Response of Seed Germination and Seedling Growth of Six Desert Shrubs to Different Moisture Levels under Greenhouse Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Seed Collection and Storage
2.2. Material Collection and Treatment
2.3. Determination of Seed Germination Parameters, Seedling Phenotype Traits, and Physiological Characteristics
2.4. Data Analysis
3. Results and Analyses
3.1. Seed Germination Response to Soil Moisture
3.2. Seedling Traits and Biomass Response to Soil Moisture
3.3. Response of Physiological Characteristics of Seedlings to Soil Moisture
4. Discussion
4.1. Seed Germination Response to Moisture
4.2. Seedling Growth Response to Moisture
4.3. Seedling Physiological Characteristics in Response to Moisture
4.4. Survivability of Six Desert Shrubs in Response to Changes in Moisture
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Zhang, Q.; Yan, Y.; Zhang, X.; Niu, J.; Svenning, J.-C. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). J. Clean. Prod. 2020, 268, 122241. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Yan, X.; Zhang, M.; Wei, S.; Yang, H.; Shen, Y.; Zhang, J.; Cheng, J. Response of Seedling Growth Characteristics to Seed Size and Cotyledon Damage in Quercus wutaishanica. Forests 2023, 14, 1905. [Google Scholar] [CrossRef]
- Sheng, D.; Liu, T.; Wang, H.; Zhao, W.; Dong, S.; Diao, S.; Qin, T.; Xue, Z. Advancing the Dominance of Winter Annuals Under Changing Rainfall Patterns in a Temperate Desert of Central Asia. Glob. Ecol. Conserv. 2024, 54, e03064. [Google Scholar] [CrossRef]
- Lai, L.; Chen, L.; Zheng, M.; Jiang, L.; Zhou, J.; Zheng, Y.; Shimizu, H. Seed germination and seedling growth of five desert plants and their relevance to vegetation restoration. Ecol. Evol. 2019, 9, 2160–2170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Ma, Y.; Huang, X.; Song, L.; Li, N.; Qiao, M.; Li, T.; Hai, D.; Cheng, Y. GABA application enhances drought stress tolerance in wheat seedlings (Triticum aestivum L.). Plants 2023, 12, 2495. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tao, Y.; Qiu, D.; Zhang, D.; Zhang, Y. Effects of artificial sand fixing on community characteristics of a rare desert shrub. Conserv. Biol. 2013, 27, 1011–1019. [Google Scholar] [CrossRef]
- Li, X.; Kong, D.; Tan, H.; Wang, X. Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China. Plant Soil 2007, 300, 221–231. [Google Scholar] [CrossRef]
- Li, Y.; Tian, L.; Zhou, H.; Wang, H.; He, X.; Jin, Y.; Zhang, H. Comparison of water use efficiency of sand-binding species along revegetation chronosequence in an alpine desert. Ecol. Indic. 2023, 153, 110475. [Google Scholar] [CrossRef]
- Barton, K.E. The ontogenetic dimension of plant functional ecology. Funct. Ecol. 2024, 38, 98–113. [Google Scholar] [CrossRef]
- Streit, R.P.; Bellwood, D.R. To harness traits for ecology, let’s abandon ‘functionality’. Trends Ecol. Evol. 2023, 38, 402–411. [Google Scholar] [CrossRef]
- Luo, Y.; Du, L.; Zhang, J.; Ren, H.; Shen, Y.; Zhang, J.; Li, N.; Tian, R.; Wang, S.; Liu, H. Nitrogen addition alleviates the adverse effects of drought on plant productivity in a temperate steppe. Ecol. Appl. 2024, 34, e2969. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, A.; Harpole, W.S.; Jessen, M.-T.; Virtanen, R.; Hautier, Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature 2022, 611, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.; Ellsworth, D.; Walters, M. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Funct. Ecol. 1998, 12, 948–958. [Google Scholar] [CrossRef]
- Knight, C.A.; Ackerly, D.D. Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: Congeneric species from desert and coastal environments. New Phytol. 2003, 160, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B. The world-wide ‘fast-slow’plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Cui, E.; Weng, E.; Yan, E.; Xia, J. Robust leaf trait relationships across species under global environmental changes. Nat. Commun. 2020, 11, 2999. [Google Scholar] [CrossRef]
- De La Riva, E.G.; Olmo, M.; Poorter, H.; Ubera, J.L.; Villar, R. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS ONE 2016, 11, e0148788. [Google Scholar] [CrossRef]
- Bassirirad, H. Kinetics of nutrient uptake by roots: Responses to global change. New Phytol. 2000, 147, 155–169. [Google Scholar] [CrossRef]
- Wasaya, A.; Zhang, X.; Fang, Q.; Yan, Z. Root phenotyping for drought tolerance: A review. Agronomy 2018, 8, 241. [Google Scholar] [CrossRef]
- Calleja-Cabrera, J.; Boter, M.; Oñate-Sánchez, L.; Pernas, M. Root growth adaptation to climate change in crops. Front. Plant Sci. 2020, 11, 544. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ. Rev. 2010, 18, 309–319. [Google Scholar] [CrossRef]
- She, W.; Bai, Y.; Zhang, Y.; Qin, S.; Liu, Z.; Wu, B. Plasticity in meristem allocation as an adaptive strategy of a desert shrub under contrasting environments. Front. Plant Sci. 2017, 8, 1933. [Google Scholar] [CrossRef]
- Xi, J.; Chen, H.; Bai, W.; Yang, R.; Yang, P.; Chen, R.; Hu, T.; Wang, S. Sodium-related adaptations to drought: New insights from the xerophyte plant Zygophyllum xanthoxylum. Front. Plant Sci. 2018, 9, 1678. [Google Scholar] [CrossRef]
- Chang, Y.; Lv, G. Nitraria sibirica adapts to long-term soil water deficit by reducing photosynthesis, stimulating antioxidant systems, and accumulating osmoregulators. Plant Physiol. Biochem. 2024, 206, 108265. [Google Scholar] [CrossRef]
- Li, Z.; Gong, X.; Wang, J.; Chen, Y.; Liu, F.; Li, H.; Lü, G. Foliar water uptake improves branch water potential and photosynthetic capacity in Calligonum mongolicum. Ecol. Indic. 2023, 146, 109825. [Google Scholar] [CrossRef]
- Qu, W.; Zhao, W.; Wang, L.; Qu, J.; Yang, X. Response of germination and seedling survival of two shrubs to simulated dry-wet treatments. Acta Prataculturae Sin. 2023, 32, 179. [Google Scholar]
- Xu, F.; Zhong, X.; Sun, R.; Lu, Q. Anatomy, ultrastructure and lignin distribution in cell wall of Caragana Korshinskii. Ind. Crop. Prod. 2006, 24, 186–193. [Google Scholar] [CrossRef]
- Niu, T.; Tian, C.; Yang, Y.; Liu, Q.; Liu, L.; Tao, Q.; Li, Z.; Wu, Z. Complete Chloroplast Genome of Corethrodendron fruticosum (Papilionoideae: Fabaceae): Comparative and Phylogenetic Analysis. Genes 2023, 14, 1289. [Google Scholar] [CrossRef]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, F.; Liu, Y. The effects of soil moisture and seed size on the germination, emergence, and growth of Haloxylon ammodendron seeds. J. Northwest For. Univ. 2021, 36, 16–21. [Google Scholar]
- He, Y.; Ding, G.; Wang, X.; Li, J.; Xi, M. Effects of Water Supply and Sand Burial on Seed Germination and Seedling Emergence of Four Psammophytes. J. Desert Res. 2013, 33, 1711–1716. [Google Scholar]
- Zhao, X.; Gao, R.; Ge, R.; Han, Z.; Na, R.; Xing, X. Germination responses to moisture in seed germination and seedling emergence of Ammopiptanthus mongolicu. J. Inn. Mong. Agric. Univ. (Nat. Sci. Ed.) 2009, 30, 57–61. [Google Scholar]
- Huang, Z.; Gutterman, Y. Germination of Artemisia sphaerocephala (Asteraceae), occurring in the sandy desert areas of Northwest China. S. Afr. J. Bot. 1999, 65, 187–196. [Google Scholar] [CrossRef]
- Du, L.; Luo, Y.; Zhang, J.; Shen, Y.; Zhang, J.; Tian, R.; Shao, W.; Xu, Z. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. Sci. Total Environ. 2024, 927, 172276. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Zhang, X.; Shen, J.; Zhang, Y.; Li, X.; Zhang, B.; Niu, J. Seed germination and seedling growth of typical sand-fixing plants in response to soil moisture. Arid. Zone Res. 2023, 41, 840–842. [Google Scholar]
- Cui, Q.; Gao, J.; He, M.; Zhao, Z.; Zhang, J. Effects of farmland shelterbelts in controlling wind and sand in sandy land of Yanchi. J. Ecol. Rural Environ. 2009, 25, 25–29. [Google Scholar]
- Luo, Y.; Cheng, J.; Yan, X.; Zhang, J.; Zhang, J. Germination of seeds subjected to temperature and water availability: Implications for ecological restoration. Forests 2022, 13, 1854. [Google Scholar] [CrossRef]
- Li, H. Principles and Techniques of Plant Physiology and Biochemistry Experiments; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Hegarty, T. The physiology of seed hydration and dehydration, and the relation between water stress and the control of germination: A review. Plant Cell Environ. 1978, 1, 101–119. [Google Scholar] [CrossRef]
- Hou, D.; Bi, J.; Ma, L.; Zhang, K.; Li, D.; Rehmani, M.I.A.; Tan, J.; Bi, Q.; Wei, Y.; Liu, G. Effects of soil moisture content on germination and physiological characteristics of rice seeds with different specific gravity. Agronomy 2022, 12, 500. [Google Scholar] [CrossRef]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.; Poschlod, P. Climate change and plant regeneration from seed. Glob. Chang. Biol. 2011, 17, 2145–2161. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, H.; Chen, Y.; Zhang, L.; Kudusi, K.; Song, J. Effects of drought and salt stress on seed germination of ephemeral plants in desert of northwest China. Front. Ecol. Evol. 2022, 10, 1026095. [Google Scholar] [CrossRef]
- Yigit, N.; Sevik, H.; Cetin, M.; Kaya, N. Determination of the effect of drought stress on the seed germination in some plant species. Water Stress Plants 2016, 43, 62. [Google Scholar]
- Liu, J.; Hasanuzzaman, M.; Wen, H.; Zhang, J.; Peng, T.; Sun, H.; Zhao, Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 2019, 256, 1217–1227. [Google Scholar] [CrossRef]
- Zaidi, P.H.; Rafique, S.; Singh, N. Response of maize (Zea mays L.) genotypes to excess soil moisture stress: Morpho-physiological effects and basis of tolerance. Eur. J. Agron. 2003, 19, 383–399. [Google Scholar] [CrossRef]
- Saatkamp, A.; Cochrane, A.; Commander, L.; Guja, L.K.; Jimenez-Alfaro, B.; Larson, J.; Nicotra, A.; Poschlod, P.; Silveira, F.A.; Cross, A.T. A research agenda for seed-trait functional ecology. New Phytol. 2019, 221, 1764–1775. [Google Scholar] [CrossRef]
- Liu, H.; Shi, X.; Wang, J.; Yin, L.; Huang, Z.; Zhang, D. Effects of sand burial, soil water content and distribution pattern of seeds in sand on seed germination and seedling survival of Eremosparton songoricum (Fabaceae), a rare species inhabiting the moving sand dunes of the Gurbantunggut Desert of China. Plant Soil 2011, 345, 69–87. [Google Scholar] [CrossRef]
- Cuello, W.S.; Gremer, J.R.; Trimmer, P.C.; Sih, A.; Schreiber, S.J. Predicting evolutionarily stable strategies from functional responses of Sonoran Desert annuals to precipitation. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182613. [Google Scholar] [CrossRef]
- Jangpromma, N.; Thammasirirak, S.; Jaisil, P.; Songsri, P. Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane (Saccharum officinarum L.). Aust. J. Crop Sci. 2012, 6, 1298–1304. [Google Scholar]
- Li, X.; Zuo, X.; Yue, P.; Zhao, X.; Hu, Y.; Guo, X.; Guo, A.; Xu, C.; Yu, Q. Drought of early time in growing season decreases community aboveground biomass, but increases belowground biomass in a desert steppe. BMC Ecol. Evol. 2021, 21, 106. [Google Scholar] [CrossRef]
- Ye, R.; Liu, G.; Chang, H.; Shan, Y.; Mu, L.; Wen, C.; Te, R.; Wu, N.; Shi, L.; Liu, Y. Response of plant traits of Stipa breviflora to grazing intensity and fluctuation in annual precipitation in a desert steppe, northern China. Glob. Ecol. Conserv. 2020, 24, e01237. [Google Scholar] [CrossRef]
- Passioura, J. Soil conditions and plant growth. Plant Cell Environ. 2002, 25, 311–318. [Google Scholar] [CrossRef]
- Smith-Martin, C.M.; Xu, X.; Medvigy, D.; Schnitzer, S.A.; Powers, J.S. Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees. New Phytol. 2020, 226, 714–726. [Google Scholar] [CrossRef]
- Mueller, K.E.; Kray, J.A.; Blumenthal, D.M. Coordination of leaf, root, and seed traits shows the importance of whole plant economics in two semiarid grasslands. New Phytol. 2024, 241, 2410–2422. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Gill, S.S.; Fujita, M. Drought stress responses in plants, oxidative stress, and antioxidant defense. In Climate Change Plant Abiotic Stress Tolerance; Wiley-VCH: Weinheim, Germany, 2013; pp. 209–250. [Google Scholar]
- Mukarram, M.; Choudhary, S.; Kurjak, D.; Petek, A.; Khan, M.M.A. Drought: Sensing, signalling, effects and tolerance in higher plants. Physiol. Plant. 2021, 172, 1291–1300. [Google Scholar] [CrossRef]
- Rohman, M.M.; Islam, M.R.; Naznin, T.; Omy, S.H.; Begum, S.; Alam, S.S.; Amiruzzaman, M.; Hasanuzzaman, M. Maize production under salinity and drought conditions: Oxidative stress regulation by antioxidant defense and glyoxalase systems. In Plant Abiotic Stress Tolerance: Agronomic, Molecular; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–34. [Google Scholar]
- Reza Yousefi, A.; Rashidi, S.; Moradi, P.; Mastinu, A. Germination and seedling growth responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-induced drought stress. Environments 2020, 7, 107. [Google Scholar] [CrossRef]
- Sharma, A.; Zheng, B. Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants 2019, 8, 190. [Google Scholar] [CrossRef]
- Cheng, J.; He, H.; Zheng, L.; Zhang, C.; Wang, X.; Hu, X.; Niu, H.; Zhang, H. Bold rats (Niviventer confucianus) are more effective in seed dispersal: Evidences both under enclosure conditions and in the field. Integr. Zool. 2024. [Google Scholar] [CrossRef]
Species | Zygophyllum xanthoxylum | Nitraria sibirica | Calligonum mongolicum | Corethrodendron scoparium | Caragana korshinskii | Corethrodendron fruticosu |
---|---|---|---|---|---|---|
Families | Zygophyllaceae | Nitrariaceae | Polygonaceae | Fabaceae | Fabaceae | Fabaceae |
Seed mass (mg) | 21.53 ± 0.67 | 10.8 ± 0.69 | 94.06 ± 3.3 | 16.53 ± 0.61 | 40.33 ± 0.61 | 8.93 ± 0.35 |
Seed morphology | Crescent shape | Egg shape | Ellipse shape | Round kidney shape | Rectangular circle shape | Flat circular shape |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Yang, H.; Yan, X.; Ma, Y.; Wei, S.; Wang, J.; Cao, Z.; Zuo, Z.; Yang, C.; Cheng, J. Response of Seed Germination and Seedling Growth of Six Desert Shrubs to Different Moisture Levels under Greenhouse Conditions. Biology 2024, 13, 747. https://doi.org/10.3390/biology13090747
Luo Y, Yang H, Yan X, Ma Y, Wei S, Wang J, Cao Z, Zuo Z, Yang C, Cheng J. Response of Seed Germination and Seedling Growth of Six Desert Shrubs to Different Moisture Levels under Greenhouse Conditions. Biology. 2024; 13(9):747. https://doi.org/10.3390/biology13090747
Chicago/Turabian StyleLuo, Yonghong, Hui Yang, Xingfu Yan, Yongrui Ma, Shuhua Wei, Jiazhi Wang, Ziyu Cao, Zhong Zuo, Chunhui Yang, and Jiming Cheng. 2024. "Response of Seed Germination and Seedling Growth of Six Desert Shrubs to Different Moisture Levels under Greenhouse Conditions" Biology 13, no. 9: 747. https://doi.org/10.3390/biology13090747
APA StyleLuo, Y., Yang, H., Yan, X., Ma, Y., Wei, S., Wang, J., Cao, Z., Zuo, Z., Yang, C., & Cheng, J. (2024). Response of Seed Germination and Seedling Growth of Six Desert Shrubs to Different Moisture Levels under Greenhouse Conditions. Biology, 13(9), 747. https://doi.org/10.3390/biology13090747