Stomata Are Driving the Direction of CO2-Induced Water-Use Efficiency Gain in Selected Tropical Trees in Fiji
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Species, and Herbarium Samples
2.2. Analysis of Leaf Stomatal Traits
2.3. Analysis of Leaf Functional Traits
2.4. Phenotypic Space of Stomatal Density (D) and Maximum Stomatal Pore Area (amax) in Plant Communities
2.5. Meteorological Data
2.6. Climatic Conditions in Fiji (1927–2015)
2.7. Modelling Intrinsic Water-Use Efficiency Response (ΔiWUE/Δca), Stomatal Conductance Response (Δgs/Δca), and Photosynthesis Response (ΔA/Δca) to Rising ca, and Incorporating Intraspecific Variability of gsmax
2.7.1. BiomeBGC Model (BiomeBGC*) Simulation
2.7.2. Empirical–Biochemical (EB) Simulation
2.7.3. Comparison between the Results of Empirical Data, BiomeBGC Model (BiomeBGC*), and Empirical–Biochemical (EB) Simulations
2.8. Statistical Analysis
3. Results
3.1. Leaf Stomatal Traits and iWUE Responses to Rising ca
3.2. Phenotypic Space of amax and D in Plant Communities
3.3. The Effects of Extreme Climatic Conditions on iWUE
3.4. Variability in gsmax
3.5. Modelling Intrinsic Water-Use Efficiency Response (ΔiWUE/Δca,), Stomatal Conductance Response (Δgs/Δca), and Photosynthesis Response (ΔA/Δca) to Rising ca, and Incorporating Intraspecific Variability of gsmax
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowan, I.R.; Farquhar, G.D. Stomatal Function in Relation to Leaf Metabolism and Environment. In Integration of Activity in the Higher Plant; Jennings, D.H., Ed.; Society for Experimental Biology: Cambridge, UK, 1977; pp. 471–505. [Google Scholar]
- Jones, H.G. What Is Water Use Efficiency? In Water Use Efficiency in Plant Biology; Bacon, M.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 27–41. [Google Scholar]
- Bonal, D.; Ponton, S.; Le thiec, D.; Richard, B.; Ningre, N.; Hérault, B.; Ogée, J.; Gonzalez, S.; Pignal, M.; Sabatier, D.; et al. Leaf Functional Response to Increasing Atmospheric CO2 Concentrations over the Last Century in Two Northern Amazonian Tree Species: A Historical δ13C and δ18O Approach Using Herbarium Samples. Plant Cell Environ. 2011, 34, 1332–1344. [Google Scholar] [CrossRef] [PubMed]
- Soh, W.K.; Yiotis, C.; Murray, M.; Parnell, A.C.; Wright, I.J.; Spicer, R.A.; Lawson, T.; Caballero, R.; McElwain, J.C. Rising CO2 Drives Divergence in Water-Use Efficiency of Evergreen and Deciduous Plants. Sci. Adv. 2019, 5, eaax7906. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H.; Jasechko, S. Transpiration in the Global Water Cycle. Agric. For. Meteorol. 2014, 189–190, 115–117. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Good, S.P.; Noone, D.; Bowen, G. Hydrologic Connectivity Constrains Partitioning of Global Terrestrial Water Fluxes. Science 2015, 349, 175–177. [Google Scholar] [CrossRef]
- Holtumn; Winter, K. Elevated [CO2] and Forest Vegetation: More a Water Issue than a Carbon Issue? Funct. Plant Biol. 2010, 37, 694–704. [Google Scholar]
- Malhi, Y.; Grace, J. Tropical Forests and Atmospheric Carbon Dioxide. Trends Ecol. Evo. 2000, 15, 332–337. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Winter, K.; Dalling, J.W.; Holtum, J.A.M.; Jaramillo, C.; Körner, C.; Leakey, A.D.B.; Norby, R.J.; Poulter, B.; Turner, B.L.; et al. Tropical Forest Responses to Increasing Atmospheric CO2: Current Knowledge and Opportunities for Future Research. Funct. Plant Biol. 2013, 40, 531–551. [Google Scholar] [CrossRef]
- Woodward, F.I. Stomatal Numbers Are Sensitive to Increases in CO2 Concentration from the Pre-Industrial Levels. Nature 1987, 327, 617–618. [Google Scholar] [CrossRef]
- Lammertsma, E.I.; de Boer, H.J.; Dekker, S.C.; Dilcher, D.L.; Lotter, A.F.; Wagner-Cremer, F. Global CO2 Rise Leads to Reduced Maximum Stomatal Conductance in Florida Vegetation. Proc. Natl. Acad. Sci. USA 2011, 108, 4035–4040. [Google Scholar] [CrossRef]
- Wagner, F.; Dilcher, D.L.; Visscher, H. Stomatal Frequency Responses in Hardwood-Swamp Vegetation from Florida during a 60-Year Continuous CO2 Increase. Am. J. Bot. 2005, 92, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Drake, P.L.; Beerling, D.J. Plasticity in Maximum Stomatal Conductance Constrained by Negative Correlation between Stomatal Size and Density: An Analysis Using Eucalyptus Globulus. Plant Cell Environ. 2009, 32, 1737–1748. [Google Scholar] [CrossRef]
- McElwain, J.C.; Yiotis, C.; Lawson, T. Using Modern Plant Trait Relationships between Observed and Theoretical Maximum Stomatal Conductance and Vein Density to Examine Patterns of Plant Macroevolution. New Phytol. 2016, 209, 94–103. [Google Scholar] [CrossRef]
- Lawson, T.; Morison, J.I. Stomatal Function and Physiology. In The Evolution of Plant Physiology: From Whole Plants to Ecosystem; Hemsley, A.R., Poole, I., Eds.; Elsevier Academic: Cambridge, UK, 2004; pp. 265–304. [Google Scholar]
- Dow, G.J.; Bergmann, D.C.; Berry, J.A. An Integrated Model of Stomatal Development and Leaf Physiology. New Phytol. 2014, 201, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Soh, W.K.; Yiotis, C.; Spicer, R.A.; Lawson, T.; McElwain, J.C. Consistent Relationship between Field Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes. Int. J. Plant Sci. 2020, 181, 142–154. [Google Scholar] [CrossRef]
- Miller-Rushing, A.J.; Primack, R.B.; Templer, P.H.; Rathbone, S.; Mukunda, S. Long-Term Relationships among Atmospheric CO2, Stomata, and Intrinsic Water Use Efficiency in Individual Trees. Am. J. Bot. 2009, 96, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
- Feeley, K.J.; Silman, M.R. The Data Void in Modeling Current and Future Distributions of Tropical Species. Glob. Chang. Biol. 2011, 17, 626–630. [Google Scholar] [CrossRef]
- Moran, E.V.; Hartig, F.; Bell, D.M. Intraspecific Trait Variation across Scales: Implications for Understanding Global Change Responses. Glob. Chang. Biol. 2016, 22, 137–150. [Google Scholar] [CrossRef]
- Ash, J. Vegetation Ecology of Fiji: Past, Present, and Future Perspectives. Pac. Sci. 1992, 46, 111–127. [Google Scholar]
- Murray, M.; Soh, W.K.; Yiotis, C.; Batke, S.; Parnell, A.C.; Spicer, R.A.; Lawson, T.; Caballero, R.; Wright, I.J.; Purcell, C.; et al. Convergence in Maximum Stomatal Conductance of C3 Woody Angiosperms in Natural Ecosystems Across Bioclimatic Zones. Front. Plant Sci. 2019, 10, 558. [Google Scholar] [CrossRef]
- Wolfe, J.A. A Method of Obtaining Climatic Parameters from Leaf Assemblages. US Geol. Surv. Bull. 1993, 2040, 1–71. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Poole, I.; Kürschner, W.M. Stomatal Density and Index: The Practice. In Fossil Plant and Spores: Modern Techniques; Jones, T.P., Rowe, N.P., Eds.; The Geological Society: London, UK, 1999; pp. 257–260. [Google Scholar]
- Parlange, J.Y.; Waggoner, P.E. Stomatal Dimension and Resistance to Diffusion. Plant Physiol. 1970, 46, 337–342. [Google Scholar] [CrossRef]
- Franks, P.J.; Beerling, D.J. Maximum Leaf Conductance Driven by CO2 Effects on Stomatal Size and Density over Geologic Time. Proc. Natl. Acad. Sci. USA 2009, 106, 10343–10347. [Google Scholar] [CrossRef] [PubMed]
- Blonder, B.; Buzzard, V.; Simova, I.; Sloat, L.; Boyle, B.; Lipson, R.; Aguilar-Beaucage, B.; Andrade, A.; Barber, B.; Barnes, C.; et al. The Leaf-Area Shrinkage Effect Can Bias Paleoclimate and Ecology Research. Am. J. Bot. 2012, 99, 1756–1763. [Google Scholar] [CrossRef]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the Relationship between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Aust. J. Plant Physiol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Farquhar, G.; Richards, R. Isotopic Composition of Plant Carbon Correlates With Water-Use Efficiency of Wheat Genotypes. Funct. Plant Biol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Ubierna, N.; Holloway-Phillips, M.-M.; Farquhar, G.D. Scaling from Fluxes to Organic Matter: Interpreting 13C Isotope Ratios of Plant Material Using Flux Models. New Phytol. 2022, 236, 2003–2008. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Cernusak, L.A. Ternary Effects on the Gas Exchange of Isotopologues of Carbon Dioxide. Plant Cell Environ. 2012, 35, 1221–1231. [Google Scholar] [CrossRef]
- Robertson, A.; Overpeck, J.; Rind, D.; Mosley-Thompson, E.; Zielinski, G.; Lean, J.; Koch, D.; Penner, J.; Tegen, I.; Healy, R. Hypothesized Climate Forcing Time Series for the Last 500 Years. J. Geophys. Res. Atmos. 2001, 106, 14783–14803. [Google Scholar] [CrossRef]
- Graven, H.; Allison, C.E.; Etheridge, D.M.; Hammer, S.; Keeling, R.F.; Levin, I.; Meijer, H.A.J.; Rubino, M.; Tans, P.P.; Trudinger, C.M.; et al. Compiled Records of Carbon Isotopes in Atmospheric CO2 for Historical Simulations in CMIP6. Geosci. Model Dev. 2017, 10, 4405–4417. [Google Scholar] [CrossRef]
- NOAA NOAA Earth System Research Laboratory, Global Monitoring Division. Available online: https://gml.noaa.gov/aftp/data/trace_gases/ (accessed on 25 February 2017).
- de Boer, H.J.; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C. Climate Forcing Due to Optimization of Maximal Leaf Conductance in Subtropical Vegetation under Rising CO2. Proc. Natl. Acad. Sci. USA 2011, 108, 4041–4046. [Google Scholar] [CrossRef] [PubMed]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Lin, J. Divergence Measures Based on the Shannon Entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef]
- CPC Global. Unified Precipitation Data Provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. Available online: https://www.esrl.noaa.gov/psd/ (accessed on 25 February 2017).
- CPC Global. Temperature Data Provided by the NOAA/OAR/ESRL PSD; CPC Global: Boulder, CO, USA. Available online: https://psl.noaa.gov/data/gridded/index.html (accessed on 25 February 2017).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Pierce, D. Ncdf4: Interface to Unidata netDF (Version 4 or Earlier) Format Data Files. R Package Version 1.16. 2017. Available online: https://cran.r-project.org/web/packages/ncdf4/index.html (accessed on 1 July 2024).
- Thornton, P.E.; Running, S.W. An Improved Algorithm for Estimating Incident Daily Solar Radiation from Measurements of Temperature, Humidity, and Precipitation. Agric. For. Meteorol. 1999, 93, 211–228. [Google Scholar] [CrossRef]
- Hungerford, R.D.; Nemani, R.R.; Running, S.W.; Coughlan, J.C. MTCLIM: A Mountain Microclimate Simulation Model. In U.S. Forest Service Intermountain Resarch Station Research Paper Int-414; USDA: Ogden, UT, USA, 1989. [Google Scholar]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Terry, J.P.; Raj, R. The 1997–1998 El Nino and Drought in the Fiji Islands. In Proceedings of the Hydrology and Water Management in the Humid Tropics, Panama, Republic of Panama, 22–26 March 1999; IHP-V Technical Documents in Hydrology no.52; UNESCO: Paris, France, 1999; pp. 80–93. [Google Scholar]
- Howes, E.L.; Birchenough, S.; Lincoln, S. Impacts of Climate Change Relevant to the Pacific Islands: Pacific Marine Climate Change Report Card. Sci. Rev. 2018, 1–19. [Google Scholar]
- Salinger, M.J.; Basher, R.E.; Fitzharris, B.B.; Hay, J.E.; Jones, P.D.; Macveigh, J.P.; Schmidely-Leleu, I. Climate Trends in the South-West Pacific. Int. Climatol. 1995, 15, 285–302. [Google Scholar] [CrossRef]
- Hilton, A.C. The Influence of El Nino-Southern Oscillation (ENSO) on Frequency and Distribution of Weather-Related Disaster in the Pacific Islands Region. In Climate and Environmental Change in the Pacific; University of the South Pacific: Suva, Fiji, 1998; pp. 57–71. [Google Scholar]
- Lindsey, R. 2015 State of the Climate: El Nino Came, Saw and Conquered. Available online: https://www.climate.gov/news-features/understanding-climate/2015-state-climate-el-niño-came-saw-and-conquered (accessed on 1 October 2019).
- Thornton, P.E. Regional Ecosystem Simulation: Combining Surface- and Satellite-Based Observations to Study Linkages between Terrestrial Energy and Mass Budgets; The University of Montana: Missoula, MT, USA, 1998. [Google Scholar]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interact. 2000, 4, 1–85. [Google Scholar] [CrossRef]
- Thornton, P.E.; Law, B.E.; Gholz, H.L.; Clark, K.L.; Falge, E.; Ellsworth, D.S.; Goldstein, A.H.; Monson, R.K.; Hollinger, D.; Falk, M.; et al. Modeling and Measuring the Effects of Disturbance History and Climate on Carbon and Water Budgets in Evergreen Needleleaf Forests. Agric. For. Meteorol. 2002, 113, 185–222. [Google Scholar] [CrossRef]
- Thornton, P.E.; Running, S.W. User’s Guide for Biome-BGC, Version 4.1.1; The University of Montana: Missoula, MT, USA, 2002. [Google Scholar]
- King, G.; Tomz, M.; Wittenberg, J. Making the Most of Statistical Analyses: Improving Interpretation and Presentation. Am. J. Pol. Sci. 2000, 44, 341–355. [Google Scholar] [CrossRef]
- De Kauwe, M.G.; Lin, Y.-S.; Wright, I.J.; Medlyn, B.E.; Crous, K.Y.; Ellsworth, D.S.; Maire, V.; Prentice, I.C.; Atkin, O.K.; Rogers, A.; et al. A Test of the ‘One-Point Method’ for Estimating Maximum Carboxylation Capacity from Field-Measured, Light-Saturated Photosynthesis. New Phytol. 2015, 210, 1130–1144. [Google Scholar] [CrossRef] [PubMed]
- Bernacchi, C.J.; Portis, A.R.; Nakano, H.; von Caemmerer, S.; Long, S.P. Temperature Response of Mesophyll Conductance: Implications for the Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis in Vivo. Plant Physiol. 2002, 130, 1992 LP–1998. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.P.; Beckerman, A.P.; Gu, L.; Kattge, J.; Cernusak, L.A.; Domingues, T.F.; Scales, J.C.; Wohlfahrt, G.; Wullschleger, S.D.; Woodward, F.I. The Relationship of Leaf Photosynthetic Traits—Vcmax and Jmax—To Leaf Nitrogen, Leaf Phosphorus, and Specific Leaf Area: A Meta-Analysis and Modeling Study. Ecol. Evol. 2014, 4, 3218–3235. [Google Scholar] [CrossRef]
- Franks, P.J.; Leitch, I.J.; Ruszala, E.M.; Hetherington, A.M.; Beerling, D.J. Physiological Framework for Adaptation of Stomata to CO2 from Glacial to Future Concentrations. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Royer, D.L.; Beerling, D.J.; Van de Water, P.K.; Cantrill, D.J.; Barbour, M.M.; Berry, J.A. New Constraints on Atmospheric CO2 Concentration for the Phanerozoic. Geophys. Res. Lett. 2014, 41, 4685–4694. [Google Scholar] [CrossRef]
- Yiotis, C.; McElwain, J. A Novel Hypothesis for the Role of Photosynthetic Physiology in Shaping Macroevolutionary Patterns. Plant Physiol. 2019, 181, 1148–1162. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Caemmerer, S.V.; Berry, J.A. A Biochemical-Model of Photosynthetic CO2 Assimilation in Leaves of C-3 Species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- von Caemmerer, S.; Farquhar, G.D. Some Relationships between the Biochemistry of Photosynthesis and the Gas Exchange of Leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Purcell, C.; Batke, S.P.; Yiotis, C.; Caballero, R.; Soh, W.K.; Murray, M.; McElwain, J.C. Increasing Stomatal Conductance in Response to Rising Atmospheric CO2. Ann. Bot. 2018, 121, 1137–1149. [Google Scholar] [CrossRef]
- Ethier, G.J.; Livingston, N.J. On the Need to Incorporate Sensitivity to CO2 Transfer Conductance into the Farquhar–von Caemmerer–Berry Leaf Photosynthesis Model. Plant Cell Environ. 2004, 27, 137–153. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Singsaas, E.L.; Pimentel, C.; Portis, A.R., Jr.; Long, S.P. Improved Temperature Response Functions for Models of Rubisco-Limited Photosynthesis. Plant Cell Environ. 2001, 24, 253–259. [Google Scholar] [CrossRef]
- Diefendorf, A.F.; Mueller, K.E.; Wing, S.L.; Koch, P.L.; Freeman, K.H. Global Patterns in Leaf 13C Discrimination and Implications for Studies of Past and Future Climate. Proc. Natl. Acad. Sci. USA 2010, 107, 5738–5743. [Google Scholar] [CrossRef] [PubMed]
- Saurer, M.; Siegwolf, R.T.W.; Schweingruber, F.H. Carbon Isotope Discrimination Indicates Improving Water-Use Efficiency of Trees in Northern Eurasia over the Last 100 Years. Glob. Chang. Biol. 2004, 10, 2109–2120. [Google Scholar] [CrossRef]
- Nock, C.A.; Baker, P.J.; Wanek, W.; Leis, A.; Grabner, M.; Bunyavejchewin, S.; Hietz, P. Long-Term Increases in Intrinsic Water-Use Efficiency Do Not Lead to Increased Stem Growth in a Tropical Monsoon Forest in Western Thailand. Glob. Chang. Biol. 2011, 17, 1049–1063. [Google Scholar] [CrossRef]
- Hietz, P.; Wanek, W.; Dunisch, O. Long-Term Trends in Cellulose Delta C-13 and Water-Use Efficiency of Tropical Cedrela and Swietenia from Brazil. Tree Physiol. 2005, 25, 745–752. [Google Scholar] [CrossRef]
- van der Sleen, P.; Groenendijk, P.; Vlam, M.; Anten, N.P.R.; Boom, A.; Bongers, F.; Pons, T.L.; Terburg, G.; Zuidema, P.A. No Growth Stimulation of Tropical Trees by 150 Years of CO2 Fertilization but Water-Use Efficiency Increased. Nat. Geosci. 2015, 8, 24–28. [Google Scholar] [CrossRef]
- Mathias, J.M.; Thomas, R.B. Global Tree Intrinsic Water Use Efficiency Is Enhanced by Increased Atmospheric CO2 and Modulated by Climate and Plant Functional Types. Proc. Natl. Acad. Sci. USA 2021, 118, e2014286118. [Google Scholar] [CrossRef] [PubMed]
- Miller-Rushing, A.J.; Inouye, D.W. Variation in the Impact of Climate Change on Flowering Phenology and Abundance: An Examination of Two Pairs of Closely Related Wildflower Species. Am. J. Bot. 2009, 96, 1821–1829. [Google Scholar] [CrossRef]
- Bonal, D.; Sabatier, D.; Montpied, P.; Tremeaux, D.; Guehl, J.M. Interspecific Variability of δ13C among Trees in Rainforests of French Guiana: Functional Groups and Canopy Integration. Oecologia 2000, 124, 454–468. [Google Scholar] [CrossRef]
- Hetherington, A.M.; Woodward, F.I. The Role of Stomata in Sensing and Driving Environmental Change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef]
- Moreno-Gutiérrez, C.; Dawson, T.E.; Nicolás, E.; Querejeta, J.I. Isotopes Reveal Contrasting Water Use Strategies among Coexisting Plant Species in a Mediterranean Ecosystem. New Phytol. 2012, 196, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, A.; Graven, H.; De Kauwe, M.G.; Keenan, T.F.; Medlyn, B.E.; Prentice, I.C. Observed and Modelled Historical Trends in the Water-Use Efficiency of Plants and Ecosystems. Glob. Chang. Biol. 2019, 25, 2242–2257. [Google Scholar] [CrossRef] [PubMed]
- Cernusak, L.A.; Haverd, V.; Brendel, O.; Le Thiec, D.; Guehl, J.-M.; Cuntz, M. Robust Response of Terrestrial Plants to Rising CO2. Trends Plant Sci. 2019, 24, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Haverd, V.; Smith, B.; Canadell, J.G.; Cuntz, M.; Mikaloff-Fletcher, S.; Farquhar, G.; Woodgate, W.; Briggs, P.R.; Trudinger, C.M. Higher than Expected CO2 Fertilization Inferred from Leaf to Global Observations. Glob. Chang. Biol. 2020, 26, 2390–2402. [Google Scholar] [CrossRef]
- Berzaghi, F.; Wright, I.J.; Kramer, K.; Oddou-Muratorio, S.; Bohn, F.J.; Reyer, C.P.O.; Sabaté, S.; Sanders, T.G.M.; Hartig, F. Towards a New Generation of Trait-Flexible Vegetation Models. Trends Ecol. Evo. 2020, 35, 191–205. [Google Scholar] [CrossRef]
- Westerband, A.C.; Funk, J.L.; Barton, K.E. Intraspecific Trait Variation in Plants: A Renewed Focus on Its Role in Ecological Processes. Ann. Bot. 2021, 127, 397–410. [Google Scholar] [CrossRef]
- Franks, P.J.; Adams, M.A.; Amthor, J.S.; Barbour, M.M.; Berry, J.A.; Ellsworth, D.S.; Farquhar, G.D.; Ghannoum, O.; Lloyd, J.; McDowell, N.; et al. Sensitivity of Plants to Changing Atmospheric CO2 Concentration: From the Geological Past to the next Century. New Phytol. 2013, 197, 1077–1094. [Google Scholar] [CrossRef]
- Taylor, S.; Kumar, L. Global Climate Change Impacts on Pacific Islands Terrestrial Biodiversity: A Review. Trop. Conserv. Sci. 2016, 9, 203–223. [Google Scholar] [CrossRef]
- Hutjes, R.W.A.; Kabat, P.; Running, S.W.; Shuttleworth, W.J.; Field, C.; Bass, B.; da Silva Dias, M.F.; Avissar, R.; Becker, A.; Claussen, M.; et al. Biospheric Aspects of the Hydrological Cycle. J. Hydrol. 1998, 212–213, 1–21. [Google Scholar] [CrossRef]
- Cox, P.M.; Huntingford, C.; Harding, R.J. A Canopy Conductance and Photosynthesis Model for Use in a GCM Land Surface Scheme. J. Hydrol. 1998, 212–213, 79–94. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net Carbon Uptake Has Increased through Warming-Induced Changes in Temperate Forest Phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Medlyn, B.E.; Duursma, R.A.; Prentice, I.C.; Wang, H.; Baig, S.; Eamus, D.; de Dios, V.R.; Mitchell, P.; Ellsworth, D.S.; et al. Optimal Stomatal Behaviour around the World. Nat. Clim. Chang. 2015, 5, 459–464. [Google Scholar] [CrossRef]
- Convention on Biological Diversity Fiji—Country Profile. Available online: https://www.cbd.int/countries/profile/default.shtml?country=fj (accessed on 4 February 2019).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soh, W.K.; Yiotis, C.; Murray, M.; Pene, S.; Naikatini, A.; Dornschneider-Elkink, J.A.; White, J.D.; Tuiwawa, M.; McElwain, J.C. Stomata Are Driving the Direction of CO2-Induced Water-Use Efficiency Gain in Selected Tropical Trees in Fiji. Biology 2024, 13, 733. https://doi.org/10.3390/biology13090733
Soh WK, Yiotis C, Murray M, Pene S, Naikatini A, Dornschneider-Elkink JA, White JD, Tuiwawa M, McElwain JC. Stomata Are Driving the Direction of CO2-Induced Water-Use Efficiency Gain in Selected Tropical Trees in Fiji. Biology. 2024; 13(9):733. https://doi.org/10.3390/biology13090733
Chicago/Turabian StyleSoh, Wuu Kuang, Charilaos Yiotis, Michelle Murray, Sarah Pene, Alivereti Naikatini, Johan A. Dornschneider-Elkink, Joseph D. White, Marika Tuiwawa, and Jennifer C. McElwain. 2024. "Stomata Are Driving the Direction of CO2-Induced Water-Use Efficiency Gain in Selected Tropical Trees in Fiji" Biology 13, no. 9: 733. https://doi.org/10.3390/biology13090733
APA StyleSoh, W. K., Yiotis, C., Murray, M., Pene, S., Naikatini, A., Dornschneider-Elkink, J. A., White, J. D., Tuiwawa, M., & McElwain, J. C. (2024). Stomata Are Driving the Direction of CO2-Induced Water-Use Efficiency Gain in Selected Tropical Trees in Fiji. Biology, 13(9), 733. https://doi.org/10.3390/biology13090733