, T.H.; Moss, A.J.; Athithan, L.; Ayton, S.L.; Redman, E.; Argyridou, S.; Graham-Brown, M.P.M.; Maxwell, C.B.; Jones, D.J.L.; et al. Circulating sphingolipids and relationship to cardiac remodelling before and following a low-energy diet in asymptomatic Type 2 Diabetes. BMC Cardiovasc. Disord. 2024, 24, 25. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Rubattu, S.; Volpe, M. Mitochondrial Dysfunction in Heart Failure: From Pathophysiological Mechanisms to Therapeutic Opportunities. Int. J. Mol. Sci. 2024, 25, 2667. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Parry, H.A.; Willingham, T.B.; Alspaugh, G.; Lindberg, E.; Combs, C.A.; Knutson, J.R.; Bleck, C.K.E.; Glancy, B. Reorganization of mitochondria-organelle interactions during postnatal development in skeletal muscle. J. Physiol. 2024, 602, 891–912. [Google Scholar] [CrossRef] [PubMed]
- Panov, A.V. The Structure of the Cardiac Mitochondria Respirasome Is Adapted for the β-Oxidation of Fatty Acids. International Int. J. Mol. Sci. 2024, 25, 2410. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Chen, J.; Yang, F.; Zhang, G.; Chen, J.; Wang, X.; Zhang, J. Lipidomics reveals new lipid-based lung adenocarcinoma early diagnosis model. EMBO Mol. Med. 2024, 16, 854–869. [Google Scholar] [CrossRef] [PubMed]
- Canfrán-Duque, A.; Rotllan, N.; Zhang, X.; Andrés-Blasco, I.; Thompson, B.M.; Sun, J.; Price, N.L.; Fernández-Fuertes, M.; Fowler, J.W.; Gómez-Coronado, D. Macrophage-derived 25-hydroxycholesterol promotes vascular inflammation, atherogenesis, and lesion remodeling. Circulation 2023, 147, 388–408. [Google Scholar] [CrossRef] [PubMed]
- Nurmohamed, N.S.; Kraaijenhof, J.M.; Mayr, M.; Nicholls, S.J.; Koenig, W.; Catapano, A.L.; Stroes, E.S. Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction. Eur. Heart J. 2023, 44, 1594–1607. [Google Scholar] [CrossRef]
- Anastasia, I.; Ilacqua, N.; Raimondi, A.; Lemieux, P.; Ghandehari-Alavijeh, R.; Faure, G.; Mekhedov, S.L.; Williams, K.J.; Caicci, F.; Valle, G. Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Rep. 2021, 34, 108873. [Google Scholar] [CrossRef]
- Dholariya, S.J.; Orrick, J.A. Biochemistry, Fructose Metabolism. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Hoffmann, W.G.; Chen, Y.Q.; Schwartz, C.S.; Barber, J.L.; Dev, P.K.; Reasons, R.J.; Miranda Maravi, J.S.; Armstrong, B.; Gerszten, R.E.; Silbernagel, G.; et al. Effects of exercise training on ANGPTL3/8 and ANGPTL4/8 and their associations with cardiometabolic traits. J. Lipid Res. 2024, 65, 100495. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Maio, M.C.; Lemes, M.A.; Laurindo, L.F.; Haber, J.; Bechara, M.D.; Prado, P.S.D., Jr.; Rauen, E.C.; Costa, F.; Pereira, B.C.A.; et al. Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future. Int. J. Mol. Sci. 2022, 23, 498. [Google Scholar] [CrossRef]
- Lee, D.; Chiavaroli, L.; Ayoub-Charette, S.; Khan, T.A.; Zurbau, A.; Au-Yeung, F.; Cheung, A.; Liu, Q.; Qi, X.; Ahmed, A.; et al. Important Food Sources of Fructose-Containing Sugars and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Controlled Trials. Nutrients 2022, 14, 2846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Noronha, J.C.; Khan, T.A.; McGlynn, N.; Back, S.; Grant, S.M.; Kendall, C.W.C.; Sievenpiper, J.L. The Effect of Non-Nutritive Sweetened Beverages on Postprandial Glycemic and Endocrine Responses: A Systematic Review and Network Meta-Analysis. Nutrients 2023, 15, 1050. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chiavaroli, L.; Ayoub-Charette, S.; Ahmed, A.; Khan, T.A.; Au-Yeung, F.; Lee, D.; Cheung, A.; Zurbau, A.; Choo, V.L.; et al. Fructose-containing food sources and blood pressure: A systematic review and meta-analysis of controlled feeding trials. PLoS ONE 2023, 18, e0264802. [Google Scholar] [CrossRef]
- Kazemi, A.; Soltani, S.; Mokhtari, Z.; Khan, T.; Golzarand, M.; Hosseini, E.; Jayedi, A.; Ebrahimpour-Koujan, S.; Akhlaghi, M. The relationship between major food sources of fructose and cardiovascular disease, cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of cohort studies. Crit. Rev. Food Sci. Nutr. 2023, 63, 4274–4287. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.H.; Rossi, N.F. Acute Intake of Fructose Increases Arterial Pressure in Humans: A Meta-Analysis and Systematic Review. Nutrients 2024, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Chiavaroli, L.; Lee, D.; Ayoub-Charette, S.; Khan, T.A.; Au-Yeung, F.; Ahmed, A.; Cheung, A.; Liu, Q.; Blanco Mejia, S.; et al. Effect of Important Food Sources of Fructose-Containing Sugars on Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Nutrients 2022, 14, 3986. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.; Ding, L.; Zhang, Y.; Li, T.; Li, Q. The Relationship Between Major Food Sources of Fructose and Cardiovascular Outcomes: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2023, 14, 256–269. [Google Scholar] [CrossRef]
- Huang, C.; Liang, Z.; Ma, J.; Hu, D.; Yao, F.; Qin, P. Total sugar, added sugar, fructose, and sucrose intake and all-cause, cardiovascular, and cancer mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutrition 2023, 111, 112032. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Q.; Zheng, Z.; Jiang, X.; Shi, Y.; Huang, Y.; Liu, Y. Fructose aggravates copper-deficiency-induced cardiac remodeling by inhibiting SERCA2a. J. Pharm. Pharmacol. 2024, 76, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, C.P.; Nascimento-Filho, A.V.D.; Araujo, A.A.; da Silva Dias, D.; Silva, D.R.; Bernardes, N.; Shecaira, T.P.; Irigoyen, M.C.; De Angelis, K. Parental fructose consumption induces early baroreflex dysfunction in offspring: Impact on arterial pressure and on insulin resistance. Int. J. Obes. 2024, 48, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Sakai-Sakasai, A.; Takeda, K.; Suzuki, H.; Takeuchi, M. Structures of Toxic Advanced Glycation End-Products Derived from Glyceraldehyde, A Sugar Metabolite. Biomolecules 2024, 14, 202. [Google Scholar] [CrossRef]
- Aimaretti, E.; Chimienti, G.; Rubeo, C.; Di Lorenzo, R.; Trisolini, L.; Dal Bello, F.; Moradi, A.; Collino, M.; Lezza, A.M.S.; Aragno, M.; et al. Different Effects of High-Fat/High-Sucrose and High-Fructose Diets on Advanced Glycation End-Product Accumulation and on Mitochondrial Involvement in Heart and Skeletal Muscle in Mice. Nutrients 2023, 15, 4874. [Google Scholar] [CrossRef]
- Arias-Chávez, D.J.; Mailloux-Salinas, P.; Aparicio, J.L.; Bravo, G.; Gómez-Viquez, N.L. Combined fructose and sucrose consumption from an early age aggravates cardiac oxidative damage and causes a dilated cardiomyopathy in SHR rats. J. Clin. Biochem. Nutr. 2023, 73, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.C.; Liu, X.X.; Liu, L.H.; Guo, N.; Guan, L.W.; Wu, J.X.; Liu, D.W. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024, 10, e28086. [Google Scholar] [CrossRef] [PubMed]
- Carpi, R.Z.; Barbalho, S.M.; Sloan, K.P.; Laurindo, L.F.; Gonzaga, H.F.; Grippa, P.C.; Zutin, T.L.M.; Girio, R.J.S.; Repetti, C.S.F.; Detregiachi, C.R.P.; et al. The Effects of Probiotics, Prebiotics and Synbiotics in Non-Alcoholic Fat Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A Systematic Review. Int. J. Mol. Sci. 2022, 23, 8805. [Google Scholar] [CrossRef]
- Dynka, D.; Kowalcze, K.; Charuta, A.; Paziewska, A. The Ketogenic Diet and Cardiovascular Diseases. Nutrients 2023, 15, 3368. [Google Scholar] [CrossRef]
- Kim, H.; Jung, D.Y.; Lee, S.H.; Cho, J.H.; Yim, H.W.; Kim, H.S. Long-Term Risk of Cardiovascular Disease Among Type 2 Diabetes Patients According to Average and Visit-to-Visit Variations of HbA1c Levels During the First 3 Years of Diabetes Diagnosis. J. Korean Med. Sci. 2023, 38, e24. [Google Scholar] [CrossRef]
- Anaga, N.; Lekshmy, K.; Purushothaman, J. (+)-Catechin mitigates impairment in insulin secretion and beta cell damage in methylglyoxal-induced pancreatic beta cells. Mol. Biol. Rep. 2024, 51, 434. [Google Scholar] [CrossRef]
- Kolasa, M.; Olejnik, A.; Rusak, E.; Chobot, A. Atherosclerosis: Risk assessment and the role of aiming for optimal glycaemic control in young patients with type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 2023, 29, 42–47. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, N.; Arora, S.; Verma, S. Diabetes: A review of its pathophysiology, and advanced methods of mitigation. Curr. Med. Res. Opin. 2024, 40, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Gutowska, K.; Czajkowski, K.; Kuryłowicz, A. Receptor for the Advanced Glycation End Products (RAGE) Pathway in Adipose Tissue Metabolism. Int. J. Mol. Sci. 2023, 24, 10982. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Sakasai-Sakai, A.; Takata, T.; Takino, J.I.; Koriyama, Y. Effects of Toxic AGEs (TAGE) on Human Health. Cells 2022, 11, 2178. [Google Scholar] [CrossRef]
- Katajamaki, T.T.; Koivula, M.K.; Hilvo, M.; Laaperi, M.T.A.; Salminen, M.J.; Viljanen, A.M.; Heikkila, E.T.M.; Lopponen, M.K.; Isoaho, R.E.; Kivela, S.L.; et al. Ceramides and Phosphatidylcholines Associate with Cardiovascular Diseases in the Elderly. Clin. Chem. 2022, 68, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Torres, N.; Ruiz-Veguilla, M.; Olivé Mas, J.; Rodríguez Gangoso, A.; Canal-Rivero, M.; Juncal-Ruiz, M.; Gómez-Revuelta, M.; Ayesa-Arriola, R.; Crespo-Facorro, B.; Vázquez-Bourgon, J. Metabolic syndrome and related factors in a large sample of antipsychotic naïve patients with first-episode psychosis: 3 years follow-up results from the PAFIP cohort. Span. J. Psychiatry Ment. Health 2023, 16, 175–183. [Google Scholar] [CrossRef]
- Yin, T.; Chen, S.; Zhu, Y.; Kong, L.; Li, Q.; Zhang, G.; He, H. Insulin resistance, combined with health-related lifestyles, psychological traits and adverse cardiometabolic profiles, is associated with cardiovascular diseases: Findings from the BHMC study. Food Funct. 2024, 15, 3864–3875. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Wang, Y.; Tian, R.; Hill, J.A. Metabolism and Inflammation in Cardiovascular Health and Diseases: Mechanisms to Therapies. J. Mol. Cell Cardiol. 2021, 157, 113–114. [Google Scholar] [CrossRef]
- Gui, L.K.; Liu, H.J.; Jin, L.J.; Peng, X.C. Krüpple-like factors in cardiomyopathy: Emerging player and therapeutic opportunities. Front. Cardiovasc. Med. 2024, 11, 1342173. [Google Scholar] [CrossRef]
- Liu, Y.; Huo, J.L.; Ren, K.; Pan, S.; Liu, H.; Zheng, Y.; Chen, J.; Qiao, Y.; Yang, Y.; Feng, Q. Mitochondria-associated endoplasmic reticulum membrane (MAM): A dark horse for diabetic cardiomyopathy treatment. Cell Death Discov. 2024, 10, 148. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, B.; Lv, X.; Chen, C.; Li, K.; Wang, Y.; Liu, J. Ferroptosis: Roles and molecular mechanisms in diabetic cardiomyopathy. Front. Endocrinol. 2023, 14, 1140644. [Google Scholar] [CrossRef] [PubMed]
- Luna-Marco, C.; Iannantuoni, F.; Hermo-Argibay, A.; Devos, D.; Salazar, J.D.; Victor, V.M.; Rovira-Llopis, S. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free. Radic. Biol. Med. 2024, 213, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Park, L.K.; Garr Barry, V.; Hong, J.; Heebink, J.; Sah, R.; Peterson, L.R. Links between ceramides and cardiac function. Curr. Opin. Lipidol. 2022, 33, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Rios, F.J.; de Ciuceis, C.; Georgiopoulos, G.; Lazaridis, A.; Nosalski, R.; Pavlidis, G.; Tual-Chalot, S.; Agabiti-Rosei, C.; Camargo, L.L.; Dąbrowska, E.; et al. Mechanisms of Vascular Inflammation and Potential Therapeutic Targets: A Position Paper From the ESH Working Group on Small Arteries. Hypertension 2024, 81, 1218–1232. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Zhu, Y.; Xu, X.; He, H.; Jiang, T.; Mo, X.; Wang, Z.; Yu, W.; Ou, H. Naringenin Inhibits Acid Sphingomyelinase-Mediated Membrane Raft Clustering to Reduce NADPH Oxidase Activation and Vascular Inflammation. J. Agric. Food Chem. 2024, 72, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Tomomatsu, M.; Imamura, N.; Izumi, H.; Watanabe, M.; Ikeda, M.; Ide, T.; Uchinomiya, S.; Ojida, A.; Jutanom, M.; Morimoto, K.; et al. Oxidized-LDL Induces Metabolic Dysfunction in Retinal Pigment Epithelial Cells. Biol. Pharm. Bull. 2024, 47, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Rodrigues, R.B.; de Oliveira, M.M.; Garcia, F.P.; Ueda-Nakamura, T.; de Oliveira Silva, S.; Nakamura, C.V. Dithiothreitol reduces oxidative stress and necrosis caused by ultraviolet A radiation in L929 fibroblasts. Photochem. Photobiol. Sci. 2024, 23, 271–284. [Google Scholar] [CrossRef]
- Rauf, A.; Khalil, A.A.; Awadallah, S.; Khan, S.A.; Abu-Izneid, T.; Kamran, M.; Hemeg, H.A.; Mubarak, M.S.; Khalid, A.; Wilairatana, P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review. Food Sci. Nutr. 2024, 12, 675–693. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Zhang, J.; Lin, H.; Bai, Z.; Li, S. Bisphenol A Regulates the TNFR1 Pathway and Excessive ROS Mediated by miR-26a-5p/ADAM17 Axis to Aggravate Selenium Deficiency-Induced Necroptosis in Broiler Veins. Biol. Trace Element Res. 2024, 202, 1722–1740. [Google Scholar] [CrossRef]
- Owens, M.M.; Dalal, S.; Radovic, A.; Fernandes, L.; Syed, H.; Herndon, M.K.; Cooper, C.; Singh, K.; Beaumont, E. Vagus nerve stimulation alleviates cardiac dysfunction and inflammatory markers during heart failure in rats. Auton. Neurosci. Basic Clin. 2024, 253, 103162. [Google Scholar] [CrossRef] [PubMed]
- ElBeck, Z.; Hossain, M.B.; Siga, H.; Oskolkov, N.; Karlsson, F.; Lindgren, J.; Walentinsson, A.; Koppenhöfer, D.; Jarvis, R.; Bürli, R.; et al. Epigenetic modulators link mitochondrial redox homeostasis to cardiac function in a sex-dependent manner. Nat. Commun. 2024, 15, 2358. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, J.; Zhang, L. Ferroptosis: A New Mechanism in Diabetic Cardiomyopathy. Int. J. Med. Sci. 2024, 21, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.; Verma, H.K.; Lakkakula, S.; Merchant, N.; Kadir, F.; Rahman, S.; Jeffree, M.S.; Lakkakula, B.; Rao, P.V. Biomarkers of Oxidative Stress Tethered to Cardiovascular Diseases. Oxidative Med. Cell. Longev. 2022, 2022, 9154295. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Kong, H.; Shen, C.; She, G.; Tian, S.; Liu, H.; Cui, L.; Zhang, Y.; He, Q.; Xia, Q.; et al. Dimethyl phthalate induced cardiovascular developmental toxicity in zebrafish embryos by regulating MAPK and calcium signaling pathways. Sci. Total. Environ. 2024, 926, 171902. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ma, E.; Ge, Y.; Yuan, M.; Guo, X.; Peng, J.; Zhu, W.; Ren, D.N.; Wo, D. Resveratrol protects against myocardial ischemic injury in obese mice via activating SIRT3/FOXO3a signaling pathway and restoring redox homeostasis. Biomed. Pharmacother. Biomed. Pharmacother. 2024, 174, 116476. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Bechara, M.D.; Quesada, K.; Gabaldi, M.R.; Goulart, R.d.A.; Tofano, R.J.; Gasparini, R.G.J. Síndrome metabólica, aterosclerose e inflamação: Tríade indissociável? J. Vasc. Bras. 2015, 14, 319–327. [Google Scholar] [CrossRef]
- Koumallos, N.; Sigala, E.; Milas, T.; Baikoussis, N.G.; Aragiannis, D.; Sideris, S.; Tsioufis, K. Angiotensin Regulation of Vascular Homeostasis: Exploring the Role of ROS and RAS Blockers. Int. J. Mol. Sci. 2023, 24, 12111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, L.; Zhou, X.; Meng, X.; Zhou, X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front. Immunol. 2022, 13, 1098725. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Malavazos, A.E.; Iacobellis, G.; Dozio, E.; Basilico, S.; Di Vincenzo, A.; Dubini, C.; Menicanti, L.; Vianello, E.; Meregalli, C.; Ruocco, C.; et al. Human epicardial adipose tissue expresses glucose-dependent insulinotropic polypeptide, glucagon, and glucagon-like peptide-1 receptors as potential targets of pleiotropic therapies. Eur. J. Prev. Cardiol. 2023, 30, 680–693. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, A.S.; Gelpi, G.; Mangini, A.; Carugo, S.; Ruscica, M.; Macchi, C. Exploring the role of epicardial adipose-tissue-derived extracellular vesicles in cardiovascular diseases. iScience 2024, 27, 109359. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Tan, Y.; Deng, M.; Shan, W.; Zheng, W.; Zhang, B.; Cui, J.; Feng, L.; Shi, L.; Zhang, M.; et al. Epicardial adipose tissue, metabolic disorders, and cardiovascular diseases: Recent advances classified by research methodologies. MedComm 2023, 4, e413. [Google Scholar] [CrossRef] [PubMed]
- Rämö, J.T.; Kany, S.; Hou, C.R.; Friedman, S.F.; Roselli, C.; Nauffal, V.; Koyama, S.; Karjalainen, J.; Maddah, M.; Palotie, A.; et al. Cardiovascular Significance and Genetics of Epicardial and Pericardial Adiposity. JAMA Cardiol. 2024, 9, 418. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.S.; Papastamos, C.; Cokkinos, D.V.; Tsioufis, K.; Tousoulis, D. Epicardial Adipose Tissue in Myocardial Disease: From Physiology to Heart Failure Phenotypes. Curr. Probl. Cardiol. 2023, 48, 101841. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Feng, C.; Feng, J. Epicardial Adipose Tissue and Diabetic Cardiomyopathy. J. Cardiovasc. Pharmacol. Ther. 2023, 28, 10742484231151820. [Google Scholar] [CrossRef] [PubMed]
- Vliora, M.; Ravelli, C.; Grillo, E.; Corsini, M.; Flouris, A.D.; Mitola, S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev. 2023, 69, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.L.; Dungan, M.M.; Smart, C.D.; Madhur, M.S.; Doran, A.C. Inflammation Resolution in the Cardiovascular System: Arterial Hypertension, Atherosclerosis, and Ischemic Heart Disease. Antioxid. Redox Signal. 2024, 40, 292–316. [Google Scholar] [CrossRef] [PubMed]
- Lataro, R.M.; Brognara, F.; Iturriaga, R.; Paton, J.F.R. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton. Neurosci. 2024, 251, 103137. [Google Scholar] [CrossRef]
- Elías-López, D.; Doi, T.; Nordestgaard, B.G.; Kobylecki, C.J. Remnant cholesterol and low-grade inflammation jointly in atherosclerotic cardiovascular disease: Implications for clinical trials. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 125–135. [Google Scholar] [CrossRef]
- Buldak, L. Cardiovascular Diseases-A Focus on Atherosclerosis, Its Prophylaxis, Complications and Recent Advancements in Therapies. Int. J. Mol. Sci. 2022, 23, 4695. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.D.; Targher, G.; Byrne, C.D.; Somers, V.; Kim, S.U.; Chahal, C.A.A.; Wong, V.W.; Cai, J.; Shapiro, M.D.; Eslam, M.; et al. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol. Int. 2023, 17, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Machuki, J.O.; Li, M.Z.; Li, K.X.; Sun, H.J. A narrative review of plant and herbal medicines for delaying diabetic atherosclerosis: An update and future perspectives. Rev. Cardiovasc. Med. 2021, 22, 1361–1381. [Google Scholar] [CrossRef] [PubMed]
- Demina, E.P.; Smutova, V.; Pan, X.; Fougerat, A.; Guo, T.; Zou, C.; Chakraberty, R.; Snarr, B.D.; Shiao, T.C.; Roy, R.; et al. Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Low-Density Lipoproteins and Increasing Their Uptake by Macrophages. J. Am. Hear. Assoc. 2021, 10, e018756. [Google Scholar] [CrossRef] [PubMed]
- Velpuri, P.; Rai, V.; Agrawal, D.K. Role of sirtuins in attenuating plaque vulnerability in atherosclerosis. Mol. Cell. Biochem. 2024, 479, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef] [PubMed]
- Ginckels, P.; Holvoet, P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. Yale J. Biol. Med. 2022, 95, 129–152. [Google Scholar] [PubMed]
- Tsirebolos, G.; Tsoporis, J.N.; Drosatos, I.A.; Izhar, S.; Gkavogiannakis, N.; Sakadakis, E.; Triantafyllis, A.S.; Parker, T.G.; Rallidis, L.S.; Rizos, I. Emerging markers of inflammation and oxidative stress as potential predictors of coronary artery disease. Int. J. Cardiol. 2023, 376, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhao, L.; Dong, B.; Liu, Y. MiR-375 Inhibitor Alleviates Inflammation and Oxidative Stress by Upregulating the GPR39 Expression in Atherosclerosis. Int. Heart J. 2024, 65, 135–145. [Google Scholar] [CrossRef]
- Potere, N.; Garrad, E.; Kanthi, Y.; Di Nisio, M.; Kaplanski, G.; Bonaventura, A.; Connors, J.M.; De Caterina, R.; Abbate, A. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc. Res. 2023, 119, 2046–2060. [Google Scholar] [CrossRef]
- Amsler, J.; Everts-Graber, J.; Martin, K.R.; Roccabianca, A.; Lopes, C.; Tourneur, L.; Mocek, J.; Karras, A.; Naccache, J.M.; Bonnotte, B.; et al. Dysregulation of neutrophil oxidant production and interleukin-1-related cytokines in granulomatosis with polyangiitis. Rheumatology 2023, kead578. [Google Scholar] [CrossRef]
- Thomas, G.K.; Bonaventura, A.; Vecchié, A.; van Tassell, B.; Imazio, M.; Klein, A.; Luis, S.A.; Abbate, A. Interleukin-1 blockers for the treatment of recurrent pericarditis: Pathophysiology, patient reported outcomes and perspectives. J. Cardiovasc. Pharmacol. 2023. [Google Scholar] [CrossRef]
- Jin, M.; Fang, J.; Wang, J.J.; Shao, X.; Xu, S.W.; Liu, P.Q.; Ye, W.C.; Liu, Z.P. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: From mechanisms to targeted therapeutics. Acta Pharmacol. Sin. 2023, 44, 2358–2375. [Google Scholar] [CrossRef]
- Bagheri, B.; Khatibiyan Feyzabadi, Z.; Nouri, A.; Azadfallah, A.; Mahdizade Ari, M.; Hemmati, M.; Darban, M.; Alavi Toosi, P.; Banihashemian, S.Z. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediat. Inflamm. 2024, 2024, 5830491. [Google Scholar] [CrossRef] [PubMed]
- Faraj, T.A.; Edroos, G.; Erridge, C. Toll-like receptor stimulants in processed meats promote lipid accumulation in macrophages and atherosclerosis in Apoe(−/−) mice. Food Chem. Toxicol. 2024, 186, 114539. [Google Scholar] [CrossRef]
- de Oliveira dos Santos, A.R.; de Oliveira Zanuso, B.; Miola, V.F.B.; Barbalho, S.M.; Santos Bueno, P.C.; Flato, U.A.P.; Detregiachi, C.R.P.; Buchaim, D.V.; Buchaim, R.L.; Tofano, R.J. Adipokines, myokines, and hepatokines: Crosstalk and metabolic repercussions. Int. J. Mol. Sci. 2021, 22, 2639. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, S.U.; Suleman, M.; Khan, M.U.; Khan, M.S.; Arbi, F.M.; Hussain, T.; Mohammed Alsuhaibani, A.; Refat, M.S. Natural Allies for Heart Health: Nrf2 Activation and Cardiovascular Disease Management. Curr. Probl. Cardiol. 2024, 49, 102084. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Gluba-Brzozka, A.; Rysz-Gorzynska, M.; Rysz, J. The Role of Inflammation and Oxidative Stress in Rheumatic Heart Disease. Int. J. Mol. Sci. 2022, 23, 15812. [Google Scholar] [CrossRef]
- Asrial, A.A.; Reviono, R.; Soetrisno, S.; Setianto, B.Y.; Widyaningsih, V.; Nurwati, I.; Wasita, B.; Pudjiastuti, A. Effect of Dapagliflozin on Patients with Rheumatic Heart Disease Mitral Stenosis. J. Clin. Med. 2023, 12, 5898. [Google Scholar] [CrossRef]
- Sanghavi, N.; Ingrassia, J.P.; Korem, S.; Ash, J.; Pan, S.; Wasserman, A. Cardiovascular Manifestations in Rheumatoid Arthritis. Cardiol. Rev. 2024, 32, 146–152. [Google Scholar] [CrossRef]
- Zimba, O.; Gasparyan, A.Y. Cardiovascular issues in rheumatic diseases. Clin. Rheumatol. 2023, 42, 2535–2539. [Google Scholar] [CrossRef]
- Yasmin, F.; Moeed, A.; Najeeb, H.; Umar, M.; Jawed, S.; Atif, A.R.; Asghar, M.S.; Alraies, M.C. Comparative Efficacy and Safety of Mitral Valve Repair Versus Mitral Valve Replacement in Improving Clinical Outcomes in Patients with Rhematic Heart Disease: A High-Value Care Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2024, 102530. [Google Scholar] [CrossRef] [PubMed]
- Pauklin, P.; Zilmer, M.; Eha, J.; Tootsi, K.; Kals, M.; Kampus, P. Markers of Inflammation, Oxidative Stress, and Fibrosis in Patients with Atrial Fibrillation. Oxidative Med. Cell. Longev. 2022, 2022, 4556671. [Google Scholar] [CrossRef] [PubMed]
- Mukai, Y. Inflammation and atrial fibrillation. J. Arrhythm. 2024, 40, 26–27. [Google Scholar] [CrossRef]
- Vinciguerra, M.; Dobrev, D.; Nattel, S. Atrial fibrillation: Pathophysiology, genetic and epigenetic mechanisms. Lancet Reg. Health Eur. 2024, 37, 100785. [Google Scholar] [CrossRef] [PubMed]
- Curcio, A.; Scalise, R.; Indolfi, C. Pathophysiology of Atrial Fibrillation and Approach to Therapy in Subjects Less than 60 Years Old. Int. J. Mol. Sci. 2024, 25, 758. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Luo, C.; Mo, B.; Lin, Y.; Liu, G.; Wang, X.; Li, L. Inflammation and Oxidative Stress Role of S100A12 as a Potential Diagnostic and Therapeutic Biomarker in Acute Myocardial Infarction. Oxidative Med. Cell. Longev. 2022, 2022, 2633123. [Google Scholar] [CrossRef] [PubMed]
- Matter, M.A.; Paneni, F.; Libby, P.; Frantz, S.; Stähli, B.E.; Templin, C.; Mengozzi, A.; Wang, Y.J.; Kündig, T.M.; Räber, L.; et al. Inflammation in acute myocardial infarction: The good, the bad and the ugly. Eur. Heart J. 2024, 45, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Kanuri, B.; Biswas, P.; Dahdah, A.; Murphy, A.J.; Nagareddy, P.R. Impact of age and sex on myelopoiesis and inflammation during myocardial infarction. J. Mol. Cell Cardiol. 2024, 187, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Rihan, M.; Sharma, S.S. Inhibition of Pyruvate kinase M2 (PKM2) by shikonin attenuates isoproterenol-induced acute myocardial infarction via reduction in inflammation, hypoxia, apoptosis, and fibrosis. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 145–159. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, T. mTOR Signaling Pathway and Gut Microbiota in Various Disorders: Mechanisms and Potential Drugs in Pharmacotherapy. Int. J. Mol. Sci. 2023, 24, 11811. [Google Scholar] [CrossRef]
- Zhao, T.; Fan, J.; Abu-Zaid, A.; Burley, S.K.; Zheng, X.S. Nuclear mTOR Signaling Orchestrates Transcriptional Programs Underlying Cellular Growth and Metabolism. Cells 2024, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Reis, F. mTOR signaling: New insights into cancer, cardiovascular diseases, diabetes and aging. Int. J. Mol. Sci. 2023, 24, 13628. [Google Scholar] [CrossRef] [PubMed]
- Marafie, S.K.; Al-Mulla, F.; Abubaker, J. mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. Int. J. Mol. Sci. 2024, 25, 6141. [Google Scholar] [CrossRef] [PubMed]
- Spanjaard, P.; Petit, J.M.; Schmitt, A.; Vergès, B.; Bouillet, B. Screening and management of metabolic complications of mTOR inhibitors in real-life settings. Ann. Endocrinol. 2023, in press. [CrossRef] [PubMed]
- Lotfollahzadeh, S.; Xia, C.; Amraei, R.; Hua, N.; Kandror, K.V.; Farmer, S.R.; Wei, W.; Costello, C.E.; Chitalia, V.; Rahimi, N. Inactivation of Minar2 in mice hyperactivates mTOR signaling and results in obesity. Mol. Metab. 2023, 73, 101744. [Google Scholar] [CrossRef] [PubMed]
- Sivasubrmanian, S. Fathoming the role of mTOR in diabetes mellitus and its complications. Curr. Mol. Pharmacol. 2023, 16, 520–529. [Google Scholar]
- Kim, D.M.; Lee, J.H.; Pan, Q.; Han, H.W.; Shen, Z.; Eshghjoo, S.; Wu, C.S.; Yang, W.; Noh, J.Y.; Threadgill, D.W.; et al. Nutrient-sensing growth hormone secretagogue receptor in macrophage programming and meta-inflammation. Mol. Metab. 2024, 79, 101852. [Google Scholar] [CrossRef] [PubMed]
- Zamani-Garmsiri, F.; Emamgholipour, S.; Rahmani Fard, S.; Ghasempour, G.; Jahangard Ahvazi, R.; Meshkani, R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother. Res. 2022, 36, 415–432. [Google Scholar] [CrossRef]
- Santamarina, A.B.; Calder, P.C.; Estadella, D.; Pisani, L.P. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr. Res. 2023, 114, 50–70. [Google Scholar] [CrossRef]
- van de Vyver, M. Immunology of chronic low-grade inflammation: Relationship with metabolic function. J. Endocrinol. 2023, 257, e220271. [Google Scholar] [CrossRef]
- Figueiredo, C.; Padilha, C.S.; Dorneles, G.P.; Peres, A.; Kruger, K.; Rosa-Neto, J.C.; Lira, F.S. Type and Intensity as Key Variable of Exercise in Metainflammation Diseases: A Review. Int. J. Sports Med. 2022, 43, 743–767. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Marandi, S.M.; Kazemi, M.; Esmaeil, N. Meta-inflammatory state and insulin resistance can improve after 10 weeks of combined all-extremity high-intensity interval training in sedentary overweight/obese females: A quasi-experimental study. J. Diabetes Metab. Disord. 2020, 19, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.G.; Florida, E.; Li, H.; Parel, P.M.; Mehta, N.N.; Sorokin, A.V. Oxidized low-density lipoprotein associates with cardiovascular disease by a vicious cycle of atherosclerosis and inflammation: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 1023651. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Rodolico, D.; Hill, J.A. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc. Res. 2021, 117, 423–434. [Google Scholar] [CrossRef]
- Waksman, R.; Merdler, I.; Case, B.C.; Waksman, O.; Porto, I. Targeting inflammation in atherosclerosis: Overview, strategy and directions. EuroIntervention 2024, 20, 32–44. [Google Scholar] [CrossRef]
- Canonico, F.; Pedicino, D.; Severino, A.; Vinci, R.; Flego, D.; Pisano, E.; d’Aiello, A.; Ciampi, P.; Ponzo, M.; Bonanni, A.; et al. GLUT-1/PKM2 loop dysregulation in patients with non-ST-segment elevation myocardial infarction promotes metainflammation. Cardiovasc. Res. 2023, 119, 2653–2662. [Google Scholar] [CrossRef]
- Attiq, A.; Afzal, S.; Ahmad, W.; Kandeel, M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur. J. Pharmacol. 2024, 966, 176338. [Google Scholar] [CrossRef]
- Skeyni, A.; Pradignac, A.; Matz, R.L.; Terrand, J.; Boucher, P. Cholesterol trafficking, lysosomal function, and atherosclerosis. Am. J. Physiol. Cell Physiol. 2024, 326, C473–C486. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.R. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina 2023, 59, 561. [Google Scholar] [CrossRef] [PubMed]
- Mallick, R.; Basak, S.; Das, R.K.; Banerjee, A.; Paul, S.; Pathak, S.; Duttaroy, A.K. Fatty Acids and their Proteins in Adipose Tissue Inflammation. Cell Biochem. Biophys. 2024, 82, 35–51. [Google Scholar] [CrossRef]
- Chaurasiya, V.; Nidhina Haridas, P.A.; Olkkonen, V.M. Adipocyte-endothelial cell interplay in adipose tissue physiology. Biochem. Pharmacol. 2024, 222, 116081. [Google Scholar] [CrossRef] [PubMed]
- Vella, V.; Lappano, R.; Bonavita, E.; Maggiolini, M.; Clarke, R.B.; Belfiore, A.; De Francesco, E.M. Insulin/IGF Axis and the Receptor for Advanced Glycation End Products: Role in Meta-inflammation and Potential in Cancer Therapy. Endocr. Rev. 2023, 44, 693–723. [Google Scholar] [CrossRef] [PubMed]
- Palanissami, G.; Paul, S.F.D. AGEs and RAGE: Metabolic and molecular signatures of the glycation-inflammation axis in malignant or metastatic cancers. Explor. Target. Antitumor. Ther. 2023, 4, 812–849. [Google Scholar] [CrossRef] [PubMed]
- Gianopoulos, I.; Daskalopoulou, S.S. Macrophage profiling in atherosclerosis: Understanding the unstable plaque. Basic Res. Cardiol. 2024, 119, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Kwiatkowski, M.; Govorukhina, N.; Bischoff, R.; Melgert, B.N. Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of Metabolites. Front. Immunol. 2021, 12, 746151. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Matz, A.J.; Karlinsey, K.; Cao, Z.; Vella, A.T.; Zhou, B. Macrophages at the Crossroad of Meta-Inflammation and Inflammaging. Genes 2022, 13, 2074. [Google Scholar] [CrossRef] [PubMed]
- d’Aiello, A.; Bonanni, A.; Vinci, R.; Pedicino, D.; Severino, A.; De Vita, A.; Filomia, S.; Brecciaroli, M.; Liuzzo, G. Meta-Inflammation and New Anti-Diabetic Drugs: A New Chance to Knock Down Residual Cardiovascular Risk. Int. J. Mol. Sci. 2023, 24, 8643. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; He, Y.; Huang, Y.; Ye, M.; Guo, Q.; Xiao, Y.; Cai, G.; Chen, L.; Li, C.; Zhou, H.; et al. Myeloid-derived grancalcin instigates obesity-induced insulin resistance and metabolic inflammation in male mice. Nat. Commun. 2024, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, Y.N.; Zhang, L.Y.; Li, C.X.; Li, S.Q.; Li, H.P.; Zhang, L.; Li, N.; Yan, Y.R.; Li, Q.Y. Changes of circulating biomarkers of inflammation and glycolipid metabolism by CPAP in OSA patients: A meta-analysis of time-dependent profiles. Ther. Adv. Chronic. Dis. 2022, 13, 20406223211070919. [Google Scholar] [CrossRef]
- Garg, P.K.; Bhatia, H.S.; Allen, T.S.; Grainger, T.; Pouncey, A.L.; Dichek, D.; Virmani, R.; Golledge, J.; Allison, M.A.; Powell, J.T. Assessment of Subclinical Atherosclerosis in Asymptomatic People In Vivo: Measurements Suitable for Biomarker and Mendelian Randomization Studies. Arter. Thromb. Vasc. Biol. 2024, 44, 24–47. [Google Scholar] [CrossRef]
- Son, Y.; Choi, E.; Hwang, Y.; Kim, K. The role of 27-hydroxycholesterol in meta-inflammation. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2024, 28, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ma, R.; Gao, D.; Hu, B.; Yin, X.; Liu, Z.; Lin, H.; Zhang, Z. Investigation of Statin Medication Use in Elderly Patients with Cardiovascular Disease on Regular Physical Examination and the Relationship with Glucolipid Metabolism and Adverse Cardiovascular Prognosis. Dis. Markers 2022, 2022, 8714392. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, Z.; Wang, S.; Cai, J.; Guo, J. Hypothalamus-pituitary-adrenal Axis in Glucolipid metabolic disorders. Rev. Endocr. Metab. Disord. 2020, 21, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, V.; Sinturel, F.; Riezman, H.; Dibner, C. Lipid metabolism around the body clocks. Prog. Lipid. Res. 2023, 91, 101235. [Google Scholar] [CrossRef]
- Cao, M.; Li, S.; Tang, Y.; Zou, Y. A Meta-Analysis of High-Intensity Interval Training on Glycolipid Metabolism in Children With Metabolic Disorders. Front. Pediatr. 2022, 10, 887852. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhao, X.; Li, R.; Hu, C.; Wu, H.; Li, J.; Zhang, Y.; Xu, Y. Activating transcription factor 3, glucolipid metabolism, and metabolic diseases. J. Mol. Cell. Biol. 2023, 14, mjac067. [Google Scholar] [CrossRef]
- Zhao, N.; Yu, X.; Zhu, X.; Song, Y.; Gao, F.; Yu, B.; Qu, A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J. Cardiovasc. Transl. Res. 2024, 17, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Gaba, P.; O’Donoghue, M.L.; Park, J.G.; Wiviott, S.D.; Atar, D.; Kuder, J.F.; Im, K.; Murphy, S.A.; De Ferrari, G.M.; Gaciong, Z.A.; et al. Association Between Achieved Low-Density Lipoprotein Cholesterol Levels and Long-Term Cardiovascular and Safety Outcomes: An Analysis of FOURIER-OLE. Circulation 2023, 147, 1192–1203. [Google Scholar] [CrossRef]
- Frampton, J.E. Inclisiran: A Review in Hypercholesterolemia. Am. J. Cardiovasc. Drugs 2023, 23, 219–230. [Google Scholar] [CrossRef]
- Krychtiuk, K.A.; Ahrens, I.; Drexel, H.; Halvorsen, S.; Hassager, C.; Huber, K.; Kurpas, D.; Niessner, A.; Schiele, F.; Semb, A.G.; et al. Acute LDL-C reduction post ACS: Strike early and strike strong: From evidence to clinical practice. A clinical consensus statement of the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Association of Preventive Cardiology (EAPC) and the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 939–949. [Google Scholar] [CrossRef]
- Cupido, A.J.; Reeskamp, L.F.; Hingorani, A.D.; Finan, C.; Asselbergs, F.W.; Hovingh, G.K.; Schmidt, A.F. Joint Genetic Inhibition of PCSK9 and CETP and the Association With Coronary Artery Disease: A Factorial Mendelian Randomization Study. JAMA Cardiol. 2022, 7, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J. PCSK9 inhibitors and reduction in cardiovascular events: Current evidence and future perspectives. Kardiol. Pol. 2023, 81, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Duell, P.B. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease Risk. J. Am. Coll Cardiol. 2023, 81, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Lampsas, S.; Xenou, M.; Oikonomou, E.; Pantelidis, P.; Lysandrou, A.; Sarantos, S.; Goliopoulou, A.; Kalogeras, K.; Tsigkou, V.; Kalpis, A.; et al. Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023, 28, 969. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Czarnota, G.J. Involvement of Ceramide Signalling in Radiation-Induced Tumour Vascular Effects and Vascular-Targeted Therapy. Int. J. Mol. Sci. 2022, 23, 6671. [Google Scholar] [CrossRef] [PubMed]
- Bloom, S.I.; Islam, M.T.; Lesniewski, L.A.; Donato, A.J. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 2023, 20, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, H. Vascular function: A key player in hypertension. Hypertens. Res. 2023, 46, 2145–2158. [Google Scholar] [CrossRef] [PubMed]
- Girotti, A.W.; Korytowski, W. Pathophysiological potential of lipid hydroperoxide intermembrane translocation: Cholesterol hydroperoxide translocation as a special case. Redox Biol. 2021, 46, 102096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, K.; Zhang, W.; Zhao, Z.; Chang, F.; Du, J.; Zhang, X.; Bao, K.; Zhang, C.; Shi, L.; et al. Ganglioside GM3 Protects Against Abdominal Aortic Aneurysm by Suppressing Ferroptosis. Circulation 2024, 149, 843–859. [Google Scholar] [CrossRef]
- Chen, X.; Shi, C.; Wang, Y.; Yu, H.; Zhang, Y.; Zhang, J.; Li, P.; Gao, J. The mechanisms of glycolipid metabolism disorder on vascular injury in type 2 diabetes. Front. Physiol. 2022, 13, 952445. [Google Scholar] [CrossRef]
- Luque-Córdoba, D.; Calderón-Santiago, M.; Rangel-Zúñiga, O.A.; Camargo, A.; López-Miranda, J.; Priego-Capote, F. Comprehensive profiling of ceramides in human serum by liquid chromatography coupled to tandem mass spectrometry combining data independent/dependent acquisition modes. Anal. Chim. Acta 2024, 1287, 342115. [Google Scholar] [CrossRef]
- Wu, H.D.; Yang, L.W.; Deng, D.Y.; Jiang, R.N.; Song, Z.K.; Zhou, L.T. The effects of brominated flame retardants (BFRs) on pro-atherosclerosis mechanisms. Ecotoxicol. Environ. Saf. 2023, 262, 115325. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.H.; Xiao, L.; Chen, J.Y.; Qu, P.; Tang, X.; Wang, Y. The Determinants of Adolescent Glycolipid Metabolism Disorder: A Cohort Study. Int. J. Endocrinol. 2022, 2022, 6214785. [Google Scholar] [CrossRef] [PubMed]
- Rico-Fontalvo, J.; Aroca-Martínez, G.; Daza-Arnedo, R.; Cabrales, J.; Rodríguez-Yanez, T.; Cardona-Blanco, M.; Montejo-Hernández, J.; Rodelo Barrios, D.; Patiño-Patiño, J.; Osorio Rodríguez, E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023, 13, 633. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Li, H.; Zhang, P. Pathophysiology of diabetic kidney disease and autophagy: A review. Medicine 2023, 102, e33965. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Niu, Y.; Zhao, X.L.; Ruan, H.J.; Xiang, Y.; Wang, L.Y.; Feng, Y.; Tang, Q.Y. Associations Between Serum TNF-α, IL-6, hs-CRP and GLMD in Obese Children and Adolescents: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2023, 16, 3915–3923. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Lee, Y.J.; Lee, Y.A.; Kim, J.H.; Lee, S.Y.; Shin, C.H. High-Sensitivity C-Reactive Protein Is Associated with Prediabetes and Adiposity in Korean Youth. Metab. Syndr. Relat. Disord. 2020, 18, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Shen, M.; Qian, Y.; Li, S.; Chen, Y.; Jiang, H.; Lv, H.; Chen, D.; Zhao, R.; Zheng, X.; et al. Growth differentiation factor-15/adiponectin ratio as a potential biomarker for metabolic syndrome in Han Chinese. Front. Endocrinol. 2023, 14, 1146376. [Google Scholar] [CrossRef]
- Carballo-Casla, A.; García-Esquinas, E.; Buño-Soto, A.; Struijk, E.A.; López-García, E.; Rodríguez-Artalejo, F.; Ortolá, R. Metabolic syndrome and Growth Differentiation Factor 15 in older adults. Geroscience 2022, 44, 867–880. [Google Scholar] [CrossRef]
- Xiao, Q.A.; He, Q.; Zeng, J.; Xia, X. GDF-15, a future therapeutic target of glucolipid metabolic disorders and cardiovascular disease. Biomed. Pharmacother. 2022, 146, 112582. [Google Scholar] [CrossRef]
- Nyárády, B.B.; Kiss, L.Z.; Bagyura, Z.; Merkely, B.; Dósa, E.; Láng, O.; Kőhidai, L.; Pállinger, É. Growth and differentiation factor-15: A link between inflammaging and cardiovascular disease. Biomed. Pharmacother. Biomed. Pharmacother. 2024, 174, 116475. [Google Scholar] [CrossRef] [PubMed]
- Kosum, P.; Siranart, N.; Mattanapojanat, N.; Phutinart, S.; Kongruttanachok, N.; Sinphurmsukskul, S.; Siwamogsatham, S.; Puwanant, S.; Ariyachaipanich, A. GDF-15: A novel biomarker of heart failure predicts short-term and long-term heart-failure rehospitalization and short-term mortality in patients with acute heart failure syndrome. BMC Cardiovasc. Disord. 2024, 24, 151. [Google Scholar] [CrossRef] [PubMed]
- Garganeeva, A.A.; Kuzheleva, E.A.; Tukish, O.V.; Kondratiev, M.Y.; Vitt, K.N.; Andreev, S.L.; Ogurkova, O.N. Biomarkers of Inflammation in Predicting the Outcomes of Heart Failure of Ischemic Etiology: The Results of Factor Analysis. Kardiologiia 2024, 64, 18–26. [Google Scholar] [CrossRef] [PubMed]
- YV, N.T.; Ho, T.T.; Caglayan, S.; Ramasamy, T.S.; Chu, D.-T. RNA therapeutics for treatment of diabetes. Prog. Mol. Biol. Transl. Sci. 2024, 203, 287–300. [Google Scholar]
- Burla, B.; Oh, J.; Nowak, A.; Piraud, N.; Meyer, E.; Mei, D.; Bendt, A.K.; Studt, J.D.; Frey, B.M.; Torta, F.; et al. Plasma and platelet lipidome changes in Fabry disease. Clin. Chim. Acta Int. J. Clin. Chem. 2024, 562, 119833. [Google Scholar] [CrossRef]
- SenthilKumar, G.; Katunaric, B.; Zirgibel, Z.; Lindemer, B.; Jaramillo-Torres, M.J.; Bordas-Murphy, H.; Schulz, M.E.; Pearson, P.J.; Freed, J.K. Necessary role of ceramides in the human microvascular endothelium during health and disease. Circ. Res. 2024, 134, 81–96. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, E.P.; Moretti, R.C., Jr.; Torres Pomini, K.; Laurindo, L.F.; Sloan, K.P.; Sloan, L.A.; Castro, M.V.M.d.; Baldi, E., Jr.; Ferraz, B.F.R.; de Souza Bastos Mazuqueli Pereira, E.; et al. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology 2024, 13, 519. https://doi.org/10.3390/biology13070519
de Lima EP, Moretti RC Jr., Torres Pomini K, Laurindo LF, Sloan KP, Sloan LA, Castro MVMd, Baldi E Jr., Ferraz BFR, de Souza Bastos Mazuqueli Pereira E, et al. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology. 2024; 13(7):519. https://doi.org/10.3390/biology13070519
Chicago/Turabian Stylede Lima, Enzo Pereira, Renato Cesar Moretti, Jr., Karina Torres Pomini, Lucas Fornari Laurindo, Kátia Portero Sloan, Lance Alan Sloan, Marcela Vialogo Marques de Castro, Edgar Baldi, Jr., Bruna Fidencio Rahal Ferraz, Eliana de Souza Bastos Mazuqueli Pereira, and et al. 2024. "Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways" Biology 13, no. 7: 519. https://doi.org/10.3390/biology13070519
APA Stylede Lima, E. P., Moretti, R. C., Jr., Torres Pomini, K., Laurindo, L. F., Sloan, K. P., Sloan, L. A., Castro, M. V. M. d., Baldi, E., Jr., Ferraz, B. F. R., de Souza Bastos Mazuqueli Pereira, E., Catharin, V. M. C. S., Mellen, C. H., Caracio, F. C. C., Spilla, C. S. G., Haber, J. F. S., & Barbalho, S. M. (2024). Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology, 13(7), 519. https://doi.org/10.3390/biology13070519