Intact FGF23 and Markers of Iron Homeostasis, Inflammation, and Bone Mineral Metabolism in Acute Pediatric Infections
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Clinical and Laboratory Data for the Three Groups of Patients
3.2. Correlations of Hepcidin
3.3. Correlations of i-FGF23
3.4. Multivariate Linear Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fraenkel, P.G. Anemia of Inflammation: A Review. Med. Clin. N. Am. 2017, 101, 285–296. [Google Scholar] [PubMed]
- Ginzburg, Y.Z. Hepcidin-ferroportin axis in health and disease. Vitam. Horm. 2019, 110, 17–45. [Google Scholar] [PubMed]
- Noonan, M.L.; White, K.E. FGF23 Synthesis and Activity. Curr. Mol. Biol. Rep. 2019, 5, 18–25. [Google Scholar]
- Ho, B.B.; Bergwitz, C. FGF23 signalling and physiology. J. Mol. Endocrinol. 2021, 66, R23–R32. [Google Scholar] [PubMed]
- Czaya, B.; Faul, C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int. J. Mol. Sci. 2019, 20, 4195. [Google Scholar] [CrossRef]
- David, V.; Martin, A.; Isakova, T.; Spaulding, C.; Qi, L.; Ramirez, V.; Zumbrennen-Bullough, K.B.; Sun, C.C.; Lin, H.Y.; Babitt, J.L.; et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016, 89, 135–146. [Google Scholar]
- Francis, C.; David, V. Inflammation regulates fibroblast growth factor 23 production. Curr. Opin. Nephrol. Hypertens. 2016, 25, 325–332. [Google Scholar]
- Durlacher-Betzer, K.; Hassan, A.; Levi, R.; Axelrod, J.; Silver, J.; Naveh-Many, T. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 2018, 94, 315–325. [Google Scholar]
- Higashimoto, Y.; Tanaka, K.; Matsui, T.; Sakaguchi, T.; Yamagishi, S.I.; Motomiya, Y. Fibroblast Growth Factor 23 Contributes to Regulation of Hepcidin/Ferroportin Axis. Austin J. Pharmacol. Ther. 2020, 8, 1118. [Google Scholar]
- Agoro, R.; Park, M.Y.; Le Henaff, C.; Jankauskas, S.; Gaias, A.; Chen, G.; Mohammadi, M.; Sitara, D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021, 106, 391–403. [Google Scholar]
- Randolph, A.G.; McCulloh, R.J. Pediatric sepsis: Important considerations for diagnosing and managing severe infections in infants, children, and adolescents. Virulence 2014, 5, 179–189. [Google Scholar] [PubMed]
- Chakraborty, R.K.; Burns, B. Systemic Inflammatory Response Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547669/ (accessed on 30 December 2022).
- Glass, C.C.; Rangel, S.J. Overview and diagnosis of acute appendicitis in children. Semin. Pediatr. Surg. 2016, 25, 198–203. [Google Scholar] [PubMed]
- Hernández-Bou, S.; Gómez, B.; Mintegi, S.; García-García, J.J. Bacteraemia Study Working Group of the Infectious Diseases Working Group of the Spanish Society of Paediatric Emergencies (SEUP). Occult bacteremia etiology following the introduction of 13-valent pneumococcal conjugate vaccine: A multicenter study in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1449–1455. [Google Scholar]
- UpToDate. Misra M. Vitamin D Insufficiency and Deficiency in Children and Adolescents. Available online: https://www.uptodate.com/contents/vitamin-d-insufficiency-and-deficiency-in-children-and-adolescents (accessed on 17 July 2022).
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar]
- Thomas, D.W.; Hinchliffe, R.F.; Briggs, C.; Macdougall, I.C.; Littlewood, T.; Cavill, I. British Committee for Standards in Haematology. Guideline for the laboratory diagnosis of functional iron deficiency. Br. J. Haematol. 2013, 161, 639–648. [Google Scholar] [PubMed]
- Stanczyk, M.; Chrul, S.; Wyka, K.; Tkaczyk, M. Serum intact fibroblast growth factor 23 in healthy paediatric population. Open Med. 2021, 16, 1022–1027. [Google Scholar]
- Bayer, J.; Vaghela, R.; Drechsler, S.; Osuchowski, M.F.; Erben, R.G.; Andrukhova, O. The bone is the major source of high circulating intact fibroblast growth factor-23 in acute murine polymicrobial sepsis induced by cecum ligation puncture. PLoS ONE 2021, 16, e0251317. [Google Scholar]
- Bansal, S.; Friedrichs, W.E.; Velagapudi, C.; Feliers, D.; Khazim, K.; Horn, D.; Cornell, J.E.; Werner, S.L.; Fanti, P. Spleen contributes significantly to increased circulating levels of fibroblast growth factor 23 in response to lipopolysaccharide-induced inflammation. Nephrol. Dial. Transplant. 2017, 32, 960–968. [Google Scholar] [PubMed]
- Masuda, Y.; Ohta, H.; Morita, Y.; Nakayama, Y.; Miyake, A.; Itoh, N.; Konishi, M. Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice. Biol. Pharm. Bull. 2015, 38, 687–693. [Google Scholar]
- Dounousi, E.; Torino, C.; Pizzini, P.; Cutrupi, S.; Panuccio, V.; D’Arrigo, G.; Abd ElHafeez, S.; Tripepi, G.; Mallamaci, F.; Zoccali, C. Intact FGF23 and α-Klotho during acute inflammation/sepsis in CKD patients. Eur. J. Clin. Investig. 2016, 46, 234–241. [Google Scholar]
- Kossiva, L.; Soldatou, A.; Gourgiotis, D.I.; Stamati, L.; Tsentidis, C. Serum hepcidin: Indication of its role as an “acute phase” marker in febrile children. Ital. J. Pediatr. 2013, 39, 25. [Google Scholar] [PubMed]
- Darton, T.C.; Blohmke, C.J.; Giannoulatou, E.; Waddington, C.S.; Jones, C.; Sturges, P.; Webster, C.; Drakesmith, H.; Pollard, A.J.; Armitage, A.E. Rapidly Escalating Hepcidin and Associated Serum Iron Starvation Are Features of the Acute Response to Typhoid Infection in Humans. PLoS Negl. Trop. Dis. 2015, 9, e0004029. [Google Scholar]
- Olinder, J.; Ehinger, D.; Liljenborg, E.; Herwald, H.; Rydén, C. Plasma Levels of Hepcidin and Reticulocyte Haemoglobin during Septic Shock. J. Innate Immun. 2020, 12, 448–460. [Google Scholar]
- Yan, J.H.; Cai, X.Y.; Huang, Y.H. The clinical value of plasma hepcidin levels in predicting bacterial infections in febrile children. Pediatr. Neonatol. 2019, 60, 377–381. [Google Scholar] [PubMed]
- Kaiser, M.; Schroeckenfuchs, M.; Castellani, C.; Warncke, G.; Till, H.; Singer, G. The diagnostic value of hepcidin to predict the presence and severity of appendicitis in children. J. Surg. Res. 2018, 222, 102–107. [Google Scholar] [PubMed]
- Cizmeci, M.N.; Kara, S.; Kanburoglu, M.K.; Simavli, S.; Duvan, C.I.; Tatli, M.M. Detection of cord blood hepcidin levels as a biomarker for early-onset neonatal sepsis. Med. Hypotheses 2014, 82, 310–312. [Google Scholar]
- Agoro, R.; Montagna, A.; Goetz, R.; Aligbe, O.; Singh, G.; Coe, L.M.; Mohammadi, M.; Rivella, S.; Sitara, D. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 2018, 32, 3752–3764. [Google Scholar]
- Tsai, M.H.; Leu, J.G.; Fang, Y.W.; Liou, H.H. High Fibroblast Growth Factor 23 Levels Associated With Low Hemoglobin Levels in Patients With Chronic Kidney Disease Stages 3 and 4. Medicine 2016, 95, e3049. [Google Scholar]
- Eser, B.; Yayar, O.; Buyukbakkal, M.; Erdogan, B.; Ercan, Z.; Merhametsiz, O.; Haspulat, A.; Oğuz, E.G.; Dogan, İ.; Canbakan, B.; et al. Fibroblast growth factor is associated to left ventricular mass index, anemia and low values of transferrin saturation. Nefrologia 2015, 35, 465–472. [Google Scholar]
- Lewerin, C.; Ljunggren, Ö.; Nilsson-Ehle, H.; Karlsson, M.K.; Herlitz, H.; Lorentzon, M.; Ohlsson, C.; Mellström, D. Low serum iron is associated with high serum intact FGF23 in elderly men: The Swedish MrOS study. Bone 2017, 98, 1–8. [Google Scholar]
- Mehta, R.; Cai, X.; Hodakowski, A.; Lee, J.; Leonard, M.; Ricardo, A.; Chen, J.; Hamm, L.; Sondheimer, J.; Dobre, M.; et al. CRIC Study Investigators. Fibroblast Growth Factor 23 and Anemia in the Chronic Renal Insufficiency Cohort Study. Clin. J. Am. Soc. Nephrol. 2017, 12, 1795–1803. [Google Scholar] [PubMed]
- Yeşilbaş, O.; Yıldız, N.; Baykan, Ö.; Alpay, H. Is hepcidin related with anemia and bone mineral metabolism in children with non-dialysis chronic kidney disease? Turk. Pediatri Ars. 2019, 54, 238–245. [Google Scholar] [PubMed]
- Lukaszyk, E.; Lukaszyk, M.; Koc-Zorawska, E.; Bodzenta-Lukaszyk, A.; Malyszko, J. Fibroblast growth factor 23, iron and inflammation—Are they related in early stages of chronic kidney disease? Arch. Med. Sci. 2017, 13, 845–850. [Google Scholar] [PubMed]
- Karava, V.; Dotis, J.; Kondou, A.; Christoforidis, A.; Taparkou, A.; Farmaki, E.; Economou, M.; Printza, N. Fibroblast growth-factor 23 and vitamin D are associated with iron deficiency and anemia in children with chronic kidney disease. Pediatr. Nephrol. 2023, 38, 2771–2779. [Google Scholar] [PubMed]
- Mendoza, J.M.; Isakova, T.; Ricardo, A.C.; Xie, H.; Navaneethan, S.D.; Anderson, A.H.; Bazzano, L.A.; Xie, D.; Kretzler, M.; Nessel, L.; et al. Chronic Renal Insufficiency Cohort. Fibroblast growth factor 23 and Inflammation in CKD. Clin. J. Am. Soc. Nephrol. 2012, 7, 1155–1162. [Google Scholar]
- Hanks, L.J.; Casazza, K.; Judd, S.E.; Jenny, N.S.; Gutiérrez, O.M. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS ONE 2015, 10, e0122885. [Google Scholar]
- El-Hodhod, M.A.; Hamdy, A.M.; Abbas, A.A.; Moftah, S.G.; Ramadan, A.A. Fibroblast growth factor 23 contributes to diminished bone mineral density in childhood inflammatory bowel disease. BMC Gastroenterol. 2012, 12, 44. [Google Scholar]
- Oliveira, T.C.; Gomes, M.S.; Gomes, A.C. The Crossroads between Infection and Bone Loss. Microorganisms 2020, 8, 1765. [Google Scholar] [CrossRef]
- Antachopoulos, C.; Margeli, A.; Giannaki, M.; Bakoula, C.; Liakopoulou, T.; Papassotiriou, I. Transient hypophosphataemia associated with acute infectious disease in paediatric patients. Scand. J. Infect. Dis. 2002, 34, 836–839. [Google Scholar]
- Iamartino, L.; Brandi, M.L. The calcium-sensing receptor in inflammation: Recent updates. Front. Physiol. 2022, 13, 1059369. [Google Scholar]
- Wang, H.; Zhang, L.; Liao, W.; Huang, J.; Xu, J.; Yang, J.; Chen, C.; He, Z. Hyperphosphatemia rather than hypophosphatemia indicates a poor prognosis in patients with sepsis. Clin. Biochem. 2021, 91, 9–15. [Google Scholar] [PubMed]
- Kraidith, K.; Svasti, S.; Teerapornpuntakit, J.; Vadolas, J.; Chaimana, R.; Lapmanee, S.; Suntornsaratoon, P.; Krishnamra, N.; Fucharoen, S.; Charoenphandhu, N. Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in β- thalassemic mice: Reciprocal phenomenon of Fe2+ and Ca2+ absorption. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E214–E223. [Google Scholar] [PubMed]
- Zhang, P.; Wang, S.; Wang, L.; Shan, B.C.; Zhang, H.; Yang, F.; Zhou, Z.Q.; Wang, X.; Yuan, Y.; Xu, Y.J. Hepcidin is an endogenous protective factor for osteoporosis by reducing iron levels. J. Mol. Endocrinol. 2018, 60, 297–306. [Google Scholar] [PubMed]
- Carvalho, C.; Isakova, T.; Collerone, G.; Olbina, G.; Wolf, M.; Westerman, M.; Gutierrez, O.M. Hepcidin and disordered mineral metabolism in chronic kidney disease. Clin. Nephrol. 2011, 76, 90–98. [Google Scholar]
Bacterial Infections (N = 26) | Viral Infections (N = 26) | ||
---|---|---|---|
Pneumonia (1 case by methicillin-resistant Staphylococcus aureus) | 8 | Common cold, viral upper respiratory tract infections † | 7 |
Acute otitis media—otorrhoea | 6 | Acute gastroenteritis † | 7 |
Urinary tract infections (Escherichia coli) | 4 | Acute bronchiolitis † | 6 |
Occult bacteremia | 2 | Viral-associated wheeze † | 3 |
Pharyngitis and tonsilitis (Streptococcus pyogenes) | 1 | Acute laryngitis † | 2 |
Mastoiditis (Streptococcus pneumoniae) | 1 | Roseola infantum | 1 |
Sinusitis | 1 | † denotes pathogens isolated from some viral infections: Respiratory Syncytial Virus, Rhinovirus/Enterovirus, Adenovirus, Human Metapneumovirus, Cytomegalovirus | |
Acute appendicitis peritonitis | 1 | ||
Staphylococcal scaled skin syndrome (Methicillin-sensitive Staphylococcus aureus) | 1 | ||
Non-typhoidal Salmonella enteritis | 1 |
Parameters | Bacterial Infections (N1 = 26) | Viral Infections (N2 = 26) | Controls (N3 = 27) | p-Value |
---|---|---|---|---|
Age, months (IQR) | 31.5 (16–51) | 29 (16–45) | 28 (15–59) | p+: 0.957 |
Gender, male | 13 (50%) | 17 (65%) | 12 (44%) | p: 0.303 |
Duration of fever, days (IQR) | 4 (3–5) | 1 (1–4) | 0 | p+ < 0.001 |
WBC, number/μL (SD) | 16,808 (7313) | 12,222 (4176) | 9043 (3103) | p1 *: 0.006 p2 ** < 0.001 p3 ***: 0.084 |
NEUT, % (SD) | 68 (13) | 54 (23) | 37 (15) | p1: 0.027 p2 < 0.001 p3: 0.002 |
LYMPH, % (SD) | 24 (13) | 36 (22) | 53 (14) | p1: 0.027 p2 < 0.001 p3: 0.002 |
MONO, % (SD) | 8 (3) | 8 (3) | 6 (2) | p1: 1.000 p2: 0.200 p3: 0.127 |
Hemoglobin, g/dL (SD) | 11.6 (1.5) | 12.3 (0.9) | 12.7 (1.2) | p1: 0.143 p2: 0.006 p3: 0.754 |
Hematocrit, % (SD) | 35 (4) | 37 (3) | 38 (3) | p1: 0.103 p2: 0.020 p3: 1.000 |
Anemia | 10 (39) | 3 (12) | 0 (0) | p < 0.001 |
MCV, fL (SD) | 78.2 (3.4) | 79.4 (3.3) | 79.7 (3) | p1: 0.519 p2: 0.281 p3: 1.000 |
MCH, pg (SD) | 26 (1.8) | 26 (1.3) | 27 (1.2) | p1: 1.000 p2: 0.122 p3: 0.663 |
RDW-CV, % (SD) | 13.6 (1.3) | 13.1 (0.8) | 12.9 (0.8) | p1: 0.136 p2: 0.016 p3: 1.000 |
PLT, number/μL (SD) | 371,962 (128529) | 343,115 (96598) | 323,185 (60,138) | p1: 0.886 p2: 0.228 p3: 1.000 |
Ca, mg/dL (SD) | 9.6 (0.6) | 10 (0.5) | 10.2 (0.5) | p1: 0.078 p2 < 0.001 p3: 0.153 |
Pi, mg/dL (SD) | 4.5 (0.8) | 4.9 (0.6) | 5.1 (0.9) | p1: 0.248 p2: 0.012 p3: 0.720 |
25(OH)D, ng/mL (IQR) | 24.8 (21.6–30.1) | 29 (20.7–33.3) | 27.7 (24.2–33.4) | p+: 0.121 |
25(OH)D insufficiency | 6 (23) | 4 (15) | 2 (7) | p+: 0.259 |
CRP, mg/L (IQR) | 91 (51–210) | 9.5 (4–23) | 2 (1–2) | p+ < 0.001 |
ESR, mm/h (IQR) | 42 (15–56) | 11.5 (5–24) | 4 (2–7) | p+ < 0.001 |
Fe, μg/dL (IQR) | 18 (12–22) | 23 (18–48) | 73 (61–101) | p+ < 0.001 |
Ferritin, ng/mL (IQR) | 88 (53–182) | 57 (38–88) | 29 (19–38) | p+ < 0.001 |
TIBC, μg/dL (IQR) | 303 (272–323) | 339 (299–376) | 342 (313.5–368) | p+: 0.003 |
TS, %, (IQR) | 5.9 (5–9) | 7.7 (5.6–14.3) | 23.2 (17.2–29.3) | p+ < 0.001 |
FID | 24 (92) | 21 (81) | 0 (0) | p+ < 0.001 |
Hepcidin, ng/mL (IQR) | 56.9 (32.7–121) | 42.1 (18.5–83.5) | 9.5 (6.3–12.6) | p+ < 0.001 |
I-FGF23, pg/mL (IQR) | 4.9 (2.2–6.4) | 3.3 (1.7–5) | 11.8 (7.5–22.7) | p+ < 0.001 |
Hepcidin | r | p-Value |
---|---|---|
i-FGF23 | −0.495 | <0.001 |
Days of fever | 0.700 | <0.001 |
WBC | 0.481 | <0.001 |
NEUT | 0.531 | <0.001 |
LYMPH | −0.560 | <0.001 |
MONO | 0.306 | 0.006 |
Hemoglobin | −0.215 | 0.056 |
Ca | −0.335 | 0.003 |
Pi | −0.247 | 0.028 |
CRP | 0.596 | <0.001 |
ESR | 0.455 | <0.001 |
Fe | −0.722 | <0.001 |
Ferritin | 0.566 | <0.001 |
TIBC | −0.303 | 0.007 |
TS | −0.688 | <0.001 |
I-FGF23 | r | p-Value |
---|---|---|
Hepcidin | −0.495 | <0.001 |
Days of fever | −0.427 | <0.001 |
WBC | −0.162 | 0.155 |
NEUT | −0.250 | 0.026 |
LYMPH | 0.255 | 0.023 |
MONO | −0.120 | 0.293 |
Hemoglobin | 0.081 | 0.478 |
Ca | 0.153 | 0.178 |
Pi | 0.204 | 0.072 |
CRP | −0.327 | 0.003 |
ESR | −0.288 | 0.010 |
Fe | 0.323 | 0.004 |
Ferritin | −0.365 | 0.001 |
TIBC | 0.079 | 0.490 |
TS | 0.328 | 0.003 |
Variables | Standardized Coefficient | 95% CI | p-Value |
---|---|---|---|
Absence of infection | 11.450 | [1.97, 20.93] | 0.019 |
CRP | 0.017 | [−0.06, 0.1] | 0.668 |
Hepcidin | −0.037 | [−0.13, 0.05] | 0.412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papastergiou, E.; Rallis, D.; Papagianni, A.; Cholevas, V.; Katzilakis, N.; Siomou, E.; Stiakaki, E.; Makis, A. Intact FGF23 and Markers of Iron Homeostasis, Inflammation, and Bone Mineral Metabolism in Acute Pediatric Infections. Biology 2024, 13, 728. https://doi.org/10.3390/biology13090728
Papastergiou E, Rallis D, Papagianni A, Cholevas V, Katzilakis N, Siomou E, Stiakaki E, Makis A. Intact FGF23 and Markers of Iron Homeostasis, Inflammation, and Bone Mineral Metabolism in Acute Pediatric Infections. Biology. 2024; 13(9):728. https://doi.org/10.3390/biology13090728
Chicago/Turabian StylePapastergiou, Eleni, Dimitrios Rallis, Afroditi Papagianni, Vasileios Cholevas, Nikolaos Katzilakis, Ekaterini Siomou, Eftichia Stiakaki, and Alexandros Makis. 2024. "Intact FGF23 and Markers of Iron Homeostasis, Inflammation, and Bone Mineral Metabolism in Acute Pediatric Infections" Biology 13, no. 9: 728. https://doi.org/10.3390/biology13090728
APA StylePapastergiou, E., Rallis, D., Papagianni, A., Cholevas, V., Katzilakis, N., Siomou, E., Stiakaki, E., & Makis, A. (2024). Intact FGF23 and Markers of Iron Homeostasis, Inflammation, and Bone Mineral Metabolism in Acute Pediatric Infections. Biology, 13(9), 728. https://doi.org/10.3390/biology13090728