Hormonal Regulation of Glucocorticoid Inactivation and Reactivation in αT3-1 and LβT2 Gonadotroph Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Radiometric Conversion Assays
2.4. Data Presentation and Analyses
3. Results
3.1. Comparative 11βHSD Activities in Pituitary Cell Lines
3.2. Regulation of Cortisol-Cortisone Inter-conversion by 11βHSD in Gonadotroph Cell Lines
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michael, A.E.; Cooke, B.A. A working hypothesis for the regulation of steroidogenesis and germ cell development in the gonads by glucocorticoids and 11β-hydroxysteroid dehydrogenase (11βHSD). Mol. Cell. Endocrinol. 1994, 100, 55–63. [Google Scholar] [CrossRef]
- Magiakou, M.A.; Mastorakos, G.; Webster, E.; Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and the female reproductive system. Ann. NY Acad. Sci. 1997, 816, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Tilbrook, A.J.; Turner, A.I.; Clarke, I.J. Effects of stress on reproduction in non-rodent mammals: the role of glucocorticoids and sex differences. Rev. Reprod. 2000, 5, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Breen, K.M.; Karsch, F.J. New insights regarding glucocorticoids, stress and gonadotrophin suppression. Front. Neuroendocr. 2006, 27, 233–245. [Google Scholar] [CrossRef]
- Whirledge, S.; Cidlowski, J.A. Glucocorticoids, stress and fertility. Minerva Endocrinol. 2010, 35, 109–125. [Google Scholar]
- White, P.C.; Mune, T.; Agarwal, A.K. 11β-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralcorticoid excess. Endocr. Rev. 1997, 18, 135–156. [Google Scholar]
- Kotelevtsev, Y.; Seckl, J.R.; Mullins, J.J. 11β-hydroxysteroid dehydrogenases: key modulators of glucocorticoid action in vivo. Curr. Opin. Endocrinol. Diabetes 1999, 6, 191–198. [Google Scholar] [CrossRef]
- Seckl, J.R.; Walker, B.R. 11β-hydroxysteroid dehydrogenase type 1—A tissue-specific amplifier of glucocorticoid action. Endocrinology 2001, 142, 1371–1376. [Google Scholar] [CrossRef]
- Tomlinson, J.W.; Walker, E.A.; Bujalska, I.J.; Draper, N.; Lavery, G.G.; Cooper, M.S.; Hewison, M.; Stewart, P.M. 11β-Hydroxysteroid dehydrogenase type 1: A tissue-specific regulator of glucocorticoid response. Endocr. Rev. 2004, 2, 831–866. [Google Scholar] [CrossRef]
- Draper, N.; Stewart, P.M. 11β-hydroxysteroid dehydrogenase (11β-HSD) and the pre-receptor regulation of corticosteroid hormone action. J. Endocrinol. 2005, 186, 251–271. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Nashev, L.G.; Schweizer, R.A.; Frick, C.; Odermatt, A. Hexose-6-phosphate dehydrogenase determines the reaction direction of 11β-hydroxysteroid dehydrogenase type 1 as an oxoreductase. FEBS. Lett. 2004, 571, 129–133. [Google Scholar] [CrossRef]
- Banhegyi, G.; Benedetti, A.; Fulceri, R.; Senesi, S. Cooperativity between 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the lumen of the endoplasmic reticulum. J. Biol. Chem. 2004, 279, 27017–27021. [Google Scholar] [CrossRef] [PubMed]
- Bujalska, I.J.; Draper, N.; Michailidou, Z.; Tomlinson, J.W.; White, P.C.; Chapman, K.E.; Walker, E.A.; Stewart, P.M. Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11β-hydroxysteroid dehydrogenase type 1. J. Mol. Endocrinol. 2005, 34, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Lavery, G.G.; Walker, E.A.; Draper, N.; Jeyasuria, P.; Marcos, J.; Shackleton, C.H.; Parker, K.L.; White, P.C.; Stewart, P.M. Hexose-6-phosphate dehydrogenase knock-out mice lack 11β-hydroxysteroid dehydrogenase type 1-mediated glucocorticoid generation. J. Mol. Endocrinol. 2006, 281, 6546–6551. [Google Scholar] [CrossRef]
- McCormick, K.L.; Wang, X.; Mick, G.J. Evidence that the 11β-hydroxysteroid dehydrogenase (11βHSD1) is regulated by pentose pathway flux. Studies in rat adipocytes and microsomes. J. Mol. Endocrinol. 2006, 281, 341–347. [Google Scholar]
- Odermatt, A.; Atanasov, A.G.; Balazs, Z.; Schweizer, R.A.; Nashev, L.G.; Schuster, D.; Langer, T. Why is 11β-hydroxysteroid dehydrogenase type 1 facing the endoplasmic reticulum lumen? Physiological relevance of the membrane topology of 11βHSD1. Mol. Cell. Endocrinol. 2006, 248, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.A.; Ahmed, A.; Lavery, G.G.; Tomlinson, J.W.; Kim, S.Y.; Cooper, M.S.; Ride, J.P.; Hughes, B.A.; Shackleton, C.H.; McKiernan, P.; et al. 11β-hydroxysteroid dehydrogenase type 1 regulation by intracellular glucose-6-phosphate provides evidence for a novel link between glucose metabolism and hypothalamo-pituitary-adrenal axis function. J. Biol. Chem. 2007, 282, 27030–27036. [Google Scholar] [CrossRef]
- Hong, D.; Li, X.W.; Lian, Q.Q.; Lamba, P.; Bernard, D.J.; Hardy, D.O.; Chen, H.X.; Ge, R.S. Mono-(2-ethylhexyl)-phthalate (MEHP) regulates glucocorticoid metabolism through 11β-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells. Biochem. Biophys. Res. Commun. 2009, 389, 305–309. [Google Scholar] [CrossRef]
- Korbonits, M.; Bujalska, I.; Shimojo, M.; Nobes, J.; Jordan, S.; Grossman, A.B.; Stewart, P.M. Expression of 11β-hydroxysteroid dehydrogenase isoenzymes in the human pituitary: induction of the type 2 enzyme in corticotropinomas and other pituitary tumors. J. Clin. Endocrinol. Metab. 2001, 86, 2728–2733. [Google Scholar] [CrossRef]
- Baldwin, D.M.; Srivastava, P.S.; Krummen, L.A. Differential actions of corticosterone on luteinizing hormone and follicle-stimulating hormone biosynthesis and release in cultured rat anterior pituitary cells: interactions with estradiol. Biol. Reprod. 1991, 44, 1040–1050. [Google Scholar] [CrossRef]
- Rosen, H.; Dalkin, A.; Haisenleder, D.; Friberg, R.D.; Ortolano, G.; Barkan, A. Dexamethasone alters responses of pituitary gonadotropin-releasing hormone (GnRH) receptors, gonadotropin subunit messenger ribonucleic acids, and gonadotropins to pulsatile GnRH in male rats. Endocrinology 1991, 128, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Kilen, S.M.; Szabo, M.; Strasser, G.A.; McAndrews, J.M.; Ringstrom, S.J.; Schwartz, N.B. Corticosterone selectively increases follicle-stimulating hormone beta-subunit messenger ribonucleic acid in primary anterior pituitary cell culture without affecting its half-life. Endocrinology 1996, 137, 3802–3807. [Google Scholar] [CrossRef] [PubMed]
- Breen, K.M.; Karsch, F.J. Does cortisol inhibit pulsatile luteinizing hormone secretion at the hypothalamic or pituitary level? Neuroendocrinol. 2004, 145, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Thackray, V.G.; McGillivray, S.M.; Mellon, P.L. Androgens, progestins, and glucocorticoids induce follicle-stimulating hormone β-subunit gene expression at the level of the gonadotrope. Mol. Endocrinol. 2006, 20, 3643–3655. [Google Scholar] [CrossRef] [PubMed]
- Pals, K.; Roudbaraki, M.; Denef, C. Growth hormone-releasing hormone and glucocorticoids determine the balance between luteinizing hormone (LH) beta- and LH beta/follicle-stimulating hormone beta-positive gonadotrophs and somatotrophs in the 14-day-old rat pituitary tissue in aggregate cell culture. J Neuroendocr. 2008, 20, 535–548. [Google Scholar]
- Sasson, R.; Luu, S.H.; Thackray, V.G.; Mellon, P.L. Glucocorticoids induce human glycoprotein hormone alpha-subunit gene expression in the gonadotrope. Endocrinology 2008, 149, 3643–3655. [Google Scholar] [CrossRef]
- Fowkes, R.C.; Forrest-Owen, W.; McArdle, C.A. C-type natriuretic peptide (CNP) effects in anterior pituitary cell lines: evidence for homologous desensitisation of CNP-stimulated cGMP accumulation in alpha T3–1 gonadotroph-derived cells. J. Endocrinol. 2000, 166, 195–203. [Google Scholar] [CrossRef]
- Michael, A.E.; Evagelatou, M.; Norgate, D.P.; Clarke, R.J.; Antoniw, J.W.; Stedman, B.; Brennan, A.; Welsby, R.; Bujalska, I.; Stewart, P.M.; et al. Isoforms of 11β-hydroxysteroid dehydrogenase in human granulosa-lutein cells. Mol. Cell. Endocrinol. 1997, 132, 43–52. [Google Scholar] [CrossRef]
- Siebe, H.; Baude, G.; Lichtenstein, I.; Wang, D.; Bughler, H.; Hoyer, G.A.; Hierholzer, K. Metabolism of dexamethasone: sites and activity in mammalian tissues. Ren. Phys. Biochem. 1993, 16, 79–88. [Google Scholar] [CrossRef]
- Albiston, A.L.; Obeyesekere, V.R.; Smith, R.E.; Krozowski, Z.S. Cloning and tissue distribution of the human 11β-hydroxysteroid dehydrogenase type 2 enzyme. Mol. Cell. Endocrinol. 1994, 105, R11–R17. [Google Scholar] [CrossRef]
- Obeyesekere, V.R.; Li, K.X.; Ferrari, P.; Krozowski, Z. Truncation of the N- and C-terminal regions of the human 11β-hydroxysteroid dehydrogenase type 2 enzyme and effects on solubility and bidirectional enzyme activity. Mol. Cell. Endocrinol. 1997, 131, 173–182. [Google Scholar] [CrossRef]
- Hammami, M.M.; Siiteri, P.K. Regulation of 11β-hydroxysteroid dehydrogenase activity in human skin fibroblasts: enzymatic modulation of glucocorticoid action. J. Clin. Endocrinol. Metab. 1991, 73, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Berdusco, E.T.M.; Challis, J.R.G. Opposite effects of glucocorticoid on hepatic 11β-hydroxysteroid dehydrogenase mRNA and activity in fetal and adult sheep. J. Endocrinol. 1994, 143, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, P.M.; Chapman, K.E.; Edwards, C.R.W.; Seckl, J.R. 11β-hydroxysteroid dehydrogenase is an exclusive 11β-reductase in primary cultures of rat hepatocytes: effect of physicochemical and hormonal manipulations. Endocrinology 1995, 136, 4754–4761. [Google Scholar] [CrossRef]
- Jellinck, P.H.; Dhabhar, F.S.; Sakai, R.R.; McEwen, B.S. Long-term corticosteroid treatment but not chronic stress affects 11β-hydroxysteroid dehydrogenase type I activity in rat brain and peripheral tissues. J. Steroid Biochem. Mol. Biol. 1997, 60, 319–323. [Google Scholar] [CrossRef]
- Bujalska, I.J.; Kumar, S.; Hewison, M.; Stewart, P.M. Differentiation of adipose stromal cells: the roles of glucocorticoids and 11β-hydroxysteroid dehydrogenase. Endocrinology 1999, 140, 3188–3196. [Google Scholar] [CrossRef]
- Jamieson, P.M.; Chapman, K.E.; Seckl, J.R. Tissue- and temporal-specific regulation of 11β-hydroxysteroid dehydrogenase type 1 by glucocorticoids in vivo. J. Steroid Biochem. Mol. Biol. 1999, 68, 245–250. [Google Scholar] [CrossRef]
- Whorwood, C.B.; Donovan, S.J.; Wood, P.J.; Phillips, D.I. Regulation of glucocorticoid receptor α and β isoforms and type I 11β-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J. Clin. Endocrinol. Metab. 2001, 86, 2296–2308. [Google Scholar] [CrossRef]
- Cooper, M.S.; Rabbitt, E.H.; Goddard, P.E.; Bartlett, W.A.; Hewison, M.; Stewart, P.M. Osteoblastic 11β-hydroxysteroid dehydrogenase type 1 activity increases with age and glucocorticoid exposure. J. B. Miner. Res. 2002, 17, 979–986. [Google Scholar] [CrossRef]
- Sun, K.; He, P.; Yang, K. Intracrine induction of 11β-hydroxysteroid dehydrogenase type 1 expression by glucocorticoid potentiates prostaglandin production in the human chorionic trophoblast. Biol. Reprod. 2002, 67, 1450–1455. [Google Scholar] [CrossRef]
- Michailidou, Z.; Coll, A.P.; Kenyon, C.J.; Morton, N.M.; O'Rahilly, S.; Seckl, J.R.; Chapman, K.E. Peripheral mechanisms contributing to the glucocorticoid hypersensitivity in proopiomelanocortin null mice treated with corticosterone. J. Endocrinol. 2007, 194, 161–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sai, S.; Esteves, C.L.; Kelly, V.; Michailidou, Z.; Anderson, K.; Coll, A.P.; Nakagawa, Y.; Ohzeki, T.; Seckl, J.R.; Chapman, K.E. Glucocorticoid regulation of the promoter of 11β-hydroxysteroid dehydrogenase type 1 is indirect and requires CCAAT/enhancer binding protein-β. Mol. Endocrinol. 2008, 22, 2049–2060. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, M.J.; Carter, R.; Tang, J.I.; de Vries, A.; Schlumbohm, C.; Hiller, S.G.; Streit, F.; Oellerich, M.; Armstrong, V.W.; Fuchs, E.; et al. Prenatal programming of metabolic syndrome in the common marmoset is associated with increased expression of 11β-hydroxysteroid dehydrogenase type 1. Diabetes 2009, 58, 2873–2879. [Google Scholar] [CrossRef] [PubMed]
- Tiganescu, A.; Walker, E.A.; Hardy, R.S.; Mayes, A.E.; Stewart, P.M. Localization, age- and site-dependent expression, and regulation of 11β-hydroxysteroid dehydrogenase type 1 in skin. J. Investig. Dermatol. 2011, 131, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Alarid, E.T.; Windle, J.J.; Whyte, D.B.; Mellon, P.L. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development 1996, 122, 3319–3329. [Google Scholar]
- Turgeon, J.L.; Kimura, Y.; Waring, D.W.; Mellon, P.L. Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line. Mol. Endocrinol. 1996, 10, 439–450. [Google Scholar] [PubMed]
- Tetsuka, M.; Haines, L.C.; Milne, M.; Simpson, G.E.; Hillier, S.G. Regulation of 11β-hydroxysteroid dehydrogenase type 1 gene expression by LH and interleukin-1β in cultured rat granulosa cells. J. Endocrinol. 1999, 163, 417–423. [Google Scholar] [CrossRef]
- Alfaidy, N.; Blot-Chabaud, M.; Bonvalet, J.P.; Farman, N. Vasopressin potentiates mineralocorticoid selectivity by stimulating 11β-hydroxysteroid dehydrogenase in rat collecting duct. J. Clin. Investig. 1997, 100, 2437–2442. [Google Scholar] [CrossRef]
- Heiniger, C.D.; Rochat, M.K.; Frey, F.J.; Frey, B.M. TNF-alpha enhances intracellular glucocorticoid availability. FEBS. Lett. 2001, 507, 351–356. [Google Scholar] [CrossRef]
- Ge, R.S.; Hardy, M.P. Protein kinase C increases 11β-hydroxysteroid dehydrogenase oxidation and inhibits reduction in rat Leydig cells. J. Androl. 2002, 23, 135–143. [Google Scholar] [CrossRef]
- Rubis, B.; Grodecka-Gazdecka, S.; Lecybył, R.; Ociepa, M.; Krozowski, Z.; Trzeciak, W.H. Contribution of protein kinase A and protein kinase C signalling pathways to the regulation of HSD11B2 expression and proliferation of MCF-7 cells. Acta Biochim. Pol. 2004, 51, 919–924. [Google Scholar] [PubMed]
- Kossintseva, I.; Wong, S.; Johnstone, E.; Guilbert, L.; Olson, D.M.; Mitchell, B.F. Proinflammatory cytokines inhibit human placental 11β-hydroxysteroid dehydrogenase type 2 activity through Ca2+ and cAMP pathways. Am. J. Phys. 2006, 290, E282–E288. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Yang, K.; Challis, J.R. Regulation of 11β-hydroxysteroid dehydrogenase type 2 by progesterone, estrogen, and the cyclic adenosine 5′-monophosphate pathway in cultured human placental and chorionic trophoblasts. Biol. Reprod. 1998, 58, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.T.; Duan, T.; Yang, Z.; Guo, C.M.; Li, J.N.; Sun, K. Role of human chorionic gonadotropin in maintaining 11β-hydroxysteroid dehydrogenase type 2 expression in human placental syncytiotrophoblasts. Placenta 2009, 30, 1023–1028. [Google Scholar] [CrossRef]
- Cabrera-Sharp, V.; Mirczuk, S.M.; Shervill, E.; Michael, A.E.; Fowkes, R.C. Regulation of glucocorticoid metabolism in the boar testis and caput epididymidis by the gonadotrophin-cAMP signalling pathway. Cell Tissue Res. 2013, 352, 751–760. [Google Scholar] [CrossRef]
Endocrine Stimulus | Incubation of αT3-1 Cells for: | Incubation of LβT2 Cells for: | ||||||
---|---|---|---|---|---|---|---|---|
4 h | 24 h | 4 h | 24 h | |||||
11βDH | 11KSR | 11βDH | 11KSR | 11βDH | 11KSR | 11βDH | 11KSR | |
GnRH | + | + | + | + | ns | ns | + | + |
PACAP | + | ns | + | ns | + | ns | + | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michael, A.E.; Thurston, L.M.; Fowkes, R.C. Hormonal Regulation of Glucocorticoid Inactivation and Reactivation in αT3-1 and LβT2 Gonadotroph Cells. Biology 2019, 8, 81. https://doi.org/10.3390/biology8040081
Michael AE, Thurston LM, Fowkes RC. Hormonal Regulation of Glucocorticoid Inactivation and Reactivation in αT3-1 and LβT2 Gonadotroph Cells. Biology. 2019; 8(4):81. https://doi.org/10.3390/biology8040081
Chicago/Turabian StyleMichael, Anthony E., Lisa M. Thurston, and Robert C. Fowkes. 2019. "Hormonal Regulation of Glucocorticoid Inactivation and Reactivation in αT3-1 and LβT2 Gonadotroph Cells" Biology 8, no. 4: 81. https://doi.org/10.3390/biology8040081
APA StyleMichael, A. E., Thurston, L. M., & Fowkes, R. C. (2019). Hormonal Regulation of Glucocorticoid Inactivation and Reactivation in αT3-1 and LβT2 Gonadotroph Cells. Biology, 8(4), 81. https://doi.org/10.3390/biology8040081