Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective
Abstract
:Simple Summary
Abstract
1. Introduction
2. Botanical Profile of Peronema canescens Jack
3. Phytochemical and Pharmacological Studies of Peronema canescens Jack
Research Aims and Design | Extraction Method | Solvent Used | Bioactive Compound | Biological Activity | Ref. |
---|---|---|---|---|---|
Identification of active compounds from PC leaves | Maceration | Acetone | β-sitosterol, phytol, β-amyrin, and peronemins (A2, A3, B1, B2, B3, and C1) | n/d | [1] |
Extraction of active compounds in PC leaves | Maceration | Acetone and methanol | Caffeic acid and Peronemins (A2, A3, B1, B2, B3, C1, and D1) | n/d | [2] |
In vitro antioxidant evaluation of PC metabolic extract | Maceration | Methanol | Alkaloid, flavonoid, saponin, steroid, and tannin | Antioxidant activity | [18] |
Evaluation of anticancer activity of PC leaf extract on HT-29 cell line in vitro | Maceration and fractionation | Ethanol, hexane, chloroform, ethyl acetate, and methanol | Alkaloid, flavonoids, phenolic, steroids, and terpenoid | Best IC50 effect on HT-29 was 14.81 ug/mL in subfraction 3 | [33] |
Identification of the antioxidant activity of ethanol extract of PC in vitro | Maceration and UAE | Ethanol | Alkaloid, flavonoid, tannin, and saponin | Antioxidant activity | [34] |
Identification of anti-inflammatory effects of PC leaf extract in vitro and in vivo | Maceration | Ethanol | n/d | Best immune stimulant effect was at a dose of 200 mg/kg BW mice | [35] |
In vivo evaluation of the immunostimulant effect of PC leaf extract | Maceration | Methanol | n/d | Immunostimulant effect was observed starting from a dose of 25 mg/kg BW mice | [36] |
Identification of anti-inflammatory effects of PC leaf extract in vivo | Maceration | Ethanol | n/d | Anti-inflammatory effects as evidenced by accelerated healing of the swelling caused by carrageenan | [37] |
Evaluation of the anti-inflammatory effect of PC leaf extract in mice in vivo | Maceration | Ethanol | Alkaloid, flavonoid, phenolic, saponin, steroid, and tannin | Anti-inflammatory effects observed at a concentration of 15% in topical preparations | [38] |
Evaluation of the antihyperuricemic effect of PC leaf extract in mice in vivo | Maceration and fractionation | Ethanol and n-hexane | Alkaloid, flavonoid, saponin, steroid, phenolic, tannin, and triterpenoid | Decrease in uric acid levels of 38.7% was obtained in EtOH extract at a dose of 500 mg/kg BW | [32] |
In vivo antidiabetic evaluation of PC leaf extract | Maceration and fractionation | n-hexane, ethyl acetate, and methanol | Alkaloid, flavonoid, tannin, phenolic, saponin, and steroid | Methanol fraction reduced blood sugar levels in mice | [39] |
Evaluation of compounds of PC leaves in vitro, and anti-inflammatory evaluation in vivo | Maceration and fractionation | Ethyl acetate, ethanol, and n-hexane | Alkaloid, flavonoid (apigenin), phenolic, and steroid (squalene) | Ethanol and n-hexane fraction demonstrated anti-inflammatory activity | [41] |
Ethnopharmacology of the use of PC in the Dayak tribe in Indonesia | n/d | n/d | n/d | Young leaves of PC were used for the treatment of fever | [42] |
Evaluation of the analgesic activity of ethanol extract of PC in vivo | Maceration | Ethanol | n/d | Analgesic effect observed at a dose of 600 mg/kg BW in mice | [43] |
4. How Does an Immunomodulatory Agent Work?
5. A Potential Immunomodulatory Agent Based on a Secondary Metabolite of Peronema canescens Jack
6. Future Perspectives
6.1. Plant Pest Management
6.2. Cultivation Methods by Local Communities
6.3. Potential for Toxicity Test and Clinical Trials
- Phase I Trials: Assessing the safety and tolerability of Peronema canescens extracts in a small group of healthy volunteers.
- Phase II Trials: Evaluating the efficacy and side effects in a larger group of patients with specific conditions such as autoimmune diseases, cancers, or diabetes.
- Phase III Trials: Confirming the efficacy, monitoring side effects, and comparing the extract with standard treatments in a larger population.
- Phase IV Trials: Drugs that have passed phase III testing are allowed to be distributed widely. Evaluation performed using a non-intervention model and research on side effects on consumers will be conducted.
6.4. Commercial Development Potential
6.5. Recommendations for Government Development
- Research and development: Educating the public about the advantages of Peronema canescens and its possible use in conventional medicine through awareness campaigns. Additionally, spending money on extensive research projects to investigate Peronema canescens’s complete spectrum of pharmacological advantages is also needed to provide more comprehensive information about the benefits and risks of this plant. Research related to this could include the exploration of phytochemicals, clinical trials, and the creation of standardised extracts for clinical use [93].
- Extension services: Along with its commercialisation, the government must also provide local farmers with information and instructions on the best ways to cultivate Peronema canescens based on GAP criteria [94], including post-harvest processing, sustainable farming methods, and pest control, to ensure economic equilibrium between supply and demand. The Indonesian Traditional Medicine Garden (TOGA) programme is implemented in Indonesia and could be used for Sungkai conservation [95,96].
- Financial Support: financial assistance (or low-interest loans) should be provided to farmers to cultivate Peronema canescens to help cover the initial costs of setting up plantations and purchasing the necessary equipment [97].
- Regulatory Framework: establish a regulatory framework to ensure the quality and safety of Peronema canescens products including setting standards for cultivation, harvesting, processing, and marketing [98].
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kitagawa, I.; Simanjuntak, P.; Hori, K.; Nagami, N.; Mahmud, T.; Shibuya, H.; Kobayashi, M. Indonesian Medicinal Plants. VII. Seven New Clerodane-Type Diterpenoids, Peronemins A2, A3, B1, B2, B3, C1, and D1, from the Leaves of Peronema canescens (Verbenaceae). Chem. Pharm. Bull. 1994, 42, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Simanjuntak, P. Studi Kimia Senyawa Glikosida Tumbuhan Sungkei, Peronema canescens (Verbenaceae). InaJAC 1996, 6, 109229. [Google Scholar] [CrossRef]
- Sari, S.G.; Rahmawati, R.; Rusmiati, R.; Susi, S. Etnomedisin Tumbuhan Sungkai (Peronema canescens) oleh Suku Dayak dan Suku Banjar di Kalimantan Tengah. EnviroScienteae 2023, 19, 35–40. [Google Scholar] [CrossRef]
- Alkausart, A.; Asra, R.; Fauziah, F. Overview of Phytochemicals and Pharmacological Activities of Sungkai (Peronema canescens Jack): Popular Plants in Indonesia during the COVID-19 Pandemic. IOSR-JPBS 2022, 17, 17–29. [Google Scholar] [CrossRef]
- Pérez Zamora, C.M.; Torres, C.A.; Nuñez, M.B. Antimicrobial Activity and Chemical Composition of Essential oils from Verbenaceae Species Growing in South America. Molecules 2018, 23, 544. [Google Scholar] [CrossRef]
- Gudoityte, E.; Arandarcikaite, O.; Mazeikiene, I.; Bendokas, V.; Liobikas, J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int. J. Mol. Sci. 2021, 22, 4599. [Google Scholar] [CrossRef]
- Rahmatullah, M.; Jahan, R.; Azam, F.S.; Hossan, S.; Mollik, M.a.H.; Rahman, T. Folk Medicinal Uses of Verbenaceae Family Plants in Bangladesh. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 53–65. [Google Scholar] [CrossRef]
- Puri, A.V. Duranta Repens Linn, (Verbenaceae): A Comprehensive Review of Pharmacognostic, Etnomedicinal, Pharmacological, and Phytochemical Aspect. Asian J. Pharm. Clin. Res. 2018, 11, 91–96. [Google Scholar] [CrossRef]
- Salazar-Yepes, M.; Carvalho Júnior, A.A. de New Anamorphic Species of Pucciniales (Fungi, Basidiomycota) Collected in the Itatiaia National Park, Brazil. Rodriguésia 2021, 72, e01102020. [Google Scholar] [CrossRef]
- Vishal, H.; Firoj, A.; Asha, S.; Rohankumar, C. Phytochemical Analysis and Antimicrobial Activity of Lantana Camara. Int. J. Pharm. Chem. Anal. 2022, 8, 171–173. [Google Scholar] [CrossRef]
- Ng’etich, J.K.; Swai, H.S.; Njokah, J.M.; Wachira, S.W.; Koech, L.C.; Gathirwa, J.W. Antimalarial Potential and Phytochemical Composition of Fractions of Lippia Kituiensis Vatke (Verbenaceae) Growing in Northern Tanzania. JMPR 2020, 14, 406–414. [Google Scholar] [CrossRef]
- Yuliana, Y.; Auwaliyah, F.; Fatmawati, S. 6β-Hydroxyipolamiide of Stachytarpheta Jamaicensis Leaves. JTS 2019, 30, 68. [Google Scholar] [CrossRef]
- Ingole, S.N. Diversity and Useful Products in Some Verbenaceous Member of Melghat and Amravati Regions, Maharashtra, India. Biodiversitas J. Biol. Divers. 2011, 12. [Google Scholar] [CrossRef]
- Saxena, M.K.; Singh, N.; Kumar, S.; Dobhal, M.P.; Datta, S. Review Potent Pharmaceutical Products from Aquatic Plant-Review. Asian J. Pharm. Clin. Res. 2021, 14, 48–63. [Google Scholar] [CrossRef]
- Masocatto, D.C.; Matsumoto, M.A.; Coelho, T.M.K.; Jardim, E.C.G.; Mendonça, J.C.G.d.; Silva, J.C.L.d.; Carollo, C.A.; Carollo, A.R.; Marques, M.C.S.; Fernandes, S.M.; et al. Comparison of Antimicrobial Activity of Thymol and Carvacrol to Chlorhexidine in Surgery. Res. Soc. Dev. 2021, 10, e4310716310. [Google Scholar] [CrossRef]
- García-Pérez, E.; Gutiérrez-Uribe, J.A.; García-Lara, S. Luteolin Content and Antioxidant Activity in Micropropagated Plants of Poliomintha Glabrescens (Gray). Plant Cell Tissue Organ Cult. 2012, 108, 521–527. [Google Scholar] [CrossRef]
- Kanwal, K.; Zafar, M.; Khan, A.M.; Mahmood, T.; Abbas, Q.; Ozdemir, F.A.; Ahmad, M.; Sultana, S.; Rozina; Fatima, A.; et al. Implication of Scanning Electron Microscopy and Light Microscopy for Oil Content Determination and Seed Morphology of Verbenaceae. Microsc. Res. Tech. 2022, 85, 789–798. [Google Scholar] [CrossRef]
- Sutomo, S.; Arnida, A.; Yulistati, F.R.; Normaidah, N.; Pratama, M.R.F. Pharmacognostic Study and Antioxidant Activity of Sungkai (Peronema Canescens Jack.) Methanol Extract from Indonesia. Bull. Pharm. Sci. Assiut Univ. 2022, 45, 655–665. [Google Scholar] [CrossRef]
- Tias, F.; Aji, A.S.; Salfarino, R.; Aprilia, V. Antioxidant Activity Test of Sungkai Leaf (Peronema Canescens Jack) Steeping Drink with the Addition of Honey. J. Glob. Nutr. 2022, 2, 168–175. [Google Scholar] [CrossRef]
- Bekut, M.; Brkić, S.; Kladar, N.; Dragović, G.; Gavarić, N.; Božin, B. Potential of Selected Lamiaceae Plants in Anti(Retro)Viral Therapy. Pharmacol. Res. 2018, 133, 301–314. [Google Scholar] [CrossRef]
- Schmidt, E.; Wanner, J.; Hiiferl, M.; Jirovetz, L.; Buchbauer, G.; Gochev, V.; Girova, T.; Stoyanova, A.; Geissler, M. Chemical Composition, Olfactory Analysis and Antibacterial Activity of Thymus Vulgaris Chemotypes Geraniol, 4-Thujanol/Terpinen-4-Ol, Thymol and Linalool Cultivated in Southern France. Nat. Prod. Commun. 2012, 7, 1095–1098. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, S.; Majd, A.; Mehrafarin, A.; Jonoubi, P. Comparative Ontogenetic Survey of the Essential Oil Composition in Origanum Vulgare L., and Origanum Majorana L. Acta Biol. Szeged. 2016, 60, 105–111. [Google Scholar]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D.; Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical Composition and Biological Activities of Mentha Species. In Aromatic and Medicinal Plants—Back to Nature; IntechOpen: London, UK, 2017; ISBN 978-953-51-2978-3. [Google Scholar]
- Uritu, C.M.; Mihai, C.T.; Stanciu, G.-D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M.-M.; Stefanescu, R.; Bild, V.; Melnic, S.; et al. Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review. Pain Res. Manag. 2018, 2018, 7801543. [Google Scholar] [CrossRef] [PubMed]
- Rahardhian, M.R.R.; Susilawati, Y.; Sumiwi, A.; Muktiwardoyo, M.; Muchtaridi, A. Review of Sungkai (Peronema Canescens): Traditional Usage, Phytoconstituent, and Pharmacological Activities. Int. J. Appl. Pharm. 2022, 14, 15–23. [Google Scholar] [CrossRef]
- Kuswantoro, F. Traditional Anti Malaria Plants Species of Balikpapan Botanic Garden, East Kalimantan-Indonesia. KnE Life Sci. 2017, 78–85. [Google Scholar] [CrossRef]
- Ku Halim, K.F.; Jalani, K.J.; Mohsin, H.F.; Abdul Wahab, I. Phytochemical Screening of Peronema Canescens Jack. Int. J. Pharm. Nutraceuticals Cosmet. Sci. (IJPNaCS) 2020, 1, 7–15. [Google Scholar] [CrossRef]
- Rahardhian, M.R.R.; Susilawati, Y.; Musfiroh, I.; Febriyanti, R.M.; Muchtaridi; Sumiwi, S.A. In silico Study of Bioactive Compounds from Sungkai (Peronema Cenescens) as Immunomodulator. Int. J. Appl. Pharm. 2022, 14, 135–141. [Google Scholar] [CrossRef]
- Maigoda, T.; Judiono, J.; Purkon, D.B.; Haerussana, A.N.E.M.; Mulyo, G.P.E. Evaluation of Peronema Canescens Leaves Extract: Fourier Transform Infrared Analysis, Total Phenolic and Flavonoid Content, Antioxidant Capacity, and Radical Scavenger Activity. Open Access Maced. J. Med. Sci. 2022, 10, 117–124. [Google Scholar] [CrossRef]
- Ulfa, E.D.; Syamsiah, S.; Anuar, H.; Afriliani, C.N. Pembuatan Sabun Padat Ekstrak Daun Sungkai (Peronema Canescens Jack) Sebagai Antibakteri Terhadap Staphylococcus Aureus. J. Tek. Kim. Vokasional (JIMSI) 2023, 3, 28–38. [Google Scholar] [CrossRef]
- Suwandi, J.F.; Wijayanti, M.A.; Mustofa, M. In Vitro Antiplasmodial and Cytotoxic Activities of Sungkai (Peronema Canescens) Leaf Extract. Int. J. Pharm. Pharm. Sci. 2018, 10, 109–113. [Google Scholar] [CrossRef]
- Latief, M.; Tarigan, I.L.; Sari, P.M.; Aurora, F.E. Aktivitas Antihiperurisemia Ekstrak Etanol Daun Sungkai (Peronema Canescens Jack) Pada Mencit Putih Jantan. Pharmacon J. Farm. Indones. 2021, 18, 23–37. [Google Scholar] [CrossRef]
- Ibrahim, A.; Siswandono, S.; Wardojo, B.P.E. Potential Anticancer Activities of Chloroform Subfraction from Peronema Leaf on Colon Cancer HT-29 Cells in Vitro. J. App. Pharm. Sci. 2021, 11, 082–089. [Google Scholar] [CrossRef]
- Nurfauziyah, N.; Yulizar, Y.; Meliana, Y. Extraction of Sungkai (Peronema Cannescens Jack) Leaves, Antioxidant Activity Test and Its Nanoemulsion Formulation. E3S Web Conf. 2024, 503, 07008. [Google Scholar] [CrossRef]
- Dillasamola, D.; Aldi, Y.; Wahyuni, F.S.; Rita, R.S.; Dachriyanus, D.D.; Umar, S.; Rivai, H. Study of Sungkai (Peronema Canescens, Jack) Leaf Extract Activity as an Immunostimulators With In Vivo and In Vitro Methods. PJ 2021, 13, 1397–1407. [Google Scholar] [CrossRef]
- Dillasamola, D.; Aldi, Y.; Kurniawan, H.; Jalius, I.M. Immunomodulator Effect Test of Sungkai Leaves (Peronema Canescsens Jack.) Ethanol Extract Using Carbon Clearance Method. In 2nd International Conference on Contemporary Science and Clinical Pharmacy 2021 (ICCSCP 2021); Atlantis Press: Dordrecht, The Netherlands, 2021; Volume 6, pp. 1–6. [Google Scholar] [CrossRef]
- Aztur, F.T.; Simamora, S.; Nurzana, N.I.K.; Supriyanti, Y. Aktivitas Antiinflamasi Ekstrak Etanol Daun Sungkai (Peronema Canenscens Jack) dalam Formulasi Sirup Terhadap Kadar C-Reaktif Protein Pada Tikus Putih Jantan (Rattus Norwegicus) Yang Diinduksi Karagenan. J. Pharmacopoeia 2023, 2, 65–76. [Google Scholar] [CrossRef]
- Latief, M.; Fisesa, A.T.; Sari, P.M.; Tarigan, I.L. Anti Inflammatory Activity of Sungkai Leaves (Peronema canescens Jack) Ethanol Extract in Carrageenan Induced Mice. J. Farm. Sains Dan Prakt. 2021, 7, 144–153. [Google Scholar] [CrossRef]
- Tarigan, I.L.; Triani, A.; Latief, M. Antidiabetic Activity of the Methanol Fraction of Sungkai Leaves (Peronema canescens Jack). J. Pure Appl. Chem. Res. 2023, 12, 117–127. [Google Scholar] [CrossRef]
- Muharni, M.; Ferlinahayati, F.; Fitrya, F.; Eliza, E.; Yohandini, H.; Cenora, C. Uji Toksisitas Subkronik Ekstrak Etanol Daun Sungkai (Paronema canescens Jack.) Terhadap Tikus Putih Rattus Norvegicus (Wistar strain). JSFK (J. Sains Farm. Klin.) 2023, 10, 211–217. [Google Scholar] [CrossRef]
- Tarigan, I.; Aini, I.; Latief, M.; Latief, M. Isolation of a Flavone Apigenin and a Steroids Squalene from Peronema Canescens Jack Leaves with Anti-Inflammatory Activities. Pharmacogn. J. 2022, 14, 744–752. [Google Scholar] [CrossRef]
- Setyowati, F.M. Etnofarmakologi dan Pemakaian Tanaman Obat Suku Dayak Tunjung di Kalimantan Timur. Media Penelit. Dan Pengemb. Kesehat. 2010, 20, 104–112. [Google Scholar]
- Wahyuni, L.; Muin, D.; Defirson, D.; Brata, A. Analgetic Activity Test of Ethanol Extract Sungkai Leaf (Peronema Canescens Jack) in White Male Mouse (Mus Musculus) Induced with Acetic Acid. J. Farm. Sains Dan Prakt. 2023, 1, 88–95. [Google Scholar] [CrossRef]
- Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocińska, M.K.; Majka, M. Immunomodulation—A General Review of the Current State-of-the-Art and New Therapeutic Strategies for Targeting the Immune System. Front. Immunol. 2023, 14, 1127704. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Das, A.; Abir, M.H.; Nafiz, I.H.; Mahmud, A.R.; Sarker, M.R.; Emran, T.B.; Hassan, M.M. Cytokines and Their Role as Immunotherapeutics and Vaccine Adjuvants: The Emerging Concepts. Cytokine 2023, 169, 156268. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. (Weinh) 2021, 8, 2004433. [Google Scholar] [CrossRef]
- Sethi, J.K.; Hotamisligil, G.S. Metabolic Messengers: Tumour Necrosis Factor. Nat. Metab. 2021, 3, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), Interferons, Transforming Growth Factor β, and TNF-α: Receptors, Functions, and Roles in Diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef]
- Sebba, A. Tocilizumab: The First Interleukin-6-Receptor Inhibitor. Am. J. Health-Syst. Pharm. 2008, 65, 1413–1418. [Google Scholar] [CrossRef]
- Kaur, H.; Ghorai, S.M. Role of Cytokines as Immunomodulators. In Immunomodulators and Human Health; Kesharwani, R.K., Keservani, R.K., Sharma, A.K., Eds.; Springer Nature: Singapore, 2022; pp. 371–414. ISBN 9789811663796. [Google Scholar]
- Lee, L.; Gupta, M.; Sahasranaman, S. Immune Checkpoint Inhibitors: An Introduction to the next-Generation Cancer Immunotherapy. J. Clin. Pharmacol. 2016, 56, 157–169. [Google Scholar] [CrossRef]
- Kim, G.-R.; Choi, J.-M. Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy. Mol. Cells 2022, 45, 513–521. [Google Scholar] [CrossRef]
- Meng, L.; Wu, H.; Wu, J.; Ding, P.; He, J.; Sang, M.; Liu, L. Mechanisms of Immune Checkpoint Inhibitors: Insights into the Regulation of Circular RNAS Involved in Cancer Hallmarks. Cell Death Dis. 2024, 15, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Kemmner, S.; Guba, M.O.; Schönermarck, U.; Stangl, M.; Fischereder, M. Cyclosporine as a Preferred Calcineurin Inhibitor in Renal Allograft Recipients with COVID-19 Infection. Kidney Int. 2020, 98, 507–508. [Google Scholar] [CrossRef]
- Timmermans, S.; Souffriau, J.; Libert, C. A General Introduction to Glucocorticoid Biology. Front. Immunol. 2019, 10, 1545. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Myoung, H.; Kim, S.M. Review of Two Immunosuppressants: Tacrolimus and Cyclosporine. J. Korean Assoc. Oral. Maxillofac. Surg. 2023, 49, 311–323. [Google Scholar] [CrossRef]
- Broen, J.C.A.; van Laar, J.M. Mycophenolate Mofetil, Azathioprine and Tacrolimus: Mechanisms in Rheumatology. Nat. Rev. Rheumatol. 2020, 16, 167–178. [Google Scholar] [CrossRef]
- Granata, S.; Dalla Gassa, A.; Carraro, A.; Brunelli, M.; Stallone, G.; Lupo, A.; Zaza, G. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects. Int. J. Mol. Sci. 2016, 17, 735. [Google Scholar] [CrossRef]
- Catanzaro, M.; Corsini, E.; Rosini, M.; Racchi, M.; Lanni, C. Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea. Molecules 2018, 23, 2778. [Google Scholar] [CrossRef]
- Vicovan, A.G.; Petrescu, D.C.; Constantinescu, D.; Iftimi, E.; Cernescu, I.T.; Ancuta, C.M.; Caratașu, C.-C.; Șorodoc, L.; Ceasovschih, A.; Solcan, C.; et al. Experimental Insights on the Use of Secukinumab and Magnolol in Acute Respiratory Diseases in Mice. Biomedicines 2024, 12, 1538. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-G.; Li, Y.-M. Emerging Adjuvants for Cancer Immunotherapy. Front. Chem. 2020, 8, 601. [Google Scholar] [CrossRef]
- Yaron, J.R.; Zhang, L.; Guo, Q.; Burgin, M.; Schutz, L.N.; Awo, E.; Wise, L.; Krause, K.L.; Ildefonso, C.J.; Kwiecien, J.M.; et al. Deriving Immune Modulating Drugs from Viruses—A New Class of Biologics. J. Clin. Med. 2020, 9, 972. [Google Scholar] [CrossRef]
- Shahbazi, S.; Bolhassani, A. Immunostimulants: Types and Functions. J. Med. Microbiol. Infect. Dis. 2016, 4, 45–51. [Google Scholar]
- Devkota, H.P. An Overview of Medicinal Plants of the Asteraceae Family and Their Role in Human Health. In Medicinal Plants of the Asteraceae Family: Traditional Uses, Phytochemistry and Pharmacological Activities; Devkota, H.P., Aftab, T., Eds.; Springer Nature: Singapore, 2022; pp. 1–15. ISBN 978-981-19608-0-2. [Google Scholar]
- Zebeaman, M.; Tadesse, M.G.; Bachheti, R.K.; Bachheti, A.; Gebeyhu, R.; Chaubey, K.K. Plants and Plant-Derived Molecules as Natural Immunomodulators. Biomed. Res. Int. 2023, 2023, 7711297. [Google Scholar] [CrossRef]
- Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Plant-Derived Immunomodulators: An Insight on Their Preclinical Evaluation and Clinical Trials. Front. Plant Sci. 2015, 6, 655. [Google Scholar] [CrossRef]
- Liu, Q.; Ahadpour, M.; Rocca, M.; Huang, S.-M. Clinical Pharmacology Regulatory Sciences in Drug Development and Precision Medicine: Current Status and Emerging Trends. AAPS J. 2021, 23, 54. [Google Scholar] [CrossRef]
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J.; Islam, M.S. Integrated Pest Management (IPM) in Agriculture and Its Role in Maintaining Ecological Balance and Biodiversity. Adv. Agric. 2023, 2023, 5546373. [Google Scholar] [CrossRef]
- He, H.; Liu, L.; Munir, S.; Bashir, N.H.; Wang, Y.; Yang, J.; Li, C. Crop Diversity and Pest Management in Sustainable Agriculture. J. Integr. Agric. 2019, 18, 1945–1952. [Google Scholar] [CrossRef]
- Deguine, J.-P.; Aubertot, J.-N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.G.; Ratnadass, A. Integrated Pest Management: Good Intentions, Hard Realities. A Review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Anand, A.V.; Sreedevi, M.J.; Swapna, T.S. Plant Conservation Associated with Traditional Knowledge: Past and Future. In Conservation and Sustainable Utilization of Bioresources; Sukumaran, S.T., Tr, K., Eds.; Springer Nature: Singapore, 2023; pp. 261–290. ISBN 978-981-19584-1-0. [Google Scholar]
- Dasgupta, R.; Dhyani, S.; Basu, M.; Kadaverugu, R.; Hashimoto, S.; Kumar, P.; Johnson, B.A.; Takahashi, Y.; Mitra, B.K.; Avtar, R.; et al. Exploring Indigenous and Local Knowledge and Practices (ILKPs) in Traditional Jhum Cultivation for Localizing Sustainable Development Goals (SDGs): A Case Study from Zunheboto District of Nagaland, India. Environ. Manag. 2023, 72, 147–159. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Radovich, T.J.K.; Nguyen, H.V.; Uyeda, J.; Arakaki, A.; Cadby, J.; Paull, R.; Teves, J.S.G.; Ahmad, A.A.; Radovich, T.J.K.; et al. Use of Organic Fertilizers to Enhance Soil Fertility, Plant Growth, and Yield in a Tropical Environment. In Organic Fertilizers—From Basic Concepts to Applied Outcomes; IntechOpen: London, UK, 2016; ISBN 978-953-51-2450-4. [Google Scholar]
- Panday, D.; Bhusal, N.; Das, S.; Ghalehgolabbehbahani, A. Rooted in Nature: The Rise, Challenges, and Potential of Organic Farming and Fertilizers in Agroecosystems. Sustainability 2024, 16, 1530. [Google Scholar] [CrossRef]
- Aksoy, Z.; Öz, Ö. Protection of Traditional Agricultural Knowledge and Rethinking Agricultural Research from Farmers’ Perspective: A Case from Turkey. J. Rural. Stud. 2020, 80, 291–301. [Google Scholar] [CrossRef]
- Sudomo, A.; Leksono, B.; Tata, H.L.; Rahayu, A.A.D.; Umroni, A.; Rianawati, H.; Asmaliyah; Krisnawati; Setyayudi, A.; Utomo, M.M.B.; et al. Can Agroforestry Contribute to Food and Livelihood Security for Indonesia’s Smallholders in the Climate Change Era? Agriculture 2023, 13, 1896. [Google Scholar] [CrossRef]
- Mlambo, D.; Sebata, A.; Chichinye, A.; Mabidi, A. Chapter 5—Agroforestry and Biodiversity Conservation. In Agroforestry for Carbon and Ecosystem Management; Jhariya, M.K., Meena, R.S., Banerjee, A., Kumar, S., Raj, A., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 63–78. ISBN 978-0-323-95393-1. [Google Scholar]
- Gupta, R.; Polaka, S.; Rajpoot, K.; Tekade, M.; Sharma, M.C.; Tekade, R.K. Chapter 6—Importance of Toxicity Testing in Drug Discovery and Research. In Pharmacokinetics and Toxicokinetic Considerations; Tekade, R.K., Ed.; Advances in Pharmaceutical Product Development and Research; Academic Press: Cambridge, MA, USA, 2022; Volume 2, pp. 117–144. ISBN 978-0-323-98367-9. [Google Scholar]
- Fischer, I.; Milton, C.; Wallace, H. Toxicity Testing Is Evolving! Toxicol. Res. 2020, 9, 67–80. [Google Scholar] [CrossRef]
- Pognan, F.; Beilmann, M.; Boonen, H.C.M.; Czich, A.; Dear, G.; Hewitt, P.; Mow, T.; Oinonen, T.; Roth, A.; Steger-Hartmann, T.; et al. The Evolving Role of Investigative Toxicology in the Pharmaceutical Industry. Nat. Rev. Drug Discov. 2023, 22, 317–335. [Google Scholar] [CrossRef]
- Kramer, J.A.; Sagartz, J.E.; Morris, D.L. The Application of Discovery Toxicology and Pathology towards the Design of Safer Pharmaceutical Lead Candidates. Nat. Rev. Drug. Discov. 2007, 6, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Denny, K.H.; Stewart, C.W. Chapter 5—Acute, Subacute, Subchronic, and Chronic General Toxicity Testing for Preclinical Drug Development. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development, 2nd ed.; Faqi, A.S., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 109–127. ISBN 978-0-12-803620-4. [Google Scholar]
- The Lancet Haematology Phase 1 Clinical Trials and Toxicity. Lancet Haematol. 2017, 4, e147. [CrossRef]
- Hardman, T.C.; Aitchison, R.; Scaife, R.; Edwards, J.; Slater, G. The Future of Clinical Trials and Drug Development: 2050. Drugs Context 2023, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Kim, P.Y. Drug Trials. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials. JACC Basic Transl. Sci. 2020, 5, 387–397. [Google Scholar] [CrossRef]
- Mofokeng, M.M.; Plooy, C.P.d.; Araya, H.T.; Amoo, S.O.; Mokgehle, S.N.; Pofu, K.M.; Mashela, P.W. Medicinal Plant Cultivation for Sustainable Use and Commercialisation of High-Value Crops. South Afr. J. Sci. 2022, 118. [Google Scholar] [CrossRef]
- Nafiu, M.O.; Hamid, A.A.; Muritala, H.F.; Adeyemi, S.B. Chapter 7—Preparation, Standardization, and Quality Control of Medicinal Plants in Africa. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 171–204. ISBN 978-0-12-809286-6. [Google Scholar]
- Sahoo, N.; Manchikanti, P. Herbal Drug Regulation and Commercialization: An Indian Industry Perspective. J. Altern. Complement. Med. 2013, 19, 957–963. [Google Scholar] [CrossRef]
- Choudhary, N.; Sekhon, B.S. An Overview of Advances in the Standardization of Herbal Drugs. J. Pharm. Educ. Res. 2011, 2, 55. [Google Scholar]
- Kloos, H. Traditional Medicinal Plants and Plant Products Sold in Open Markets in Africa for COVID-19, Their Uses, Medicinal Properties, Trade and Sustainability: A Review. J. Med. Plants Stud. 2024, 12, 56–62. [Google Scholar] [CrossRef]
- Ahmad, F.; Zaidi, M.A.S.; Sulaiman, N.; Majid, F.A.A. Issues and Challenges in the Development of the Herbal Industry in Malaysia. Pros. Perkem 2015, 10, 227–238. [Google Scholar]
- Pferschy-Wenzig, E.-M.; Bauer, R. The Relevance of Pharmacognosy in Pharmacological Research on Herbal Medicinal Products. Epilepsy Behav. 2015, 52, 344–362. [Google Scholar] [CrossRef]
- Karamina, H.; Supriyadi, S.; Yasin, D.D.F.; Kamhar, M.Y.; Astuti, F.K. Pemanfaatan Dan Penanaman Tanaman Obat Keluarga (TOGA) Menuju Keluarga Sehat Pada Ibu Pemberdayaan Kesejahteraan Keluarga (PKK). J. Inov. Has. Pengabdi. Masy. (JIPEMAS) 2020, 3, 120–127. [Google Scholar] [CrossRef]
- Widayati, A.; Winanta, A.; Widada, H.; Pratiwi, N.H. Initiating a Sustainable Community-Based Agritourism Model of Herbal Garden in a Rural Area of Indonesia: Perspectives from Community Members. Cogent Soc. Sci. 2024, 10, 2347049. [Google Scholar] [CrossRef]
- Taşkın, D. Financing Strategies for New Product Development and Innovation. In Engines of Economic Prosperity: Creating Innovation and Economic Opportunities through Entrepreneurship; Ince-Yenilmez, M., Darici, B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 79–92. ISBN 978-3-030-76088-5. [Google Scholar]
- Enioutina, E.Y.; Salis, E.R.; Job, K.M.; Gubarev, M.I.; Krepkova, L.V.; Sherwin, C.M.T. Herbal Medicines: Challenges in the Modern World. Part 5. Status and Current Directions of Complementary and Alternative Herbal Medicine Worldwide. Expert Rev. Clin. Pharmacol. 2017, 10, 327–338. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahkam, A.H.; Susilawati, Y.; Sumiwi, S.A. Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective. Biology 2024, 13, 744. https://doi.org/10.3390/biology13090744
Ahkam AH, Susilawati Y, Sumiwi SA. Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective. Biology. 2024; 13(9):744. https://doi.org/10.3390/biology13090744
Chicago/Turabian StyleAhkam, Ahmad Hafidul, Yasmiwar Susilawati, and Sri Adi Sumiwi. 2024. "Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective" Biology 13, no. 9: 744. https://doi.org/10.3390/biology13090744
APA StyleAhkam, A. H., Susilawati, Y., & Sumiwi, S. A. (2024). Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective. Biology, 13(9), 744. https://doi.org/10.3390/biology13090744