Different Stages of Alveolar Bone Repair Process Are Compromised in the Type 2 Diabetes Condition: An Experimental Study in Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diabetes Induction
2.3. Dental Extraction
2.4. Fluorochromes Application
2.5. Glycemia and Body Weight
2.6. Sample Processing
2.7. Microtomographic Analysis (Micro-CT)
2.8. Immunolabeling Analysis
2.9. Collagen Fibers Maturation (Birefringence Analysis)
2.10. Confocal Microscopy Analysis
2.11. Statistical Analysis
3. Results
3.1. Glycose Level Is Increased after Cafeteria Diet and STZ Application in T2D
3.2. T2D Impairs the Alveolar Bone Quality as a Result of the Decrease in Bone Volume and Increase in Porosity
3.3. The Increasing Expression of Inflammatory Proteins Results in the Reduction of Proteins Responsible for Bone Formation and an Increase the Osteoclastic Activity in the Alveolar Bone
3.4. T2D Decreases the Maturation of Collagen Fibers during the Alveolar Bone Repair Process
3.5. T2D Compromises Bone Turnover after Tooth Extraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Diabetes Mellitus. Fact Sheet, no. 138, April 2002. Available online: https://www.who.int/health-topics/diabetes (accessed on 6 November 2020).
- International Diabetes Federation. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Correia-Santos, A.M.; Suzuki, A.; Anjos, J.S.; Rêgo, T.S.; Almeida, K.C.L.; Boaventura, G.T. Induction of Type 2 Diabetes by low dose of streptozotocin and high-fat diet-fed in wistar rats. Medicina 2012, 45, 436–444. [Google Scholar]
- Gomez-Smith, M.; Karthikeyan, S.; Jeffers, M.S.; Janik, R.; Thomason, L.A.; Stefanovic, B.; Corbett, D. A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat. Physiol. Behav. 2016, 167, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Gheibi, S.; Bakhtiarzadeh, F.; Jeddi, S.; Farrokhfall, K.; Zardooz, H.; Ghasemi, A. Nitrite increases glucose-stimulated insulin secretion and islet insulin content in obese type 2 diabetic male rats. Nitric Oxide 2017, 64, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Meier, C.; Schwartz, A.V.; Egger, A.; Lecka-Czernik, B. Effects of diabetes drugs on the skeleton. Bone 2016, 82, 93–100. [Google Scholar] [CrossRef]
- Nyomba, B.L.; Verhaeghe, J.; Thomasset, M.; Lissens, W.; Bouillon, R. Bone mineral homeostasis in spontaneously diabetic BB rats. I. Abnormal vitamin D metabolism and impaired active intestinal calcium absorption. Endocrinology 1989, 124, 565–572. [Google Scholar] [CrossRef]
- Furuse, C.; Almeida, A.F.; Costa, S.F.; Ervolino-Silva, A.C.; Okamoto, R.; Sumida, D.H.; Matsumoto, M.A.; Leite, F.R.M. Influence of weight gain on the modulation of wound healing following tooth extraction. Bone 2018, 114, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Carillon, J.; Romain, C.; Bardy, G.; Fouret, G.; Feillet-Coudray, C.; Gaillet, S.; Lacan, D.; Cristol, J.P.; Rouanet, J.M. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: Improvement by dietary supplementation with a melon superoxide dismutase. Free Radic. Biol. Med. 2013, 65, 254–261. [Google Scholar] [CrossRef]
- Engel, H.; Xiong, L.; Reichenberger, M.A.; Germann, G.; Roth, C.; Hirche, C. Rodent models of diet-induced type 2 diabetes mellitus: A literature review and selection guide. Diabetes Metab. Syndr. 2019, 13, 195–200. [Google Scholar] [CrossRef]
- Rees, D.A.; Alcolado, J.C. Animal models of diabetes mellitus. Diabet. Med. 2005, 22, 359–370. [Google Scholar] [CrossRef]
- Sharifian, Z.; Bayat, M.; Alidoust, M.; Farahani, R.M.; Bayat, M.; Rezaie, F.; Bayat, H. Histological and gene expression analysis of the effects of pulsed low-level laser therapy on wound healing of streptozotocin-induced diabetic rats. Lasers Med. Sci. 2014, 29, 1227–1235. [Google Scholar] [CrossRef]
- Srinivasan, K.; Viswanad, B.; Asrat, L.; Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005, 52, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Gheibi, S.; Kashfi, K.; Ghasemi, A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomed. Pharmacother. 2017, 95, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Ganugula, R.; Arora, M.; Jaisamut, P.; Wiwattanapatapee, R.; Jørgensen, H.G.; Venkatpurwar, V.P.; Zhou, B.; Rodrigues Hoffmann, A.; Basu, R.; Guo, S.; et al. Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. Br. J. Pharmacol. 2017, 174, 2074–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faried, M.A.; El-Mehi, A.E. Aqueous anise extract alleviated the pancreatic changes in streptozotocin-induced diabetic rat model via modulation of hyperglycemia, oxidative stress, apoptosis and autophagy: A biochemical, histological and immunohistochemical study. Folia Morphol. 2019, 79, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Rendina-Ruedy, E.; Graef, J.L.; Lightfoot, S.A.; Ritchey, J.W.; Clarke, S.L.; Lucas, E.A.; Smith, B.J. Impaired glucose tolerance attenuates bone accrual by promoting the maturation of osteoblasts: Role of Beclin1-mediated autophagy. Bone Rep. 2016, 5, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, C.; Epstein, S.; Napoli, N. Insulin resistance and bone: A biological partnership. Acta Diabetol. 2018, 55, 305–314. [Google Scholar] [CrossRef]
- Cutler, C.W.; Eke, P.; Arnold, R.R.; Van Dyke, T.E. Defective neutrophil function in an insulin-dependent diabetes mellitus patients. A case report. J. Periodontol. 1991, 62, 394–401. [Google Scholar] [CrossRef]
- Schwartz, A.V. Epidemiology of fractures in type 2 diabetes. Bone 2016, 82, 2–8. [Google Scholar] [CrossRef]
- Schneir, M.; Bowersox, J.; Ramamurthy, N.; Yavelow, J.; Murray, J.; Edlin-Folz, E.; Golub, L. Response of rat connective tissues to streptozotocin-diabetes. Tissue-specific effects on collagen metabolism. Biochim. Biophys. Acta 1979, 583, 95–102. [Google Scholar] [CrossRef]
- Schneir, M.; Ramamurthy, N.; Golub, L. Skin collagen metabolism in the streptozotocin-induced diabetic rat. Enhanced catabolism of collagen formed both before and during the diabetic state. Diabetes 1982, 31, 426–431. [Google Scholar] [CrossRef]
- Younis, W.H.; Al-Rawi, N.H.; Mohamed, M.A.; Yaseen, N.Y. Molecular events on tooth socket healing in diabetic rabbits. Br. J. Oral Maxillofac. Surg. 2013, 51, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 2010, 1, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, T.; Russo, M.C. Wound healing following tooth extraction: Histochemical study in rats. Rev. Fac. Odontol. Araçatuba 1973, 2, 153–169. [Google Scholar]
- Palin, L.P.; Polo, T.O.B.; Batista, F.R.S.; Gomes-Ferreira, P.H.S.; Garcia Junior, I.R.; Rossi, A.C.; Freire, A.; Faverani, L.P.; Sumida, D.H.; Okamoto, R. Daily melatonin administration improves osseointegration in pinealectomized rats. J. Appl. Oral Sci. 2018, 26, e20170470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramalho-Ferreira, G.; Faverani, L.P.; Momesso, G.A.C.; Luvizuto, E.R.; de Oliveira Puttini, I.; Okamoto, R. Effect of antiresorptive drugs in the alveolar bone healing. A histometric and immunohistochemical study in ovariectomized rats. Clin. Oral Investig. 2017, 21, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Ramalho-Ferreira, G.; Faverani, L.P.; Grossi-Oliveira, G.A.; Okamoto, T.; Okamoto, R. Alveolar bone dynamics in osteoporotic rats treated with raloxifene or alendronate: Confocal microscopy analysis. J. Biomed. Opt. 2015, 20, 038003. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef]
- Pedrosa, W.F., Jr.; Okamoto, R.; Faria, P.E.; Arnez, M.F.; Xavier, S.P.; Salata, L.A. Immunohistochemical, tomographic and histological study on onlay bone graft remodeling. Part II: Calvarial bone. Clin. Oral Implants Res. 2009, 20, 1254–1264. [Google Scholar] [CrossRef]
- Manrique, N.; Pereira, C.C.; Luvizuto, E.R.; Sánchez Mdel, P.; Okamoto, T.; Okamoto, R.; Sumida, D.H.; Antoniali, C. Hypertension modifies OPG, RANK, and RANKL expression during the dental socket bone healing process in spontaneously hypertensive rats. Clin. Oral Investig. 2015, 19, 1319–1327. [Google Scholar] [CrossRef]
- Biguetti, C.C.; Cavalla, F.; Tim, C.R.; Saraiva, P.P.; Orcini, W.; De Andrade Holgado, L.; Rennó, A.C.M.; Matsumoto, M.A. Bioactive glass-ceramic bone repair associated or not with autogenous bone: A study of organic bone matrix organization in a rabbit critical-sized calvarial model. Clin. Oral Investig. 2019, 23, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajami, E.; Mahno, E.; Mendes, V.C.; Bell, S.; Moineddin, R.; Davies, J.E. Bone healing and the effect of implant surface topography on osteoconduction in hyperglycemia. Acta Biomater. 2014, 10, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, L.C.; Lecka-Czernik, B.; Seibel, M.J. Sweet and brittle—Diabetes mellitus and the skeleton. Bone 2016, 82, 1. [Google Scholar] [CrossRef] [PubMed]
- Farr, J.N.; Khosla, S. Determinants of bone strength and quality in diabetes mellitus in humans. Bone 2016, 82, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Picke, A.K.; Gordaliza Alaguero, I.; Campbell, G.M.; Glüer, C.C.; Salbach-Hirsch, J.; Rauner, M.; Hofbauer, L.C.; Hofbauer, C. Bone defect regeneration and cortical bone parameters of type 2 diabetic rats are improved by insulin therapy. Bone 2016, 82, 108–115. [Google Scholar] [CrossRef]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat. Rev. Endocrinol. 2011, 8, 228–236. [Google Scholar] [CrossRef]
- Hua, Y.; Bi, R.; Zhang, Y.; Xu, L.; Guo, J.; Li, Y. Different bone sites-specific response to diabetes rat models: Bone density, histology and microarchitecture. PLoS ONE 2018, 13, e0205503. [Google Scholar] [CrossRef]
- Carvalho, A.C.P.; Okamoto, T. Cirurgia Bucal: Fundamentos Experimentais Aplicados à clíNica; Panamericana: Singapore, 1987; 139p. [Google Scholar]
- Fahey, T.J., 3rd; Sadaty, A.; Jones, W.G., 2nd; Barber, A.; Smoller, B.; Shires, G.T. Diabetes impairs the late inflammatory response to wound healing. J. Surg. Res. 1991, 50, 308–313. [Google Scholar] [CrossRef]
- Shahen, V.A.; Gerbaix, M.; Koeppenkastrop, S.; Lim, S.F.; McFarlane, K.E.; Nguyen, A.N.L.; Peng, X.Y.; Weiss, N.B.; Brennan-Speranza, T.C. Multifactorial effects of hyperglycaemia, hyperinsulinemia and inflammation on bone remodelling in type 2 diabetes mellitus. Cytokine Growth Factor Rev. 2020, 55, 109–118. [Google Scholar] [CrossRef]
- Malik, P.; Chaudhry, N.; Mittal, R.; Mukherjee, T.K. Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim. Biophys. Acta 2015, 1850, 1898–1904. [Google Scholar] [CrossRef]
Foods | Amount (per Rat) |
---|---|
Stuffed Crackers | 30 g daily |
Wafer Crackers | 30 g daily |
Corn Chips | 30 g daily |
Water with Sugar (12%) | 50 mL daily |
Group | Day 0 | Day 21 | Day 28 * | Day 31 * | Day 35 * | Day 42 * | Day 70 * |
---|---|---|---|---|---|---|---|
NG | 79 mg/dL | 75 mg/dL | 104 mg/dL | 90 mg/dL | 82 mg/dL | 80 mg/dL | 92 mg/dL |
T2D | 80 mg/dL | 114 mg/dL | 262 mg/dL | 305 mg/dL | 317 mg/dL | 358 mg/dL | 394 mg/dL |
Group | Day 0 | Day 21 | Day 28 | Day 31 | Day 35 | Day 42 | Day 70 |
---|---|---|---|---|---|---|---|
NG | 234 g | 362 g | 406 g | 408 g | 400 g | 397 g | 418 g |
T2D | 234 g | 353 g | 355 g | 275 g | 267 g | 297 g | 303 g |
Group | Protein | Score | Days |
---|---|---|---|
NG | IL-6 | ++ | 3 Days |
++ | 7 Days | ||
TNFα | ++ | 3 Days | |
++ | 7 Days | ||
TGFβ | ++ | 3 Days | |
+++ | 7 Days | ||
OC | +++ | 14 Days | |
+++ | 42 Days | ||
Wnt | +++ | 14 Days | |
+++ | 42 Days | ||
TRAP | +++ | 14 Days | |
++ | 42 Days | ||
T2D | IL-6 | +++ | 3 Days |
++++ | 7 Days | ||
TNFα | +++ | 3 Days | |
+++ | 7 Days | ||
TGFβ | +++ | 3 Days | |
++++ | 7 Days | ||
OC | +++ | 14 Days | |
++ | 42 Days | ||
Wnt | +++ | 14 Days | |
++ | 42 Days | ||
TRAP | +++ | 14 Days | |
+++ | 42 Days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitol-Palin, L.; de Souza Batista, F.R.; Gomes-Ferreira, P.H.S.; Mulinari-Santos, G.; Ervolino, E.; Souza, F.Á.; Matsushita, D.H.; Okamoto, R. Different Stages of Alveolar Bone Repair Process Are Compromised in the Type 2 Diabetes Condition: An Experimental Study in Rats. Biology 2020, 9, 471. https://doi.org/10.3390/biology9120471
Pitol-Palin L, de Souza Batista FR, Gomes-Ferreira PHS, Mulinari-Santos G, Ervolino E, Souza FÁ, Matsushita DH, Okamoto R. Different Stages of Alveolar Bone Repair Process Are Compromised in the Type 2 Diabetes Condition: An Experimental Study in Rats. Biology. 2020; 9(12):471. https://doi.org/10.3390/biology9120471
Chicago/Turabian StylePitol-Palin, Letícia, Fábio Roberto de Souza Batista, Pedro Henrique Silva Gomes-Ferreira, Gabriel Mulinari-Santos, Edilson Ervolino, Francisley Ávila Souza, Dóris Hissako Matsushita, and Roberta Okamoto. 2020. "Different Stages of Alveolar Bone Repair Process Are Compromised in the Type 2 Diabetes Condition: An Experimental Study in Rats" Biology 9, no. 12: 471. https://doi.org/10.3390/biology9120471
APA StylePitol-Palin, L., de Souza Batista, F. R., Gomes-Ferreira, P. H. S., Mulinari-Santos, G., Ervolino, E., Souza, F. Á., Matsushita, D. H., & Okamoto, R. (2020). Different Stages of Alveolar Bone Repair Process Are Compromised in the Type 2 Diabetes Condition: An Experimental Study in Rats. Biology, 9(12), 471. https://doi.org/10.3390/biology9120471