Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Adult Central Nervous System (CNS) Response to Traumatic Lesions and Molecular Mechanisms of Axonal Regrowth Inhibition
3. Molecular and Biochemical Factors Obstructing Axonal Regeneration after SCI
3.1. Myelin-Related Factors Preventing Axonal Regeneration
3.1.1. Neurite Outgrowth Inhibitor A (Nogo-A)
3.1.2. Myelin-Associated Glycoprotein (MAG)
3.1.3. Oligodendrocyte Myelin Glycoprotein (OMgp)
3.2. RhoA/ROCK and Rac1
3.3. cAMP and PKA
3.4. PI3K/Akt/mTOR and PI3K/Akt/GSK3β Signaling Pathways
3.5. Phosphatase and Tensin Homolog (PTEN)
3.6. JAK/STAT3 Pathway
3.7. Glial or Perilesional Scar
3.8. Inflammatory Mediators beyond the Lesion in the Spinal Cord
4. Emerging Treatment Strategies to Overcome the Inhibition of Axonal Regeneration after SCI
4.1. Sonic Hedgehog and Retinoic Acid
4.2. KASH Proteins
4.3. Stem Cell Transplantation
4.3.1. Mesenchymal Stem Cells (MSCs)
4.3.2. Induced Pluripotent Stem Cells (iPSCs)
4.4. Gene Therapy
4.5. Application of Small Molecules
4.5.1. Small Molecules Promoting Axon Elongation
4.5.2. Small Molecules Enhancing Intrinsic Neuronal Growth Potential
4.5.3. Synergistic and Combinatory Use of Small Molecules
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, B.B.; Cripps, R.A.; Fitzharris, M.; Wing, P.C. The Global Map for Traumatic Spinal Cord Injury Epidemiology: Update 2011, Global Incidence Rate. Spinal Cord 2014, 52, 110–116. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R.; Abbasi, N.; Abdul-kader, R.; Abraha, H.N.; Adsuar, J.C.; et al. Global, Regional, and National Burden of Traumatic Brain Injury and Spinal Cord Injury, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Movaghar, V.; Sayyah, M.K.; Akbari, H.; Khorramirouz, R.; Rasouli, M.R.; Moradi-Lakeh, M.; Shokraneh, F.; Vaccaro, A.R. Epidemiology of Traumatic Spinal Cord Injury in Developing Countries: A Systematic Review. Neuroepidemiology 2013, 41, 65–85. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, M.E.L.; Castellote, J.M.; Mahillo-Fernandez, I.; de Pedro-Cuesta, J. Incidence of Spinal Cord Injury Worldwide: A Systematic Review. Neuroepidemiology 2010, 34, 184–192. [Google Scholar] [CrossRef]
- Anderson, K.D. Targeting Recovery: Priorities of the Spinal Cord-Injured Population. J. Neurotrauma 2004, 21, 1371–1383. [Google Scholar] [CrossRef]
- Sezer, N. Chronic Complications of Spinal Cord Injury. World J. Orthop. 2015, 6, 24. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Borys, B.; Karimi-Abdolrezaee, S. Neural Stem Cell Therapies for Spinal Cord Injury Repair: An Update on Recent Preclinical and Clinical Advances. Brain 2024, 147, 766–793. [Google Scholar] [CrossRef]
- Walters, B.C.; Hadley, M.N.; Hurlbert, R.J.; Aarabi, B.; Dhall, S.S.; Gelb, D.E.; Harrigan, M.R.; Rozelle, C.J.; Ryken, T.C.; Theodore, N. Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injuries. Neurosurgery 2013, 60, 82–91. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic Spinal Cord Injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [CrossRef]
- Sharma, H.S. Early Microvascular Reactions and Blood–Spinal Cord Barrier Disruption Are Instrumental in Pathophysiology of Spinal Cord Injury and Repair: Novel Therapeutic Strategies Including Nanowired Drug Delivery to Enhance Neuroprotection. J. Neural Transm. 2011, 118, 155–176. [Google Scholar] [CrossRef]
- Silver, J.; Miller, J.H. Regeneration beyond the Glial Scar. Nat. Rev. Neurosci. 2004, 5, 146–156. [Google Scholar] [CrossRef]
- Bennison, S.A.; Blazejewski, S.M.; Smith, T.H.; Toyo-oka, K. Protein Kinases: Master Regulators of Neuritogenesis and Therapeutic Targets for Axon Regeneration. Cell. Mol. Life Sci. 2020, 77, 1511–1530. [Google Scholar] [CrossRef]
- Jurney, W.M.; Gallo, G.; Letourneau, P.C.; McLoon, S.C. Rac1-Mediated Endocytosis during Ephrin-A2- and Sema-phorin 3A-Induced Growth Cone Collapse. J. Neurosci. 2002, 22, 6019–6028. [Google Scholar] [CrossRef] [PubMed]
- Dontchev, V.D.; Letourneau, P.C. Nerve Growth Factor and Semaphorin 3A Signaling Pathways Interact in Regulating Sensory Neuronal Growth Cone Motility. J. Neurosci. 2002, 22, 6659–6669. [Google Scholar] [CrossRef] [PubMed]
- Filous, A.R.; Silver, J. Targeting Astrocytes in CNS Injury and Disease: A Translational Research Approach. Prog. Neurobiol. 2016, 144, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Wanner, I.B.; Anderson, M.A.; Song, B.; Levine, J.; Fernandez, A.; Gray-Thompson, Z.; Ao, Y.; Sofroniew, M.V. Glial Scar Borders Are Formed by Newly Proliferated, Elongated Astrocytes That Interact to Corral Inflammatory and Fibrotic Cells via STAT3-Dependent Mechanisms after Spinal Cord Injury. J. Neurosci. 2013, 33, 12870–12886. [Google Scholar] [CrossRef]
- Yang, T.; Dai, Y.; Chen, G.; Cui, S. Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front. Cell. Neurosci. 2020, 14, 78. [Google Scholar] [CrossRef]
- Geoffroy, C.G.; Zheng, B. Myelin-Associated Inhibitors in Axonal Growth after CNS Injury. Curr. Opin. Neurobiol. 2014, 27, 31–38. [Google Scholar] [CrossRef]
- Chaudhry, N.; Filbin, M.T. Myelin—Associated Inhibitory Signaling and Strategies to Overcome Inhibition. J. Cereb. Blood Flow Metab. 2007, 27, 1096–1107. [Google Scholar] [CrossRef]
- Schnell, L.; Schwab, M.E. Axonal Regeneration in the Rat Spinal Cord Produced by an Antibody against Myelin-Associated Neurite Growth Inhibitors. Nature 1990, 343, 269–272. [Google Scholar] [CrossRef]
- Gonzenbach, R.R.; Zoerner, B.; Schnell, L.; Weinmann, O.; Mir, A.K.; Schwab, M.E. Delayed Anti-Nogo-A Antibody Application after Spinal Cord Injury Shows Progressive Loss of Responsiveness. J. Neurotrauma 2012, 29, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Pedraza, L.; Owens, G.C.; Green, L.A.; Salzer, J.L. The Myelin-Associated Glycoproteins: Membrane Disposition, Evidence of a Novel Disulfide Linkage between Immunoglobulin-like Domains, and Posttranslational Palmitylation. J. Cell Biol. 1990, 111, 2651–2661. [Google Scholar] [CrossRef]
- Stoll, G.; Griffin, J.W.; Li, C.Y.; Trapp, B.D. Wallerian Degeneration in the Peripheral Nervous System: Participation of Both Schwann Cells and Macrophages in Myelin Degradation. J. Neurocytol. 1989, 18, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Chambel, S.S.; Cruz, C.D. Axonal Growth Inhibitors and Their Receptors in Spinal Cord Injury: From Biology to Clinical Translation. Neural Regen. Res. 2023, 18, 2573–2581. [Google Scholar] [CrossRef] [PubMed]
- Hutson, T.H.; Buchser, W.J.; Bixby, J.L.; Lemmon, V.P.; Moon, L.D.F. Optimization of a 96-Well Electroporation Assay for Postnatal Rat CNS Neurons Suitable for Cost–Effective Medium-Throughput Screening of Genes That Promote Neurite Outgrowth. Front. Mol. Neurosci. 2011, 4, 55. [Google Scholar] [CrossRef]
- Lee, J.K.; Geoffroy, C.G.; Chan, A.F.; Tolentino, K.E.; Crawford, M.J.; Leal, M.A.; Kang, B.; Zheng, B. Assessing Spinal Axon Regeneration and Sprouting in Nogo-, MAG-, and OMgp-Deficient Mice. Neuron 2010, 66, 663–670. [Google Scholar] [CrossRef]
- McKerracher, L.; David, S.; Jackson, D.L.; Kottis, V.; Dunn, R.J.; Braun, P.E. Identification of Myelin-Associated Glycoprotein as a Major Myelin-Derived Inhibitor of Neurite Growth. Neuron 1994, 13, 805–811. [Google Scholar] [CrossRef]
- Mingorance, A.; Fontana, X.; Solé, M.; Burgaya, F.; Ureña, J.M.; Teng, F.Y.H.; Tang, B.L.; Hunt, D.; Anderson, P.N.; Bethea, J.R.; et al. Regulation of Nogo and Nogo Receptor during the Development of the Entorhino-Hippocampal Pathway and after Adult Hippocampal Lesions. Mol. Cell. Neurosci. 2004, 26, 34–49. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, T. The Relation between Neurite Growth Inhibitor Factor and Spinal Cord Injury. Ibrain 2017, 3, 25–31. [Google Scholar] [CrossRef]
- He, R.; Han, W.; Song, X.; Cheng, L.; Chen, H.; Jiang, L. Knockdown of Lingo-1 by Short Hairpin RNA Promotes Cognitive Function Recovery in a Status Convulsion Model. 3 Biotech 2021, 11, 339. [Google Scholar] [CrossRef]
- Ruchhoeft, M.L.; Ohnuma, S.; McNeill, L.; Holt, C.E.; Harris, W.A. The Neuronal Architecture of Xenopus Retinal Ganglion Cells Is Sculpted by Rho-Family GTPases In Vivo. J. Neurosci. 1999, 19, 8454–8463. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.-B.; Zhong, Y.-S.; Cheng, Y.; Shen, X. Rho/ROCK Pathway and Neural Regeneration: A Potential Therapeutic Target for Central Nervous System and Optic Nerve Damage. Int. J. Ophthalmol. 2011, 4, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Govek, E.-E.; Newey, S.E.; Van Aelst, L. The Role of the Rho GTPases in Neuronal Development. Genes Dev. 2005, 19, 1–49. [Google Scholar] [CrossRef] [PubMed]
- MacKay, J.L.; Kumar, S. Simultaneous and Independent Tuning of RhoA and Rac1 Activity with Orthogonally Inducible Promoters. Integr. Biol. 2014, 6, 885–894. [Google Scholar] [CrossRef]
- Wong, W.T.; Faulkner-Jones, B.E.; Sanes, J.R.; Wong, R.O.L. Rapid Dendritic Remodeling in the Developing Retina: Dependence on Neurotransmission and Reciprocal Regulation by Rac and Rho. J. Neurosci. 2000, 20, 5024–5036. [Google Scholar] [CrossRef]
- Nguyen, L.K.; Kholodenko, B.N.; von Kriegsheim, A. Rac1 and RhoA: Networks, Loops and Bistability. Small GTPases 2018, 9, 316–321. [Google Scholar] [CrossRef]
- von Kriegsheim, A.; Nguyen, L.K. Uncovering Bistability in the Rac1/RhoA Signaling Network through Integrating Computational Modeling and Experimentation. In Rho GTPases: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2018; pp. 21–36. [Google Scholar]
- Zhou, G.; Wang, Z.; Han, S.; Chen, X.; Li, Z.; Hu, X.; Li, Y.; Gao, J. Multifaceted Roles of CAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. Front. Mol. Neurosci. 2022, 15, 808510. [Google Scholar] [CrossRef]
- Cai, D.; Shen, Y.; De Bellard, M.; Tang, S.; Filbin, M.T. Prior Exposure to Neurotrophins Blocks Inhibition of Axonal Regeneration by MAG and Myelin via a CAMP-Dependent Mechanism. Neuron 1999, 22, 89–101. [Google Scholar] [CrossRef]
- Aglah, C.; Gordon, T.; Posse de Chaves, E.I. CAMP Promotes Neurite Outgrowth and Extension through Protein Kinase A but Independently of Erk Activation in Cultured Rat Motoneurons. Neuropharmacology 2008, 55, 8–17. [Google Scholar] [CrossRef]
- Meyer-Franke, A.; Wilkinson, G.A.; Kruttgen, A.; Hu, M.; Munro, E.; Hanson, M.G.; Reichardt, L.F.; Barres, B.A. Depolarization and CAMP Elevation Rapidly Recruit TrkB to the Plasma Membrane of CNS Neurons. Neuron 1998, 21, 681–693. [Google Scholar] [CrossRef]
- Cai, D.; Qiu, J.; Cao, Z.; McAtee, M.; Bregman, B.S.; Filbin, M.T. Neuronal Cyclic AMP Controls the Developmental Loss in Ability of Axons to Regenerate. J. Neurosci. 2001, 21, 4731–4739. [Google Scholar] [CrossRef]
- Watanabe, M.; Tokita, Y.; Kato, M.; Fukuda, Y. Intravitreal Injections of Neurotrophic Factors and Forskolin Enhance Survival and Axonal Regeneration of Axotomized β Ganglion Cells in Cat Retina. Neuroscience 2003, 116, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Swiatkowski, P.; Nikolaeva, I.; Kumar, G.; Zucco, A.; Akum, B.F.; Patel, M.V.; D’Arcangelo, G.; Firestein, B.L. Role of Akt-Independent MTORC1 and GSK3β Signaling in Sublethal NMDA-Induced Injury and the Recovery of Neuronal Electrophysiology and Survival. Sci. Rep. 2017, 7, 1539. [Google Scholar] [CrossRef]
- Li, R.; Li, D.; Zhang, H.; Wang, J.; Li, X.; Xiao, J. Growth Factors-Based Therapeutic Strategies and Their Underlying Signaling Mechanisms for Peripheral Nerve Regeneration. Acta Pharmacol. Sin. 2020, 41, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Duda, P.; Hajka, D.; Wójcicka, O.; Rakus, D.; Gizak, A. GSK3β: A Master Player in Depressive Disorder Pathogenesis and Treatment Responsiveness. Cells 2020, 9, 727. [Google Scholar] [CrossRef]
- Kitagishi, Y.; Kobayashi, M.; Kikuta, K.; Matsuda, S. Roles of PI3K/AKT/GSK3/MTOR Pathway in Cell Signaling of Mental Illnesses. Depress. Res. Treat. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yip, H.K.; So, K.-F. Axonal Regeneration of Retinal Ganglion Cells: Effect of Trophic Factors. Prog. Retin. Eye Res. 2000, 19, 559–575. [Google Scholar] [CrossRef]
- Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell 2000, 103, 211–225. [Google Scholar] [CrossRef]
- King, T.D.; Bijur, G.N.; Jope, R.S. Caspase-3 Activation Induced by Inhibition of Mitochondrial Complex I Is Facilitated by Glycogen Synthase Kinase-3β and Attenuated by Lithium. Brain Res. 2001, 919, 106–114. [Google Scholar] [CrossRef]
- Zeng, S.; Bai, J.; Jiang, H.; Zhu, J.; Fu, C.; He, M.; Zhu, J.; Chen, S.; Li, P.; Fu, X.; et al. Treatment with Liraglutide Exerts Neuroprotection after Hypoxic–Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front. Cell. Neurosci. 2020, 13, 585. [Google Scholar] [CrossRef]
- Liu, S.; Jia, J.; Zhou, H.; Zhang, C.; Liu, L.; Liu, J.; Lu, L.; Li, X.; Kang, Y.; Lou, Y.; et al. PTEN Modulates Neurites Outgrowth and Neuron Apoptosis Involving the PI3K/Akt/MTOR Signaling Pathway. Mol. Med. Rep. 2019, 20, 4059–4066. [Google Scholar] [CrossRef] [PubMed]
- Leibinger, M.; Zeitler, C.; Gobrecht, P.; Andreadaki, A.; Gisselmann, G.; Fischer, D. Transneuronal Delivery of Hyper-Interleukin-6 Enables Functional Recovery after Severe Spinal Cord Injury in Mice. Nat. Commun. 2021, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- Kawano, H.; Kimura-Kuroda, J.; Komuta, Y.; Yoshioka, N.; Li, H.P.; Kawamura, K.; Li, Y.; Raisman, G. Role of the Lesion Scar in the Response to Damage and Repair of the Central Nervous System. Cell Tissue Res. 2012, 349, 169–180. [Google Scholar] [CrossRef]
- Preston, E.; Webster, J.; Small, D. Characteristics of Sustained Blood-Brain Barrier Opening and Tissue Injury in a Model for Focal Trauma in the Rat. J. Neurotrauma 2001, 18, 83–92. [Google Scholar] [CrossRef]
- Perez-Gianmarco, L.; Kukley, M. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury. Cells 2023, 12, 1842. [Google Scholar] [CrossRef]
- Anwar, M.A.; Al Shehabi, T.S.; Eid, A.H. Inflammogenesis of Secondary Spinal Cord Injury. Front. Cell. Neurosci. 2016, 10, 98. [Google Scholar] [CrossRef]
- Trivedi, A.; Olivas, A.D.; Noble-Haeusslein, L.J. Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes. Clin. Neurosci. Res. 2006, 6, 283–292. [Google Scholar] [CrossRef]
- Fu, H.; Zhao, Y.; Hu, D.; Wang, S.; Yu, T.; Zhang, L. Depletion of Microglia Exacerbates Injury and Impairs Function Recovery after Spinal Cord Injury in Mice. Cell Death Dis. 2020, 11, 528. [Google Scholar] [CrossRef]
- Freyermuth-Trujillo, X.; Segura-Uribe, J.J.; Salgado-Ceballos, H.; Orozco-Barrios, C.E.; Coyoy-Salgado, A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022, 11, 2692. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.-C.; Gerber, Y.N.; Perrin, F.E. Dynamic Diversity of Glial Response among Species in Spinal Cord Injury. Front. Aging Neurosci. 2021, 13, 769548. [Google Scholar] [CrossRef]
- Yang, L.; Blumbergs, P.C.; Jones, N.R.; Manavis, J.; Sarvestani, G.T.; Ghabriel, M.N. Early Expression and Cellular Localization of Proinflammatory Cytokines Interleukin-1β, Interleukin-6, and Tumor Necrosis Factor-α in Human Traumatic Spinal Cord Injury. Spine 2004, 29, 966–971. [Google Scholar] [CrossRef]
- Hachem, L.D.; Ahuja, C.S.; Fehlings, M.G. Assessment and Management of Acute Spinal Cord Injury: From Point of Injury to Rehabilitation. J. Spinal Cord Med. 2017, 40, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, C.S.; Nori, S.; Tetreault, L.; Wilson, J.; Kwon, B.; Harrop, J.; Choi, D.; Fehlings, M.G. Traumatic Spinal Cord Injury—Repair and Regeneration. Neurosurgery 2017, 80, S9–S22. [Google Scholar] [CrossRef]
- Hellenbrand, D.J.; Quinn, C.M.; Piper, Z.J.; Morehouse, C.N.; Fixel, J.A.; Hanna, A.S. Inflammation after Spinal Cord Injury: A Review of the Critical Timeline of Signaling Cues and Cellular Infiltration. J. Neuroinflamm. 2021, 18, 284. [Google Scholar] [CrossRef] [PubMed]
- Berretta, A.; Gowing, E.K.; Jasoni, C.L.; Clarkson, A.N. Sonic Hedgehog Stimulates Neurite Outgrowth in a Mechanical Stretch Model of Reactive-Astrogliosis. Sci. Rep. 2016, 6, 21896. [Google Scholar] [CrossRef]
- Sims, J.R.; Lee, S.-W.; Topalkara, K.; Qiu, J.; Xu, J.; Zhou, Z.; Moskowitz, M.A. Sonic Hedgehog Regulates Ischemia/Hypoxia-Induced Neural Progenitor Proliferation. Stroke 2009, 40, 3618–3626. [Google Scholar] [CrossRef]
- Puttagunta, R.; Di Giovanni, S. Retinoic Acid Signaling in Axonal Regeneration. Front. Mol. Neurosci. 2012, 4, 59. [Google Scholar] [CrossRef]
- Starr, D.A. KASH and SUN Proteins. Curr. Biol. 2011, 21, R414–R415. [Google Scholar] [CrossRef] [PubMed]
- Squair, J.W.; Milano, M.; de Coucy, A.; Gautier, M.; Skinnider, M.A.; James, N.D.; Cho, N.; Lasne, A.; Kathe, C.; Hutson, T.H.; et al. Recovery of Walking after Paralysis by Regenerating Characterized Neurons to Their Natural Target Region. Science 2023, 381, 1338–1345. [Google Scholar] [CrossRef]
- Abati, E.; Bresolin, N.; Comi, G.P.; Corti, S. Preconditioning and Cellular Engineering to Increase the Survival of Transplanted Neural Stem Cells for Motor Neuron Disease Therapy. Mol. Neurobiol. 2019, 56, 3356–3367. [Google Scholar] [CrossRef]
- Kim, G.-U.; Sung, S.-E.; Kang, K.-K.; Choi, J.-H.; Lee, S.; Sung, M.; Yang, S.Y.; Kim, S.-K.; Kim, Y.I.; Lim, J.-H.; et al. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int. J. Mol. Sci. 2021, 22, 13672. [Google Scholar] [CrossRef]
- Xia, Y.; Zhu, J.; Yang, R.; Wang, H.; Li, Y.; Fu, C. Mesenchymal Stem Cells in the Treatment of Spinal Cord Injury: Mechanisms, Current Advances and Future Challenges. Front. Immunol. 2023, 14, 1141601. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Shim, Y.S.; Park, Y.H.; Chung, J.K.; Nam, J.H.; Kim, M.O.; Park, H.C.; Park, S.R.; Min, B.-H.; Kim, E.Y.; et al. Complete Spinal Cord Injury Treatment Using Autologous Bone Marrow Cell Transplantation and Bone Marrow Stimulation with Granulocyte Macrophage-Colony Stimulating Factor: Phase I/II Clinical Trial. Stem Cells 2007, 25, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.R.; Moralí, D. National Human Embryo and Embryoid Research Policies: A Survey of 22 Top Research-Intensive Countries. Regen. Med. 2020, 15, 1905–1917. [Google Scholar] [CrossRef]
- Martin-Lopez, M.; Fernandez-Muñoz, B.; Canovas, S. Pluripotent Stem Cells for Spinal Cord Injury Repair. Cells 2021, 10, 3334. [Google Scholar] [CrossRef]
- Fujita, Y.; Yamashita, T. Axon Growth Inhibition by RhoA/ROCK in the Central Nervous System. Front. Neurosci. 2014, 8, 338. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, S.; Abdul-Muneer, P.M. PTEN Blocking Stimulates Corticospinal and Raphespinal Axonal Regeneration and Promotes Functional Recovery after Spinal Cord Injury. J. Neuropathol. Exp. Neurol. 2021, 80, 169–181. [Google Scholar] [CrossRef]
- Bouard, D.; Alazard-Dany, N.; Cosset, F. Viral Vectors: From Virology to Transgene Expression. Br. J. Pharmacol. 2009, 157, 153–165. [Google Scholar] [CrossRef]
- Rossor, A.M.; Reilly, M.M.; Sleigh, J.N. Antisense Oligonucleotides and Other Genetic Therapies Made Simple. Pract. Neurol. 2018, 18, 126–131. [Google Scholar] [CrossRef]
- Prakash, V.; Moore, M.; Yáñez-Muñoz, R.J. Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Mol. Ther. 2016, 24, 465–474. [Google Scholar] [CrossRef]
- Uyeda, A.; Muramatsu, R. Molecular Mechanisms of Central Nervous System Axonal Regeneration and Remye-lination: A Review. Int. J. Mol. Sci. 2020, 21, 8116. [Google Scholar] [CrossRef] [PubMed]
- Ruschel, J.; Hellal, F.; Flynn, K.C.; Dupraz, S.; Elliott, D.A.; Tedeschi, A.; Bates, M.; Sliwinski, C.; Brook, G.; Dobrindt, K.; et al. Systemic Administration of Epothilone B Promotes Axon Regeneration after Spinal Cord Injury. Science 2015, 348, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Madsen, P.M.; Pinto, M.; Patel, S.; McCarthy, S.; Gao, H.; Taherian, M.; Karmally, S.; Pereira, C.V.; Dvoriantchikova, G.; Ivanov, D.; et al. Mitochondrial DNA Double-Strand Breaks in Oligodendrocytes Cause Demyelination, Axonal Injury, and CNS Inflammation. J. Neurosci. 2017, 37, 10185–10199. [Google Scholar] [CrossRef]
- Dubreuil, C.I.; Winton, M.J.; McKerracher, L. Rho Activation Patterns after Spinal Cord Injury and the Role of Activated Rho in Apoptosis in the Central Nervous System. J. Cell Biol. 2003, 162, 233–243. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Kim, K.D.; Aarabi, B.; Rizzo, M.; Bond, L.M.; McKerracher, L.; Vaccaro, A.R.; Okonkwo, D.O. Rho Inhibitor VX-210 in Acute Traumatic Subaxial Cervical Spinal Cord Injury: Design of the SPinal Cord Injury Rho INhibition InvestiGation (SPRING) Clinical Trial. J. Neurotrauma 2018, 35, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Duffy, P.; Schmandke, A.; Schmandke, A.; Sigworth, J.; Narumiya, S.; Cafferty, W.B.J.; Strittmatter, S.M. Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord. J. Neurosci. 2009, 29, 15266–15276. [Google Scholar] [CrossRef]
- Lu, M.; Grove, E.A.; Miller, R.J. Abnormal Development of the Hippocampal Dentate Gyrus in Mice Lacking the CXCR4 Chemokine Receptor. Proc. Natl. Acad. Sci. USA 2002, 99, 7090–7095. [Google Scholar] [CrossRef]
- Qiu, J.; Cai, D.; Filbin, M.T. Chapter 27 A Role for cAMP in Regeneration during Development and after Injury. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2002; pp. 381–387. [Google Scholar]
- Li, J.; Chen, J.; Ricupero, C.L.; Hart, R.P.; Schwartz, M.S.; Kusnecov, A.; Herrup, K. Nuclear Accumulation of HDAC4 in ATM Deficiency Promotes Neurodegeneration in Ataxia Telangiectasia. Nat. Med. 2012, 18, 783–790. [Google Scholar] [CrossRef]
- Park, K.K.; Liu, K.; Hu, Y.; Smith, P.D.; Wang, C.; Cai, B.; Xu, B.; Connolly, L.; Kramvis, I.; Sahin, M.; et al. Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/MTOR Pathway. Science 2008, 322, 963–966. [Google Scholar] [CrossRef]
- Finelli, M.J.; Wong, J.K.; Zou, H. Epigenetic Regulation of Sensory Axon Regeneration after Spinal Cord Injury. J. Neurosci. 2013, 33, 19664–19676. [Google Scholar] [CrossRef]
- Weng, Y.-L.; An, R.; Cassin, J.; Joseph, J.; Mi, R.; Wang, C.; Zhong, C.; Jin, S.-G.; Pfeifer, G.P.; Bellacosa, A.; et al. An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron 2017, 94, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.-W.; Liu, X.; Yepes, M.; Shepherd, K.R.; Miller, G.W.; Liu, Y.; Wilson, W.D.; Xiao, G.; Blanchi, B.; Sun, Y.E.; et al. A Selective TrkB Agonist with Potent Neurotrophic Activities by 7,8-Dihydroxyflavone. Proc. Natl. Acad. Sci. USA 2010, 107, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; McHugh, J.; Tork, C.; Shelley, B.; Klein, S.M.; Aebischer, P.; Svendsen, C.N. GDNF Secreting Human Neural Progenitor Cells Protect Dying Motor Neurons, but Not Their Projection to Muscle, in a Rat Model of Familial ALS. PLoS ONE 2007, 2, e689. [Google Scholar] [CrossRef] [PubMed]
- de Lima, S.; Koriyama, Y.; Kurimoto, T.; Oliveira, J.T.; Yin, Y.; Li, Y.; Gilbert, H.-Y.; Fagiolini, M.; Martinez, A.M.B.; Benowitz, L. Full-Length Axon Regeneration in the Adult Mouse Optic Nerve and Partial Recovery of Simple Visual Behaviors. Proc. Natl. Acad. Sci. USA 2012, 109, 9149–9154. [Google Scholar] [CrossRef]
Different Stem Cell Types | Potency | Function |
---|---|---|
Embryonic stem cells (ESCs) | Multipotent stem cells, capable of transforming into many other cell types, are found in the embryo’s inner cell mass in its early developmental stage. | Using different factors, the ESCs can differentiate into any cell type, including neurons and glial cells. |
Neural stem cells (NSCs) | Multipotent stem cells can be found in the embryonic and adult nervous systems. | NSCs can transform into different neural cell types, including neurons, astrocytes, and oligodendrocytes, making them suitable for CNS regeneration. |
Mesenchymal stem cells (MSCs) | Multipotent stem cells can be found in bone marrow, adipose tissue, and other tissues. | They can differentiate into different cell types. They also have immunomodulatory functions, helping the CNS to recover by supporting its environment for tissue repair and regeneration. |
Induced pluripotent stem cells (iPSCs) | Somatic adult cells undergo genetic reprogramming by Yamanaka’s four factors to resemble embryonic stem cells in their polarity. These cells are pluripotent and can differentiate into many cell types, including neural cells. | Derived from adult tissues, they present fewer ethical concerns than embryonic stem cells and can be patient specific, reducing the risk of immune rejection. |
Pathways | Mechanism of Action | Therapeutic Mechanism |
---|---|---|
Myelin-associated inhibitors (MAIs) | Nogo-A, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein) impede axonal growth. | Aimed at interrupting their associated signaling pathways, it can promote regrowth. |
RhoA/ROCK (Rho-associated protein kinase) | The pathway is activated in response to MAIs and contributes to growth cone collapse and axonal growth inhibition. | Inhibiting RhoA or ROCK can improve axonal regeneration. |
PTEN/mTOR (phosphatase and tensin homolog/mammalian target of rapamycin) | The signaling pathway plays a critical role in regulating neuronal growth and regeneration. | The downregulation of PTEN can enhance regenerative capacity by activating the mTOR pathway. |
cAMP (cyclic adenosine monophosphate) | An important intracellular signaling molecule involved in neuronal growth and plasticity. | Enhancing cAMP levels can override growth inhibition imposed by inhibitory factors. |
Neurotrophic factors (ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF)) | It interacts with specific receptors on neurons and plays crucial roles in promoting neuronal survival, growth, and regeneration. | Upregulating their expression can enhance axonal regrowth and has therapeutic potential for nervous system recovery. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmalky, M.I.; Alvarez-Bolado, G.; Younsi, A.; Skutella, T. Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies. Biology 2024, 13, 703. https://doi.org/10.3390/biology13090703
Elmalky MI, Alvarez-Bolado G, Younsi A, Skutella T. Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies. Biology. 2024; 13(9):703. https://doi.org/10.3390/biology13090703
Chicago/Turabian StyleElmalky, Mohammed Ibrahim, Gonzalo Alvarez-Bolado, Alexander Younsi, and Thomas Skutella. 2024. "Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies" Biology 13, no. 9: 703. https://doi.org/10.3390/biology13090703
APA StyleElmalky, M. I., Alvarez-Bolado, G., Younsi, A., & Skutella, T. (2024). Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies. Biology, 13(9), 703. https://doi.org/10.3390/biology13090703