Comparative Study of Bacillus-Based Plant Biofertilizers: A Proposed Index
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms, Media, and Culture Conditions
2.2. Isolation of Drought-Protecting Bacterial Strains
2.3. Sporulation Test
2.4. Optical and Electronic Microscopy
2.5. Monitoring of Plant Growth
2.6. Plant-Growth Conditions, Bacterial Inoculation, and Plant Sampling
2.7. Phosphate Solubilization Test
2.8. Potassium Solubilization Assay
2.9. Siderophore Production Assay
2.10. Quantification of Phytohormones: Indole Acetic Acid, Indole Butyric Acid, and Gibberellins
2.11. Determination Urea Hydrolysis
2.12. Antagonism and Antibiosis Assays
- Antagonism
- Antibiosis
2.13. Extraction of Nucleic Acids and Next-Generation Sequencing
2.14. Genome Sequencing
2.15. Statistical Analysis
3. Results
3.1. Isolation of a Collection of Drought-Protecting Spore-Forming Strains
3.2. Taxonomic Affiliation and Genome Sequence of Bacillus sp. A6
3.3. Plant-Growth-Promoting Rizhobacteria Traits of B. velezensis A6 and Their Closest Commercial Strains
3.4. Drought Protection and Plant-Growth Promotion of Pepper Plants
3.5. Biofungicidal Activity of the Bacterial Strains
3.6. Phosphate and Potassium Salt Solubilization
3.7. Siderophore Production
3.8. Urea Hydrolysis
3.9. Quantification of Phytohormones: Indole Acetic Acid, Indole Butyric Acid, and Gibberellic Acid
3.10. Agricultural Protection against Stress Index (APSI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rangseekaew, P.; Barros-Rodríguez, A.; Pathom-aree, W.; Manzanera, M. Deep-Sea Actinobacteria Mitigate Salinity Stress in Tomato Seedlings and Their Biosafety Testing. Plants 2021, 10, 1687. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, I.; Mushtaq, A. Water Pollution from Agricultural Activities: A Critical Global Review. Int. J. Chem. Biochem. Sci. 2023, 23, 164–176. [Google Scholar]
- Manzanera, M. Dealing with water stress and microbial preservation. Environ. Microbiol. 2021, 23, 3351–3359. [Google Scholar] [CrossRef]
- Vílchez, J.I.; García-Fontana, C.; Román-Naranjo, D.; González-López, J.; Manzanera, M. Plant Drought Tolerance Enhancement by Trehalose Production of Desiccation-Tolerant Microorganisms. Front. Microbiol. 2016, 7, 1577. [Google Scholar] [CrossRef]
- Wrzaszcz, W.; Prandecki, K. Agriculture and The European Green Deal. Zagadnienia Ekon. Rolnej/Probl. Agric. Econ. 2020, 365, 156–179. [Google Scholar] [CrossRef]
- Yosefi, K.; Galavi, M.; Ramrodi, M.; Mousavi, S.R. Effect of Bio-phosphate and Chemical Phosphorus Fertilizer Accompanied with Micronutrient Foliar Application on Growth, Yield and Yield Components of Maize (Single Cross 704). Aust. J. Crop Sci. 2011, 5, 175–180. [Google Scholar]
- Venegas-Molina, J.; Proietti, S.; Pollier, J.; Orozco-Freire, W.; Ramirez-Villacis, D.; Leon-Reyes, A. Induced tolerance to abiotic and biotic stresses of broccoli and Arabidopsis after treatment with elicitor molecules. Sci. Rep. 2020, 10, 10319. [Google Scholar] [CrossRef]
- García, D.; González-Almario, A.; Cotes, A.M. Controlling Fusarium wilt of cape gooseberry by microbial consortia. Lett. Appl. Microbiol. 2023, 76, ovad072. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Velandia, C.A.; Ongena, M.; Cotes, A.M. Effects of Fengycins and Iturins on Fusarium oxysporum f. sp. physali and Root Colonization by Bacillus velezensis Bs006 Protect Golden Berry Against Vascular Wilt. Phytopathology 2021, 111, 2227–2237. [Google Scholar] [CrossRef]
- Mahmud, A.A.; Upadhyay, S.K.; Srivastava, A.K.; Bhojiya, A.A. Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Curr. Res. Environ. Sustain. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Itelima, J.U.; Bang, W.J.; Onyimba, I.A.; Sila, M.D.; Egbere, O.J. Bio-fertilizers as Key Player in Enhancing Soil Fertility and Crop Productivity: A Review. Direct Res. J. Agric. Food Sci. 2018, 6, 73–83. [Google Scholar]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects—A review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Priest, F.G.; Goodfellow, M.; Shute, L.A.; Berkeley, R.C.W. Bacillus amyloliquefaciens sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 1987, 37, 69–71. [Google Scholar] [CrossRef]
- Wang, L.-T.; Lee, F.-L.; Tai, C.-J.; Kuo, H.-P. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 2008, 58, 671–675. [Google Scholar] [CrossRef]
- Pethybridge, S.J.; Gugino, B.K.; Kikkert, J.R. Efficacy of Double Nickel LC (Bacillus amyloliquefaciens D747 Strain) for Management of White Mold in Snap and Dry Bean. Plant Health Prog. 2019, 20, 61–66. [Google Scholar] [CrossRef]
- Fan, B.; Wang, C.; Song, X.; Ding, X.; Wu, L.; Wu, H.; Gao, X.; Borriss, R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front. Microbiol. 2018, 9, 2491. [Google Scholar] [CrossRef] [PubMed]
- Sharaf-Eldin, M.; Elkholy, S.; Fernández, J.-A.; Junge, H.; Cheetham, R.; Guardiola, J.; Weathers, P. Bacillus subtilis FZB24® Affects Flower Quantity and Quality of Saffron (Crocus sativus). Planta Med. 2008, 74, 1316–1320. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Saxena, A.K.; Singh, J.S.; Singh, D.P. Impact of Native ST-PGPR (Bacillus pumilus; EU927414) on PGP Traits, Antioxidants Activities, Wheat Plant Growth and Yield under Salinity. Clim. Chang. Environ. Sustain. 2019, 7, 157–168. [Google Scholar] [CrossRef]
- Ngugi, H.K.; Dedej, S.; Delaplane, K.S.; Savelle, A.T.; Scherm, H. Effect of flower-applied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry. Biol. Control 2005, 33, 32–38. [Google Scholar] [CrossRef]
- Narváez-Reinaldo, J.J.; Barba, I.; González-López, J.; Tunnacliffe, A.; Manzanera, M. Rapid Method for Isolation of Desiccation-Tolerant Strains and Xeroprotectants. Appl. Environ. Microbiol. 2010, 76, 5254–5262. [Google Scholar] [CrossRef]
- Vílchez, J.I.; Navas, A.; González-López, J.; Arcos, S.C.; Manzanera, M. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front. Microbiol. 2016, 6, 1514. [Google Scholar] [CrossRef] [PubMed]
- Godoy, P.; Mourenza, Á.; Hernández-Romero, S.; González-López, J.; Manzanera, M. Microbial Production of Ethanol From Sludge Derived From an Urban Wastewater Treatment Plant. Front. Microbiol. 2018, 9, 2634. [Google Scholar] [CrossRef]
- Barros-Rodríguez, A.; García-Gálvez, C.; Pacheco, P.; Kalyuzhnaya, M.G.; Manzanera, M. Isolation of Methane Enriched Bacterial Communities and Application as Wheat Biofertilizer under Drought Conditions: An Environmental Contribution. Plants 2023, 12, 2487. [Google Scholar] [CrossRef]
- Vílchez, S.; Tunnacliffe, A.; Manzanera, M. Tolerance of plastic-encapsulated Pseudomonas putida KT2440 to chemical stress. Extremophiles 2008, 12, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Sanders, S.K.; Alexander, E.L.; Braylan, R.C. A high-yield technique for preparing cells fixed in suspension for scanning electron microscopy. J. Cell Biol. 1975, 67, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Mazia, D.; Schatten, G.; Sale, W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J. Cell Biol. 1975, 66, 198–200. [Google Scholar] [CrossRef]
- Anderson, T.F. Techniques for the Preservaation of Three-Dimensional Structure in Preparing Specimens for the Electron Microscope*. Trans. N. Y. Acad. Sci. 1951, 13, 130–134. [Google Scholar] [CrossRef]
- Manual de Técnicas de Microscopia Electrónica (M.E.T.). Aplicaciones Biológicas (Fundamentos y Procedimientos)—Universidad de Granada. Available online: https://editorial.ugr.es/libro/manual-de-tecnicas-de-microscopia-electronica-m-e-t_138503/ (accessed on 11 February 2024).
- Reynolds, E.S. The Use of Lead Citrate at High Ph as An Electron-Opaque Stain in Electron Microscopy. J. Cell Biol. 1963, 17, 208–212. [Google Scholar] [CrossRef]
- Mayak, S.; Tirosh, T.; Glick, B.R. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 2004, 166, 525–530. [Google Scholar] [CrossRef]
- Vílchez, J.I.; Niehaus, K.; Dowling, D.N.; González-López, J.; Manzanera, M. Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant’s Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Front. Microbiol. 2018, 9, 284. [Google Scholar] [CrossRef]
- Dobre, A.; Marin, L.A.; Manole, C.; Andrei, N.; Cornea, C.P. Evaluation of the capacity of different microorganisms to solubilize several compounds of phosphorous and zinc. Sci. Bulletin. Ser. F Biotechnol. 2016, 20, 254–262. [Google Scholar]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of Blue Agar CAS Assay for Siderophore Detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef]
- Rupal, K.S.; Raval, V.H.; Saraf, M. Biosynthesis and purification of indole-3-acetic acid by halotolerant rhizobacteria isolated from Little Runn of Kachchh. Biocatal. Agric. Biotechnol. 2020, 23, 101435. [Google Scholar] [CrossRef]
- Christensen, W.B. Urea Decomposition as a Means of Differentiating Proteus and Paracolon Cultures from Each Other and from Salmonella and Shigella Types. J. Bacteriol. 1946, 52, 461–466. [Google Scholar] [CrossRef]
- Suárez-Estrella, F.; Vargas-García, C.; López, M.J.; Capel, C.; Moreno, J. Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Prot. 2007, 26, 46–53. [Google Scholar] [CrossRef]
- Zalila-Kolsi, I.; Ben Mahmoud, A.; Ali, H.; Sellami, S.; Nasfi, Z.; Tounsi, S.; Jamoussi, K. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiol. Res. 2016, 192, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Babraham Bioinformatics—FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 30 October 2023).
- Welcome to KBase Predictive Biology. Available online: https://www.kbase.us/ (accessed on 30 October 2023).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef] [PubMed]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Hahnke, R.L.; Petersen, J.; Scheuner, C.; Michael, V.; Fiebig, A.; Rohde, C.; Rohde, M.; Fartmann, B.; Goodwin, L.A.; et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand. Genom. Sci. 2014, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Shull, J.J.; Cargo, G.T.; Ernst, R.R. Kinetics of Heat Activation and of Thermal Death of Bacterial Spores. Appl. Microbiol. 1963, 11, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Rebelo Romão, I.; Rodrigues dos Santos, A.S.; Velasco, L.; Martínez-Ferri, E.; Vilchez, J.I.; Manzanera, M. Seed-Encapsulation of Desiccation-Tolerant Microorganisms for the Protection of Maize from Drought: Phenotyping Effects of a New Dry Bioformulation. Plants 2022, 11, 1024. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Yahaya, R.S.R.; Baharudin, M.M.A.-A.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S. A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef]
- López, D.B.S.; Pazos, J.V.P. Caracterización y evaluación de PGPRs sobre el crecimiento de plántulas de Dioscorea rotundata in vitro. Agron. Costarric. 2018, 42, 75–91. [Google Scholar] [CrossRef]
- Wandersman, C.; Delepelaire, P. Bacterial iron sources: From siderophores to hemophores. Annu. Rev. Microbiol. 2004, 58, 611–647. [Google Scholar] [CrossRef]
- Singh, R.; Pandey, K.D.; Kumar, A.; Singh, M. PGPR Isolates from the Rhizosphere of Vegetable Crop Momordica charantia: Characterization and Application as Biofertilizer. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1789–1802. [Google Scholar] [CrossRef]
- Aloo, B.N.; Tripathi, V.; Makumba, B.A.; Mbega, E.R. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Front. Plant Sci. 2022, 13, 1002448. [Google Scholar] [CrossRef]
- Zhang, B.-X.; Li, P.-S.; Wang, Y.-Y.; Wang, J.-J.; Liu, X.-L.; Wang, X.-Y.; Hu, X.-M. Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Adv. 2021, 11, 31601–31607. [Google Scholar] [CrossRef] [PubMed]
- Rizza, A.; Jones, A.M. The makings of a gradient: Spatiotemporal distribution of gibberellins in plant development. Curr. Opin. Plant Biol. 2019, 47, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Peñas-Corte, M.; Bouzas, P.R.; del Río, J.N.; Manzanera, M.; Barros-Rodríguez, A.; Fernández-Navarro, J.R. Enhancing maize stress tolerance and productivity through synergistic application of Bacillus velezensis A6 and Lamiales plant extract, biostimulants suitable for organic farming. Biology 2024. submitted. [Google Scholar]
- Barros-Rodríguez, A.; Rangseekaew, P.; Lasudee, K.; Pathom-aree, W.; Manzanera, M. Impacts of Agriculture on the Environment and Soil Microbial Biodiversity. Plants 2021, 10, 2325. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, A.; Theologidis, I.; Varympopi, A.; Papafotis, D.; Mermigka, G.; Tzima, A.; Panopoulos, N.J.; Skandalis, N. Shifting Perspectives of Translational Research in Bio-Bactericides: Reviewing the Bacillus amyloliquefaciens Paradigm. Biology 2021, 10, 1202. [Google Scholar] [CrossRef]
- Relationship of Bacillus amyloliquefaciens Clades Associated with Strains DSM 7T and FZB42T: A Proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on Complete Genome Sequence Comparisons. Microbiology Society. Available online: https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.023267-0 (accessed on 3 August 2024).
- Ayaz, M.; Ali, Q.; Jiang, Q.; Wang, R.; Wang, Z.; Mu, G.; Khan, S.A.; Khan, A.R.; Manghwar, H.; Wu, H.; et al. Salt Tolerant Bacillus Strains Improve Plant Growth Traits and Regulation of Phytohormones in Wheat under Salinity Stress. Plants 2022, 11, 2769. [Google Scholar] [CrossRef]
Strain | Role in This Study | Reference |
---|---|---|
Pseudomonas putida KT2440 | PGPR Spore staining | [4] |
Escherichia coli OP50 | PGPR | [21] |
Microbacterium sp. 3J1 | PGPR | [4] |
Proteus sp. S47 | Siderophore negative control | [22] |
Bacillus amyloliquefaciens D747 | PGPR and fungicides | [15] |
Bacillus amyloliquefaciens subsp. amyloliquefaciens Fukumoto DSM7 | PGPR and fungicides | [13,14] |
Bacillus velezensis FZB42 | PGPR and fungicides | [16] |
Bacillus velezensis A6 | PGPR and fungicides | This study |
Bacillus subtilis CECT39 | Spore staining | [20] |
Number | Accession Number | Species | % Similarity |
---|---|---|---|
1 | AJVF01000044→ 16S: MW578390 | B. siamensis KCTC 13613(T) | 99.93 |
2 | AY603658 | B. velezensis CR-502(T) | 99.92 |
3 | ABQL01000001→ 16S: MK559753 | B. subtilis subsp. subtilis NCIB 3610(T) | 99.78 |
4 | FN597644→ 16S: AY055225 | B. amyloliquefaciens DSM 7(T) | 99.70 |
5 | AY820954 | B. nematocida B-16(T) | 99.70 |
6 | LSAZ01000028→ 16S: NR_151897 | B. nakamurai NRRL B-41091(T) | 99.63 |
7 | AYTO01000043 | B. tequilensis KCTC 13622(T) | 99.55 |
8 | MK462260 | TE3(T) | 99.55 |
9 | AMXN01000021 | B. KCTC 13429(T) | 99.55 |
10 | MN536904 | B. stercoris JCM 30051(T) | 99.55 |
11 | JH600273→ NZ_JH600276 | B. DV1-F-3(T) | 99.48 |
12 | JABUXO010000041→ 16S: MT554518 | B. rugosus SPB7(T) | 99.48 |
13 | AB021181 | B. atrophaeus JCM 9070(T) | 99.40 |
14 | LPVF01000003→ 16S: MN840041 | B. halotolerans ATCC 25096(T) | 99.40 |
15 | CP002905→ 16S: NR_024931 | B. spizizenii NRRL B-23049(T) | 99.40 |
16 | JH600280→ 16S: NZ_AYTL01000035 | B. mojavensis RO-H-1(T) | 99.33 |
17 | LECW01000063 | B. glycinifermentans GO-13(T) | 98.28 |
18 | KY694465 | B. paralicheniformis KJ-16(T) | 98.20 |
19 | AUQZ01000032→16S: JF802181 | B. sp. NSP9.1 | 98.05 |
20 | AE017333→ 16S: LR594217 | B. licheniformis ATCC 14580(T) | 97.98 |
21 | MRBL01000076→ NR_157609 | B. haynesii NRRL B-41327(T) | 97.90 |
22 | AYTN01000016 * | B. sonorensis NBRC 101234(T) | 97.75 |
23 | MRBK01000096→ NR_157608 | B. swezeyi NRRL B-41294(T) | 97.75 |
24 | AJ831843 | B. aerius 24K(T) | 97.37 |
25 | ASJC01000029 | B. altitudinis 41KF2b(T) | 97.30 |
26 | AMSH01000114 | B. xiamenensis HYC-10(T) | 97.22 |
27 | LJIY01000004→ NZ_LJIY01000031 | Psychrobacillus sp. FJAT-21963 | 97.22 |
28 | ASJD01000027→ 16S: MK849613 | B. safensis subsp. safensis FO-36b(T) | 97.07 |
29 | KY990920 | B. safensis subsp. osmophilus BC09(T) | 97.07 |
30 | ABRX01000007→ 16S: MKZN01000032 | B. pumilus ATCC 7061(T) | 97.00 |
31 | JOTP01000061→ 16S: MZ066819 | B. zhangzhouensis DW5-4(T) | 97.00 |
32 | JX680098→ 16S: MW228046 | B. australimaris NH7I_1(T) | 96.92 |
33 | MKZN01000032 | B. pumilus GM3FR BACPU | 96.77 |
34 | LC367333 | B. salacetis SKP7-4(T) | 96.18 |
35 | KF548480 | B. oryzaecorticis R1(T) | 96.17 |
36 | ABCF01000001 | B. sp. SG-1 1101501000768 | 96.10 |
Max Score | A6 | FZB42 | DSM7 | D747 | |
---|---|---|---|---|---|
Root Length (PGPR) | 5 | 5 | 3.75 | 3.75 | 3.75 |
Stem Length (PGPR) | 5 | 5 | 5 | 3.75 | 2.5 |
Dry Weight (PGPR) | 5 | 5 | 5 | 2.5 | 3.75 |
RWC (PGPR) | 5 | 5 | 5 | 5 | 5 |
RWC (Drought) | 9 | 9 | 6.75 | 6.75 | 6.75 |
Root Length (Drought) | 9 | 9 | 6.75 | 6.75 | 4.5 |
Dry Weight (Drought) | 9 | 9 | 6.75 | 6.75 | 6.75 |
Antagonism B. cinerea | 7 | 7 | 7 | 1.75 | 7 |
Antagonism F. oxysporum | 7 | 5.95 | 3.5 | 0 | 5.25 |
Antibiosis B. cinerea | 7 | 3.5 | 3.5 | 1.75 | 3.5 |
Antibiosis F. oxysporum | 7 | 3.5 | 1.75 | 1.75 | 3.5 |
Siderophores | 4 | 4 | 4 | 4 | 4 |
Phosphate Solubilization | 4 | 1 | 2 | 4 | 2 |
Potassium Solubilization | 4 | 4 | 4 | 4 | 4 |
AIA Production | 3 | 0.75 | 0.75 | 3 | 0.75 |
IBA Production | 3 | 2.25 | 2.25 | 3 | 2.25 |
GB Production | 3 | 0 | 0 | 3 | 0 |
Urea Hydrolysis | 4 | 0 | 0 | 0 | |
Total Maximum Score | 100 | 78.95 | 67.75 | 61.5 | 65.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros-Rodríguez, A.; Pacheco, P.; Peñas-Corte, M.; Fernández-González, A.J.; Cobo-Díaz, J.F.; Enrique-Cruz, Y.; Manzanera, M. Comparative Study of Bacillus-Based Plant Biofertilizers: A Proposed Index. Biology 2024, 13, 668. https://doi.org/10.3390/biology13090668
Barros-Rodríguez A, Pacheco P, Peñas-Corte M, Fernández-González AJ, Cobo-Díaz JF, Enrique-Cruz Y, Manzanera M. Comparative Study of Bacillus-Based Plant Biofertilizers: A Proposed Index. Biology. 2024; 13(9):668. https://doi.org/10.3390/biology13090668
Chicago/Turabian StyleBarros-Rodríguez, Adoración, Pamela Pacheco, María Peñas-Corte, Antonio J. Fernández-González, José F. Cobo-Díaz, Yasmira Enrique-Cruz, and Maximino Manzanera. 2024. "Comparative Study of Bacillus-Based Plant Biofertilizers: A Proposed Index" Biology 13, no. 9: 668. https://doi.org/10.3390/biology13090668
APA StyleBarros-Rodríguez, A., Pacheco, P., Peñas-Corte, M., Fernández-González, A. J., Cobo-Díaz, J. F., Enrique-Cruz, Y., & Manzanera, M. (2024). Comparative Study of Bacillus-Based Plant Biofertilizers: A Proposed Index. Biology, 13(9), 668. https://doi.org/10.3390/biology13090668