Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sporophyte Production and Isolation
2.3. Extraction of Lipids
2.4. Polar Lipid Analyses
2.5. Analysis of Fatty Acid Composition
2.6. Double Bond Index (DBI Calculation)
2.7. Data Analyses
3. Results and Discussion
3.1. Membrane Lipid Composition Varies Dynamically between Physcomitrium Vegetative and Reproductive Stages
3.2. Sporophytes Have an Altered Galactolipid Composition
3.3. Phospholipids Are Abundant among the Major Lipids in Sporophyte
3.4. Sporophyte Showed a Distinct Minor Lipid Profile
3.5. Reproductive Phase Transition Is Marked by Reduced 40C Acyl Species
3.6. Abundance of Long-Chain and Polyunsaturated Acyl Species
3.7. Developmental Stages Differ in Double Bond Index and Saturation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wade, N.L.; Bishop, D.G. Changes in the Lipid Composition of Ripening Banana Fruits and Evidence for an Associated Increase in Cell Membrane Permeability. Biochim. Biophys. Acta-Lipids Lipid Metab. 1978, 529, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Grison, M.S.; Brocard, L.; Fouillen, L.; Nicolas, W.; Wewer, V.; Dörmann, P.; Nacir, H.; Benitez-Alfonso, Y.; Claverol, S.; Germain, V.; et al. Specific Membrane Lipid Composition Is Important for Plasmodesmata Function in Arabidopsis. Plant Cell 2015, 27, 1228–1250. [Google Scholar] [CrossRef] [PubMed]
- Cano-Ramirez, D.L.; Carmona-Salazar, L.; Morales-Cedillo, F.; Ramírez-Salcedo, J.; Cahoon, E.B.; Gavilanes-Ruíz, M. Plasma Membrane Fluidity: An Environment Thermal Detector in Plants. Cells 2021, 10, 2778. [Google Scholar] [CrossRef] [PubMed]
- Fernandis, A.Z.; Wenk, M.R. Membrane Lipids as Signaling Molecules. Curr. Opin. Lipidol. 2007, 18, 121–128. [Google Scholar] [CrossRef]
- Mikami, K.; Hartmann, E. Lipid Metabolism in Mosses. In New Frontiers in Bryology: Physiology, Molecular Biology and Functional Genomics; Wood, A.J., Oliver, M.J., Cove, D.J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2004; pp. 133–155. ISBN 978-0-306-48568-8. [Google Scholar]
- Frank, W.; Ratnadewi, D.; Reski, R. Physcomitrella Patens Is Highly Tolerant against Drought, Salt and Osmotic Stress. Planta 2005, 220, 384–394. [Google Scholar] [CrossRef]
- Saidi, Y.; Peter, M.; Fink, A.; Cicekli, C.; Vigh, L.; Goloubinoff, P. Membrane Lipid Composition Affects Plant Heat Sensing and Modulates Ca2+-Dependent Heat Shock Response. Plant Signal. Behav. 2010, 5, 1530–1533. [Google Scholar] [CrossRef]
- Gachet, M.S.; Schubert, A.; Calarco, S.; Boccard, J.; Gertsch, J. Targeted Metabolomics Shows Plasticity in the Evolution of Signaling Lipids and Uncovers Old and New Endocannabinoids in the Plant Kingdom. Sci. Rep. 2017, 7, 41177. [Google Scholar] [CrossRef]
- Resemann, H.C.; Herrfurth, C.; Feussner, K.; Hornung, E.; Ostendorf, A.K.; Gömann, J.; Mittag, J.; van Gessel, N.; de Vries, J.; Ludwig-Müller, J.; et al. Convergence of Sphingolipid Desaturation across over 500 Million Years of Plant Evolution. Nat. Plants 2021, 7, 219–232. [Google Scholar] [CrossRef]
- Nishiyama, T.; Wolf, P.G.; Kugita, M.; Sinclair, R.B.; Sugita, M.; Sugiura, C.; Wakasugi, T.; Yamada, K.; Yoshinaga, K.; Yamaguchi, K.; et al. Chloroplast Phylogeny Indicates That Bryophytes Are Monophyletic. Mol. Biol. Evol. 2004, 21, 1813–1819. [Google Scholar] [CrossRef]
- Sugiura, C.; Kobayashi, Y.; Aoki, S.; Sugita, C.; Sugita, M. Complete Chloroplast DNA Sequence of the Moss Physcomitrella Patens: Evidence for the Loss and Relocation of RpoA from the Chloroplast to the Nucleus. Nucleic Acids Res. 2003, 31, 5324–5331. [Google Scholar] [CrossRef]
- Beckert, S.; Steinhauser, S.; Muhle, H.; Knoop, V. A Molecular Phylogeny of Bryophytes Based on Nucleotide Sequences of the Mitochondrial Nad5 Gene. Plant Syst. Evol. 1999, 218, 179–192. [Google Scholar] [CrossRef]
- Nishiyama, T.; Fujita, T.; Shin-I, T.; Seki, M.; Nishide, H.; Uchiyama, I.; Kamiya, A.; Carninci, P.; Hayashizaki, Y.; Shinozaki, K.; et al. Comparative Genomics of Physcomitrella Patens Gametophytic Transcriptome and Arabidopsis Thaliana: Implication for Land Plant Evolution. Proc. Natl. Acad. Sci. USA 2003, 100, 8007–8012. [Google Scholar] [CrossRef] [PubMed]
- Resemann, H.C.; Lewandowska, M.; Gï Mann, J.; Feussner, I. Membrane Lipids, Waxes and Oxylipins in the Moss Model Organism Physcomitrella Patens. Plant Cell Physiol. 2019, 60, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- Benning, C.; Ohta, H. Three Enzyme Systems for Galactoglycerolipid Biosynthesis Are Coordinately Regulated in Plants. J. Biol. Chem. 2005, 280, 2397–2400. [Google Scholar] [CrossRef] [PubMed]
- Ohlrogge, J.; Browse, J. Lipid Biosynthesis. Plant Cell 1995, 7, 957–970. [Google Scholar] [CrossRef]
- Beike, A.K.; Jaeger, C.; Zink, F.; Decker, E.L.; Reski, R. High Contents of Very Long-Chain Polyunsaturated Fatty Acids in Different Moss Species. Plant Cell Rep. 2014, 33, 245–254. [Google Scholar] [CrossRef]
- Grimsley, N.H.; Grimsley, J.M.; Hartmann, E. Fatty Acid Composition of Mutants of the Moss Physcomitrella Patens. Phytochemistry 1981, 20, 1519–1524. [Google Scholar] [CrossRef]
- Bigogno, C.; Khozin-goldberg, I.; Boussiba, S.; Vonshak, A.; Cohen, Z. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 2002, 60, 497–503. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Algal Lipids and Effect of the Environment on Their Biochemistry. In Lipids in Aquatic Ecosystems; Kainz, M., Brett, M.T., Arts, M.T., Eds.; Springer New York: New York, NY, USA, 2009; pp. 1–24. ISBN 978-0-387-89366-2. [Google Scholar]
- Beike, A.K.; Von Stackelberg, M.; Schallenberg-Rüdinger, M.; Hanke, S.T.; Follo, M.; Quandt, D.; McDaniel, S.F.; Reski, R.; Tan, B.C.; Rensing, S.A. Molecular Evidence for Convergent Evolution and Allopolyploid Speciation within the Physcomitrium-Physcomitrella Species Complex. BMC Evol. Biol. 2014, 14, 158. [Google Scholar] [CrossRef]
- Rensing, S.A.; Lang, D.; Zimmer, A.D.; Terry, A.; Salamov, A.; Shapiro, H.; Nishiyama, T.; Perroud, P.F.; Lindquist, E.A.; Kamisugi, Y.; et al. The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science 2008, 319, 64–69. [Google Scholar] [CrossRef]
- Engel, P.P. The Induction of Biochemical and Morphological Mutants in the Moss Physcomitrella Patens. Am. J. Bot. 1968, 55, 438–446. [Google Scholar] [CrossRef]
- Cove, D.; Bezanilla, M.; Harries, P.; Quatrano, R. Mosses as Model Systems for the Study of Metabolism and Development. Annu. Rev. Plant Biol. 2006, 57, 497–520. [Google Scholar] [CrossRef] [PubMed]
- Reski, R. Development, Genetics and Molecular Biology of Mosses. Bot. Acta 1998, 111, 1–15. [Google Scholar] [CrossRef]
- Cove, D. The Moss, Physcomitrella Patens. J. Plant Growth Regul. 2000, 19, 275–283. [Google Scholar] [CrossRef]
- Kilaru, A.; Tamura, P.; Isaac, G.; Welti, R.; Venables, B.J.; Seier, E.; Chapman, K.D. Lipidomic Analysis of N-Acylphosphatidylethanolamine Molecular Species in Arabidopsis Suggests Feedback Regulation by N-Acylethanolamines. Planta 2012, 236, 809–824. [Google Scholar] [CrossRef]
- Kilaru, A.; Isaac, G.; Tamura, P.; Baxter, D.; Duncan, S.R.; Venables, B.J.; Welti, R.; Koulen, P.; Chapman, K.D. Lipid Profiling Reveals Tissue-Specific Differences for Ethanolamide Lipids in Mice Lacking Fatty Acid Amide Hydrolase. Lipids 2010, 45, 863–875. [Google Scholar] [CrossRef]
- Grimsley, N.H.; Ashton, N.W.; Cove, D.J. The Production of Somatic Hybrids by Protoplast Fusion in the Moss, Physcomitrella Patens. Mol. Gen. Genet. MGG 1977, 154, 97–100. [Google Scholar] [CrossRef]
- Vidali, L.; Augustine, R.C.; Kleinman, K.P.; Bezanilla, M. Profilin Is Essential for Tip Growth in the Moss Physcomitrella Patens. Plant Cell 2007, 19, 3705–3722. [Google Scholar] [CrossRef]
- Cove, D.J.; Perroud, P.F.; Charron, A.J.; McDaniel, S.F.; Khandelwal, A.; Quatrano, R.S. Culturing the Moss Physcomitrella Patens. Cold Spring Harb. Protoc. 2009, 2009, 5136. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid Extraction of Tissues with a Low-Toxicity Solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Shiva, S.; Vu, H.S.; Roth, M.R.; Zhou, Z.; Marepally, S.R.; Nune, D.S.; Lushington, G.H.; Visvanathan, M.; Welti, R. Lipidomic Analysis of Plant Membrane Lipids by Direct Infusion Tandem Mass Spectrometry. Methods Mol. Biol. 2013, 1009, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, J.P.; Garland, C.W.; Steinfeld, J. Experiments in Physical Chemistry; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Cove, D. The Moss Physcomitrella Patens. Annu. Rev. Genet. 2005, 39, 339–358. [Google Scholar] [CrossRef] [PubMed]
- Menand, B.; Calder, G.; Dolan, L. Both Chloronemal and Caulonemal Cells Expand by Tip Growth in the Moss Physcomitrella Patens. J. Exp. Bot. 2007, 58, 1843–1849. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, M.-T.; Chater, C.; Wallace, S.; Gray, J.E.; Beerling, D.J.; Fleming, A.J. Genome-Wide Transcriptomic Analysis of the Sporophyte of the Moss Physcomitrella Patens. J. Exp. Bot. 2013, 64, 3567–3581. [Google Scholar] [CrossRef]
- Lu, Y.; Eiriksson, F.F.; Thorsteinsdóttir, M.; Simonsen, H.T. Valuable Fatty Acids in Bryophytes-Production, Biosynthesis, Analysis and Applications. Plants 2019, 8, 524. [Google Scholar] [CrossRef]
- Batsale, M.; Bahammou, D.; Fouillen, L.; Mongrand, S.; Joubès, J.; Domergue, F. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses. Cells 2021, 10, 1284. [Google Scholar] [CrossRef]
- Balazy, M. Eicosanomics: Targeted Lipidomics of Eicosanoids in Biological Systems. Prostaglandins Other Lipid Mediat. 2004, 73, 173–180. [Google Scholar] [CrossRef]
- Chilufya, J.Y.; Devaiah, S.P.; Sante, R.R.; Kilaru, A. Endocannabinoid-Like Lipids in Plants. eLS 2015, volume 10, 1–9. [Google Scholar] [CrossRef]
- Kilaru, A.; Chapman, K.D. The Endocannabinoid System. Essays Biochem. 2020, 64, 485–499. [Google Scholar] [CrossRef]
- Silver, R.J. The Endocannabinoid System of Animals. Animals 2019, 9, 686. [Google Scholar] [CrossRef]
- Lu, H.-C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [PubMed]
- Haspula, D.; Clark, M.A. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 7693. [Google Scholar] [CrossRef] [PubMed]
- Sante, R.R.T. Occurrence and Implications of the N-Acylethanolamine Metabolic Pathway in Physcomitrella Patens. Master’s Thesis, East Tennessee State University, Johnson City, TN, USA, 2014. [Google Scholar]
- Girke, T.; Schmidt, H.; Zähringer, U.; Reski, R.; Heinz, E. Identification of a Novel Delta 6-Acyl-Group Desaturase by Targeted Gene Disruption in Physcomitrella Patens. Plant J. 1998, 15, 39–48. [Google Scholar] [CrossRef]
- Kaewsuwan, S.; Cahoon, E.B.; Perroud, P.-F.; Wiwat, C.; Panvisavas, N.; Quatrano, R.S.; Cove, D.J.; Bunyapraphatsara, N. Identification and Functional Characterization of the Moss Physcomitrella Patens Delta5-Desaturase Gene Involved in Arachidonic and Eicosapentaenoic Acid Biosynthesis. J. Biol. Chem. 2006, 281, 21988–21997. [Google Scholar] [CrossRef]
- Zank, T.K.; Zähringer, U.; Beckmann, C.; Pohnert, G.; Boland, W.; Holtorf, H.; Reski, R.; Lerchl, J.; Heinz, E. Cloning and Functional Characterisation of an Enzyme Involved in the Elongation of Delta6-Polyunsaturated Fatty Acids from the Moss Physcomitrella Patens. Plant J. 2002, 31, 255–268. [Google Scholar] [CrossRef]
- Eiamsa-Ard, P.; Kanjana-Opas, A.; Cahoon, E.B.; Chodok, P.; Kaewsuwan, S. Two Novel Physcomitrella Patens Fatty Acid Elongases (ELOs): Identification and Functional Characterization. Appl. Microbiol. Biotechnol. 2013, 97, 3485–3497. [Google Scholar] [CrossRef]
- Narasimhan, R.; Wang, G.; Li, M.; Roth, M.; Welti, R.; Wang, X. Differential Changes in Galactolipid and Phospholipid Species in Soybean Leaves and Roots under Nitrogen Deficiency and after Nodulation. Phytochemistry 2013, 96, 81–91. [Google Scholar] [CrossRef]
- Reszczyńska, E.; Hanaka, A. Lipids Composition in Plant Membranes. Cell Biochem. Biophys. 2020, 78, 401–414. [Google Scholar] [CrossRef]
- Moellering, E.R.; Benning, C. Galactoglycerolipid Metabolism under Stress: A Time for Remodeling. Trends Plant Sci. 2011, 16, 98–107. [Google Scholar] [CrossRef]
- Li, H.; Yu, C.-W. Chloroplast Galactolipids: The Link Between Photosynthesis, Chloroplast Shape, Jasmonates, Phosphate Starvation and Freezing Tolerance. Plant Cell Physiol. 2018, 59, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Huang, G.; Feng, F.; Liu, X.; Guo, R.; Gu, F.; Zhong, X.; Mei, X. Dynamic Changes in Membrane Lipid Composition of Leaves of Winter Wheat Seedlings in Response to PEG-Induced Water Stress. BMC Plant Biol. 2020, 20, 84. [Google Scholar] [CrossRef] [PubMed]
- Bruce, B.D. The Role of Lipids in Plastid Protein Transport. Plant Mol. Biol. 1998, 38, 223–246. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Fan, J.; Zhou, C.; Xu, C. Chloroplast Lipid Biosynthesis Is Fine-Tuned to Thylakoid Membrane Remodeling during Light Acclimation. Plant Physiol. 2021, 185, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhou, C.; Fan, J.; Shanklin, J.; Xu, C. Mechanisms and Functions of Membrane Lipid Remodeling in Plants. Plant J. 2021, 107, 37–53. [Google Scholar] [CrossRef]
- Dörmann, P. Galactolipids in Plant Membranes. In eLS; American Cancer Society: Atlanta, GA, USA, 2013; ISBN 9780470015902. [Google Scholar]
- Watson, H. Biological Membranes. Essays Biochem. 2015, 59, 43–69. [Google Scholar] [CrossRef]
- Härtel, H.; Dörmann, P.; Benning, C. DGD1-Independent Biosynthesis of Extraplastidic Galactolipids after Phosphate Deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2000, 97, 10649–10654. [Google Scholar] [CrossRef]
- Li, D.; Xu, Q.; Gong, Y.; Zhang, X.; Zhao, N.; Wang, K.; Kuang, T. Protection of Phosphatidylcholine to Photosystem II Membrane during Heat Treatment. Sci. Bull. 2003, 48, 897–901. [Google Scholar] [CrossRef]
- Welti, R.; Li, W.; Li, M.; Sang, Y.; Biesiada, H.; Zhou, H.E.; Rajashekar, C.B.; Williams, T.D.; Wang, X. Profiling Membrane Lipids in Plant Stress Responses: Role of Phospholipase Dα in Freezing-Induced Lipid Changes in Arabidopsis. J. Biol. Chem. 2002, 277, 31994–32002. [Google Scholar] [CrossRef]
- Testerink, C.; Munnik, T. Phosphatidic Acid: A Multifunctional Stress Signaling Lipid in Plants. Trends Plant Sci. 2005, 10, 368–375. [Google Scholar] [CrossRef]
- Sang, Y.; Cui, D.; Wang, X. Phospholipase D and Phosphatidic Acid-Mediated Generation of Superoxide in Arabidopsis. Plant Physiol. 2001, 126, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Bargmann, B.O.R.; Laxalt, A.M.; ter Riet, B.; van Schooten, B.; Merquiol, E.; Testerink, C.; Haring, M.A.; Bartels, D.; Munnik, T. Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants. Plant Cell Physiol. 2008, 50, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Munnik, T.; Meijer, H.J.G.; Ter Riet, B.; Hirt, H.; Frank, W.; Bartels, D.; Musgrave, A. Hyperosmotic Stress Stimulates Phospholipase D Activity and Elevates the Levels of Phosphatidic Acid and Diacylglycerol Pyrophosphate. Plant J. 2000, 22, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Regulatory Functions of Phospholipase D and Phosphatidic Acid in Plant Growth, Development, and Stress Responses. Plant Physiol. 2005, 139, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Arisz, S.A.; van Wijk, R.; Roels, W.; Zhu, J.K.; Haring, M.A.; Munnik, T. Rapid Phosphatidic Acid Accumulation in Response to Low Temperature Stress in Arabidopsis Is Generated through Diacylglycerol Kinase. Front. Plant Sci. 2013, 4, 1. [Google Scholar] [CrossRef]
- Kolesnikov, Y.; Kretynin, S.; Bukhonska, Y.; Pokotylo, I.; Ruelland, E.; Martinec, J.; Kravets, V. Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int. J. Mol. Sci. 2022, 23, 3227. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ohta, H. The Diacylglycerol Forming Pathways Differ among Floral Organs of Petunia Hybrida. FEBS Lett. 2007, 581, 5475–5479. [Google Scholar] [CrossRef]
- Potocký, M.; Eliáš, M.; Profotová, B.; Novotná, Z.; Valentová, O.; Žárský, V. Phosphatidic Acid Produced by Phospholipase D Is Required for Tobacco Pollen Tube Growth. Planta 2003, 217, 122–130. [Google Scholar] [CrossRef]
- Yunus, I.S.; Cazenave-Gassiot, A.; Liu, Y.C.; Lin, Y.C.; Wenk, M.R.; Nakamura, Y. Phosphatidic Acid Is a Major Phospholipid Class in Reproductive Organs of Arabidopsis Thaliana. Plant Signal. Behav. 2015, 10, e1049790. [Google Scholar] [CrossRef]
- Tiloca, G.; Brundu, G.; Ballesteros, D. Bryophyte Spores Tolerate High Desiccation Levels and Exposure to Cryogenic Temperatures but Contain Storage Lipids and Chlorophyll: Understanding the Essential Traits Needed for the Creation of Bryophyte Spore Banks. Plants 2022, 11, 1262. [Google Scholar] [CrossRef]
- Wada, H.; Murata, N. The Essential Role of Phosphatidylglycerol in Photosynthesis. Photosynth. Res. 2007, 92, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Hagio, M.; Gombos, Z.; Várkonyi, Z.; Masamoto, K.; Sato, N.; Tsuzuki, M.; Wada, H. Direct Evidence for Requirement of Phosphatidylglycerol in Photosystem II of Photosynthesis1. Plant Physiol. 2000, 124, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Hagio, M.; Sakurai, I.; Sato, S.; Kato, T.; Tabata, S.; Wada, H. Phosphatidylglycerol Is Essential for the Development of Thylakoid Membranes in Arabidopsis Thaliana. Plant Cell Physiol. 2002, 43, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Babiychuk, E.; Müller, F.; Eubel, H.; Braun, H.-P.; Frentzen, M.; Kushnir, S. Arabidopsis Phosphatidylglycerophosphate Synthase 1 Is Essential for Chloroplast Differentiation, but Is Dispensable for Mitochondrial Function. Plant J. 2003, 33, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Vance, J.E.; Tasseva, G. Formation and Function of Phosphatidylserine and Phosphatidylethanolamine in Mammalian Cells. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2013, 1831, 543–554. [Google Scholar] [CrossRef]
- Lee, S.; Suh, S.; Kim, S.; Crain, R.C.; Kwak, J.M.; Nam, H.; Lee, Y. Systemic Elevation of Phosphatidic Acid and Lysophospholipid Levels in Wounded Plants. Plant J. 1997, 12, 547–556. [Google Scholar] [CrossRef]
- Narváez-Vásquez, J.; Florin-Christensen, J.; Ryan, C.A. Positional Specificity of a Phospholipase A Activity Induced by Wounding, Systemin, and Oligosaccharide Elicitors in Tomato Leaves. Plant Cell 1999, 11, 2249–2260. [Google Scholar] [CrossRef]
- Wi, S.J.; Seo, S.Y.; Cho, K.; Nam, M.H.; Park, K.Y. Lysophosphatidylcholine Enhances Susceptibility in Signaling Pathway against Pathogen Infection through Biphasic Production of Reactive Oxygen Species and Ethylene in Tobacco Plants. Phytochemistry 2014, 104, 48–59. [Google Scholar] [CrossRef]
- Hou, Q.; Ufer, G.; Bartels, D. Lipid Signalling in Plant Responses to Abiotic Stress. Plant. Cell Environ. 2016, 39, 1029–1048. [Google Scholar] [CrossRef]
- Chen, D.; Yan, X.; Xu, J.; Su, X.; Li, L. Lipidomic Profiling and Discovery of Lipid Biomarkers in Stephanodiscus Sp. under Cold Stress. Metabolomics 2013, 9, 949–959. [Google Scholar] [CrossRef]
- Resemann, H.C. Sphingolipids in Physcomitrella Patens. Ph.D. Thesis, Göttingen University, Göttingen, Germany, 2018. [Google Scholar]
- Liu, X.; Ma, D.; Zhang, Z.; Wang, S.; Du, S.; Deng, X.; Yin, L. Plant Lipid Remodeling in Response to Abiotic Stresses. Environ. Exp. Bot. 2019, 165, 174–184. [Google Scholar] [CrossRef]
- Browse, J.; Warwick, N.; Somerville, C.R.; Slack, C.R. Fluxes through the Prokaryotic and Eukaryotic Pathways of Lipid Synthesis in the “16:3” Plant Arabidopsis Thaliana. Biochem. J. 1986, 235, 25–31. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, D.; Behera, J.R.; Shinde, S.; Pattada, S.D.; Roth, M.; Yao, L.; Welti, R.; Kilaru, A. Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations. Biology 2024, 13, 726. https://doi.org/10.3390/biology13090726
Gautam D, Behera JR, Shinde S, Pattada SD, Roth M, Yao L, Welti R, Kilaru A. Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations. Biology. 2024; 13(9):726. https://doi.org/10.3390/biology13090726
Chicago/Turabian StyleGautam, Deepshila, Jyoti R. Behera, Suhas Shinde, Shivakumar D. Pattada, Mary Roth, Libin Yao, Ruth Welti, and Aruna Kilaru. 2024. "Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations" Biology 13, no. 9: 726. https://doi.org/10.3390/biology13090726
APA StyleGautam, D., Behera, J. R., Shinde, S., Pattada, S. D., Roth, M., Yao, L., Welti, R., & Kilaru, A. (2024). Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations. Biology, 13(9), 726. https://doi.org/10.3390/biology13090726