Scaling the Feeding Mechanism of Captive Alligator mississippiensis from Hatchling to Juvenile
Abstract
:1. Introduction
2. Experimental Section
2.1. Scaling of the Cranial Elements
Estimated Size Class (cm) | Cranium Length (cm) | Lower Jaw Length (cm) | Lower Jaw Width (cm) | Upper Jaw Width (cm) | |
---|---|---|---|---|---|
n | Average ± SE | Average ± SE | Average ± SE | Average ± SE | |
30.5–60.5 | 3 | 5.5 ± 1.04 | 5.6 ± 1.04 | 2.1 ± 1.05 | 2.1 ± 1.02 |
60.5–91.5 | 3 | 7.4 ± 1.01 | 8.1 ± 1.03 | 2.3 ± 1.04 | 3.1 ± 1.02 |
91.5–122.0 | 3 | 9.8 ± 1.08 | 11.0 ± 1.07 | 3.4 ± 1.07 | 4.1 ± 1.05 |
152.0–182.6 | 2 | 21.4 ± 0.00 | 24.5 ± 1.04 | 7.9 ± 1.11 | 8.1 ± 0.00 |
213.0–244.0 | 3 | 33.1 ± 1.04 | 40.7 ± 1.04 | 13.2 ± 1.03 | 13.5 ± 1.03 |
244.0–274.3 | 2 | 40.7 ± 1.02 | 50.1 ± 1.02 | 16.2 ± 1.05 | 16.6 ± 1.04 |
2.2. Kinematic Scaling of the Feeding Mechanism
Variable | Units | Definition |
---|---|---|
Cranium Length | mm | Length from the anterior tip of the premaxilla (A) to the posterior portion of the parietal bone (D). See Figure 2. |
Maximum Gape | mm | Maximum distance from the anterior tip of the premaxilla (A) to the anterior tip of the dentary bone (B). See Figure 2. |
Lower Jaw Displacement | degree | Maximum postero-ventral rotation of the lower jaw relative to the neurocranium, measured by the angle formed by line segments AC and BC. See Figure 2. |
Cranial Rotation | degree | Maximum postero-dorsal rotation of the neurocranium relative to the body, measured by the angle formed by line segments AD and DE. See Figure 2. |
Time Zero (t₀) | The frame prior to mouth opening. | |
Time to Maximum Gape | s | Time measured from t₀ until maximum gape. |
Duration of Feeding Bout | s | Times measured from t₀ until individual fully closed its mouth. |
Maximum Gape Velocity | mm s−1 | Velocity measured from t0 until maximum gape. |
Lower Jaw Displacement Velocity | degree s−1 | Velocity measured from t0 until maximum displacement. |
Cranial Rotation Velocity | degree s−1 | Velocity measured from t0 until maximum rotation. |
2.3. Geometric Similarity Model
2.4. Statistics
3. Results and Discussion
3.1. Scaling of the Cranial Elements
3.2. Kinematic Scaling of the Feeding Mechanism
Linear Regression | t-test | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Average (mean ± SE) | Expected GSM Slope | Observed Least Square Slope | y-Intercept | r2 | F | p-value | t | p-value |
log Lower Jaw Length (cm) | 1.23 ± 0.159 | 1 | 1.050 | −0.940 | 0.910 | 40.652 | 0.003* | 0.9198 | >0.200 |
log Upper Jaw Length (cm) | 0.78 ± 0.146 | 1 | 0.970 | −1.220 | 0.917 | 44.383 | 0.003* | −0.4799 | >0.500 |
log Lower Jaw Width (cm) | 0.74 ± 0.158 | 1 | 1.010 | −1.360 | 0.955 | 23.656 | 0.008* | 0.1935 | >0.500 |
log Maximum Gape (mm) | 1.44 ± 0.049 | 1 | 0.589 | 0.332 | 0.071 | 2.599 | 0.116 | −16.023 | <0.001* |
log Cranial Rotation (degree) | 1.06 ± 0.078 | 0 | 0.498 | 0.119 | 0.020 | 0.696 | 0.410 | 11.964 | <0.0025* |
log Lower Jaw Displacement (degree) | 1.40 ± 0.065 | 0 | −0.581 | 2.500 | 0.040 | 1.405 | 0.244 | −14.225 | <0.001* |
log Maximum Gape Velocity (mm·s−1) | 2.29 ± 0.082 | 0 | −0.015 | 2.320 | 2.000 × 10−5 | 0.001 | 0.981 | −0.3068 | >0.250 |
log Cranial Rotation | |||||||||
Velocity (degrees·s−1) | 0.67 ± 0.077 | −1 | −0.956 | 2.469 | 0.076 | 2.799 | 0.103 | 0.969 | >0.250 |
log Lower Jaw Displacement | |||||||||
Velocity (degree·s−1) | 0.50 ± 0.088 | −1 | −0.491 | 1.426 | 0.016 | 0.538 | 0.468 | 10.495 | <0.005* |
log Time to Maximum Gape (s) | 0.21 ± 0.039 | 1 | 0.340 | -0.427 | 0.037 | 1.319 | 0.259 | 42.357 | <0.001* |
log Length of Feeding Bout (s) | 0.34 ± 0.052 | 1 | −0.127 | 0.580 | 0.003 | 0.102 | 0.752 | −40.078 | <0.001* |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Koehl, M.A.R. When does morphology matter? Annu. Rev. Ecol. Syst. 1996, 27, 501–542. [Google Scholar] [CrossRef]
- Richard, B.A.; Wainwright, P.C. Scaling the feeding mechanism of Largemouth Bass (Micropterus. salmoides): Kinematics of prey capture. J. Exp. Biol. 1995, 198, 419–433. [Google Scholar] [PubMed]
- Dodson, P. Functional and ecological significance of relative growth in alligator. J. Zool. 1975, 175, 315–355. [Google Scholar] [CrossRef]
- Erickson, G.M.; Lappin, A.K.; Vliet, K.A. The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). J. Zool. Lond. 2003, 260, 317–327. [Google Scholar] [CrossRef]
- Delany, M.F.; Abercrombie, C.L. American alligator food habits in northcentral Florida. J. Wildl. Manag. 1986, 50, 348–353. [Google Scholar] [CrossRef]
- Subalusky, A.L.; Fitzgerald, L.A.; Smith, L.L. Ontogenetic niche shifts in the American alligator establishes functional connectivity between aquatic systems. Biol. Conserv. 2009, 142, 1507–1514. [Google Scholar] [CrossRef]
- Allen, V.; Elsey, R.M.; Jones, N.; Wright, J.; Hutchinson, J.R. Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis. J. Anat. 2010, 216, 423–445. [Google Scholar] [CrossRef] [PubMed]
- Livingston, V.J.; Bonnan, M.F.; Elsey, R.M.; Sandrik, J.L.; Wilhite, D.R. Differential limb scaling in American alligator (Alligator mississippiensis) and its implications for archosaur locomotor evolution. Anatom. Record 2009, 292, 787–797. [Google Scholar] [CrossRef]
- Gignac, P.M. Biomechanics and the ontogeny of feeding in the American Alligator (Alligator mississippiensis): Reconciling factors contributing to the intraspecific niche differentiation in a large-bodied vertebrate. Ph.D. Thesis, Dissertation, Florida State University, Tallahassee, FL, USA, 2010. [Google Scholar]
- Piras, P.; Buscalioni, A.D.; Teresi, L.; Raia, P.; Sansalone, G.; Kotsakis, T.; Cubo, J. Morphological integration and functional modularity in the crocodilian skull. Integr. Zool. 2014, 9, 481–516. [Google Scholar] [CrossRef] [PubMed]
- Brantley, C.G. Food habits of juvenile and sub-adult American Alligators (Alligator mississippiens) in southeastern Louisiana. M.Sc. Thesis, Southeastern Louisiana University, Hammond, LA, USA, 1989. [Google Scholar]
- Pooley, A.C. Food and feeding habits. In Crocodiles and Alligators; Garner, R., Ed.; Facts on File: New York, NY, USA, 1989; pp. 76–91. [Google Scholar]
- Elsey, R.M.; McNease, L.; Joanen, T.; Kinler, N. Food habits of native wild and farm-released juvenile alligators. In Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies, Corpus Christi, TX, USA, 25–28 October 1992; Volume 46, pp. 57–66.
- Cleuren, J.; de Vree, F. Kinematics of the jaw and hyolingual apparatus during feeding in Caiman crocodiles. J. Morphol. 1992, 212, 141–154. [Google Scholar] [CrossRef]
- Fish, F.E.; Bostic, S.A.; Nicastro, A.J.; Beneski, J.T. Death roll of the Alligator: Mechanics of twist feeding in water. J. Exp. Biol. 2007, 210, 2811–2818. [Google Scholar] [CrossRef] [PubMed]
- Erickson, G.M.; Lappin, A.K.; Parker, T.; Vliet, K.A. Comparison of bite-force performance between long-term captive and wild American alligators (Alligator mississippiensis). J. Zool. Lond. 2004, 262, 21–28. [Google Scholar] [CrossRef]
- Neill, W.T. The Last of the Ruling Reptiles: Alligators, Crocodiles, and Their Kin; Columbia University Press: New York, NY, USA, 1971; p. 498. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Chapter 3. Hypothesis testing. In Experimental Design and Data Analysis for Biologists; Quinn, G.P., Keough, M.J, Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 49–50. [Google Scholar]
- Milnes, M.R.; Woodward, A.R.; Rooney, A.A.; Guillette, L.J., Jr. Plasma steroid concentrations in relation to size and age in juvenile alligators from two Florida lakes. Comp. Biochem. Physiol. Part A 2002, 131, 923–930. [Google Scholar] [CrossRef]
- O’Reilly, J.C.; Lindstedt, S.L.; Nishikawa, K.C. The scaling of feeding kinematics in toads (Anura: Bufonidae). Am. Zool. 1993, 33, 147A. [Google Scholar]
- Hill, A.V. The dimensions of animals and their muscular dynamics. Sci. Prog. Lond. 1950, 38, 209–230. [Google Scholar]
- Busbey, A.B. Form and function of the feeding apparatus of Alligator mississippiensis. J. Morphol. 1989, 202, 99–127. [Google Scholar] [CrossRef] [PubMed]
- Reilly, S.M. The ontogeny of aquatic feeding behavior in Salamandra salamandra: Stereotypy and isometry in feeding kinematics. J. Exp. Biol. 1995, 198, 701–708. [Google Scholar] [PubMed]
- Robinson, M.P.; Motta, P.J. Patterns of growth and the effects of scale on the feeding kinematics of the nurse shark (Ginglymostoma cirratum). J. Zool. Lond. 2002, 256, 449–462. [Google Scholar] [CrossRef]
- Thorbjarnarson, J.B. Fishing behavior of spectacled caiman in the Venezuelan Llanos. Copeia 1993, 4, 1166–1171. [Google Scholar] [CrossRef]
- Nifong, J.C.; Nifong, R.L.; Silliman, B.R.; Lowers, R.H.; Guillette, L.J., Jr.; Ferguson, J.M.; Welsh, M.; Abernathy, K.; Marshall, G. Animal-borne imaging reveals novel insights into the foraging behaviors and diel activity of a large-bodied apex predator, the American alligator (Alligator mississippiensis). PLoS One 2014, 9, 1–11. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerfoot, J.R., Jr.; Fern, M.P.; Elsey, R.M. Scaling the Feeding Mechanism of Captive Alligator mississippiensis from Hatchling to Juvenile. Biology 2014, 3, 724-738. https://doi.org/10.3390/biology3040724
Kerfoot JR Jr., Fern MP, Elsey RM. Scaling the Feeding Mechanism of Captive Alligator mississippiensis from Hatchling to Juvenile. Biology. 2014; 3(4):724-738. https://doi.org/10.3390/biology3040724
Chicago/Turabian StyleKerfoot, James R., Jr., Micah P. Fern, and Ruth M. Elsey. 2014. "Scaling the Feeding Mechanism of Captive Alligator mississippiensis from Hatchling to Juvenile" Biology 3, no. 4: 724-738. https://doi.org/10.3390/biology3040724
APA StyleKerfoot, J. R., Jr., Fern, M. P., & Elsey, R. M. (2014). Scaling the Feeding Mechanism of Captive Alligator mississippiensis from Hatchling to Juvenile. Biology, 3(4), 724-738. https://doi.org/10.3390/biology3040724