Genome Sequences of Serratia Strains Revealed Common Genes in Both Serratomolides Gene Clusters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Data Collection, and Genomes
2.2. Phylogenetic Analysis
2.3. Serrawettins Biosynthetic Gene Clusters Analysis
3. Results
3.1. Bacterial Phylogeny and Comparative Genomics of Serratia spp.
3.2. Serrawettin W1 Biosynthetic Gene Clusters
3.3. Serrawettin W2 Biosynthetic Gene Clusters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Araújo, H.W.C.; Andrade, R.F.S.; Montero-Rodríguez, D.; Rubio-Ribeaux, D.; Alves Da Silva, C.A.; Campos-Takaki, G.M. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb. Cell Fact. 2019, 18, 2. [Google Scholar] [CrossRef]
- Mujumdar, S.; Bashetti, S.; Pardeshi, S.; Thombre, R.S. Industrial applications of biosurfactants. In Industrial Biotechnology; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 81–109. [Google Scholar]
- Nitschke, M.; Silva, S.S. Recent food applications of microbial surfactants. Crit. Rev. Food Sci. Nutr. 2018, 58, 631–638. [Google Scholar] [CrossRef]
- Matsuyama, T.; Kaneda, K.; Nakagawa, Y.; Isa, K.; Hara-Hotta, H.; Yano, I. A novel extra cellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol. 1992, 174, 1769–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajfarajollah, H.; Eslami, P.; Mokhtarani, B.; Akbari Noghabi, K. Biosurfactants from probiotic bacteria: A review. Biotechnol. Appl. Biochem. 2018, 65, 768–783. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, H.; Abdoli, M.; Hajfarajollah, H.; Samie, N.; Alidoust, L.; Abbasi, H.; Fooladi, J.; Zahiri, H.S.; Noghabi, K.A. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site. Appl. Biochem. Biotechnol. 2014, 173, 1236–1249. [Google Scholar] [CrossRef] [PubMed]
- Grimont, P.A.D.; Grimont, F. The genus Serratia. Annu. Rev. Microbiol. 1978, 32, 221–248. [Google Scholar] [CrossRef] [PubMed]
- Fallis, A. Proteobacteria Gamma; Springer: New York, NY, USA, 2013; Volume 53, ISBN 9788578110796. [Google Scholar]
- Mahlen, S.D. Serratia infections: From military experiments to current practice. Clin. Microbiol. Rev. 2011, 24, 755–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserman, H.H.; Keggi, J.J.; McKeon, J.E. The structure of serratamolide. J. Am. Chem. Soc. 1962, 84, 2978–2982. [Google Scholar] [CrossRef]
- Matsuyama, T.; Murakami, T.; Fujita, M.; Fujita, S.; Yano, I. Extracellular vesicle formation and biosurfactant production by Serratia marcescens. Microbiology 1986, 132, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tanikawa, T.; Sato, Y.; Nakagawa, Y.; Matsuyama, T. Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol. Immunol. 2005, 49, 303–310. [Google Scholar] [CrossRef]
- Su, C.; Xiang, Z.; Liu, Y.; Zhao, X.; Sun, Y.; Li, Z.; Li, L.; Chang, F.; Chen, T.; Wen, X.; et al. Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genom. 2016, 17, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradel, E.; Zhang, Y.; Pujol, N.; Matsuyama, T.; Bargmann, C.I.; Ewbank, J.J. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2007, 104, 2295–2300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clements, T.; Ndlovu, T.; Khan, W. Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiol. Res. 2019, 229, 126329. [Google Scholar] [CrossRef] [PubMed]
- Eckelmann, D.; Spiteller, M.; Kusari, S. Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic Serratia marcescens harbored in Maytenus serrata. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Anzuay, M.S.; Frola, O.; Angelini, J.G.; Ludueña, L.M.; Fabra, A.; Taurian, T. Genetic diversity of phosphate-solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability. Symbiosis 2013, 60, 143–154. [Google Scholar] [CrossRef]
- Park, S.K.; Kim, Y.C. Draft genome sequence of a chitinase-producing biocontrol bacterium Serratia sp. C-1. Res. Plant Dis. 2015, 21, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Sandner-Miranda, L.; Vinuesa, P.; Soberón-Chávez, G.; Morales-Espinosa, R. Complete genome sequence of Serratia marcescens SmUNAM836, a nonpigmented multidrug-resistant strain isolated from a Mexican patient with obstructive pulmonary disease. Genome Announc. 2016, 4, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Aylward, F.O.; Tremmel, D.M.; Starrett, G.J.; Bruce, D.C.; Chain, P.; Chen, A.; Davenport, K.W.; Detter, C.; Han, C.S.; Han, J.; et al. Complete genome of Serratia sp. strain FGI 94, a strain associated with leaf-cutter ant fungus gardens. Genome Announc. 2013, 1, e00239-12. [Google Scholar] [CrossRef] [Green Version]
- Proença, D.N.; Santo, C.E.; Grass, G.; Morais, P.V. Draft genome sequence of Serratia sp. strain M24T3, isolated from pinewood disease nematode Bursaphelenchus xylophilus. J. Bacteriol. 2012, 194, 3764. [Google Scholar] [CrossRef] [Green Version]
- Vicente, C.S.L.; Nascimento, F.X.; Barbosa, P.; Ke, H.-M.; Tsai, I.J.; Hirao, T.; Cock, P.J.A.; Kikuchi, T.; Hasegawa, K.; Mota, M. Evidence for an opportunistic and endophytic lifestyle of the Bursaphelenchus xylophilus-associated bacteria Serratia marcescens PWN146 isolated from wilting Pinus pinaster. Microb. Ecol. 2016, 72, 669–681. [Google Scholar] [CrossRef]
- Vicente, C.S.L.; Nascimento, F.X.; Ikuyo, Y.; Cock, P.J.A.; Mota, M.; Hasegawa, K. The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus. BMC Genom. 2016, 17, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, F.; Vicente, C.; Cock, P.; Tavares, M.; Rossi, M.; Hasegawa, K.; Mota, M. From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microb. Genom. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Mardanova, A.M.; Toymentseva, A.A.; Gilyazeva, A.G.; Kazakov, S.V.; Shagimardanova, E.I.; Khaitlina, S.Y.; Sharipova, M.R. Draft genome sequence of Serratia grimesii strain A2. Genome Announc. 2014, 2, 7–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abebe, E.; Abebe-Akele, F.; Morrison, J.; Cooper, V.; Thomas, W.K. An insect pathogenic symbiosis between a Caenorhabditis and Serratia. Virulence 2011, 2, 158–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lephoto, T.E.; Featherston, J.; Gray, V.M. Draft Whole-genome sequence of Serratia sp. strain TEL, associated with Oscheius sp. TEL-2014 (Nematoda: Rhabditidae) isolated from a grassland in South Africa. Genome Announc. 2015, 3, e00747-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Gorrie, C.L.; Jenney, A.; Mirceta, M.; Holt, K.E. Draft genome sequence of a clinical isolate of Serratia marcescens, strain AH0650_Sm1. Genome Announc. 2015, 3, e01007-15. [Google Scholar] [CrossRef] [Green Version]
- Neupane, S.; Finlay, R.D.; Alström, S.; Goodwin, L.; Kyrpides, N.C.; Lucas, S.; Lapidus, A.; Bruce, D.; Pitluck, S.; Peters, L.; et al. Complete genome sequence of Serratia plymuthica strain AS12. Stand. Genom. Sci. 2012, 6, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Neupane, S.; Finlay, R.D.; Kyrpides, N.C.; Goodwin, L.; Alström, S.; Lucas, S.; Land, M.; Han, J.; Lapidus, A.; Cheng, J.-F.; et al. Complete genome sequence of the plant-associated Serratia plymuthica strain AS13. Stand. Genom. Sci. 2012, 7, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Neupane, S.; Högberg, N.; Alström, S.; Lucas, S.; Han, J.; Lapidus, A.; Cheng, J.F.; Bruce, D.; Goodwin, L.; Pitluck, S.; et al. Complete genome sequence of the rapese ed plant-growth promoting Serratia plymuthica strain AS9. Stand. Genom. Sci. 2012, 6, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Neupane, S.; Goodwin, L.A.; Högberg, N.; Kyrpides, N.C.; Alström, S.; Bruce, D.; Quintana, B.; Munk, C.; Daligault, H.; Teshima, H.; et al. Non-contiguous finished genome sequence of plant-growth promoting Serratia proteamaculans S4. Stand. Genom. Sci. 2013, 8, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Müller, D.B.; Srinivas, G.; Garrido-Oter, R.; Potthoff, E.; Rott, M.; Dombrowski, N.; Münch, P.C.; Spaepen, S.; Remus-Emsermann, M.; et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015, 528, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.C.; Chen, L.L.; Lo, W.S.; Kuo, P.A.; Tu, J.; Kuo, C.H. Complete genome sequence of Serratia marcescens WW4. Genome Announc. 2013, 1, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siozios, S.; Cestaro, A.; Kaur, R.; Pertot, I.; Rota-Stabelli, O.; Anfora, G. Draft genome sequence of the Wolbachia endosymbiont of Drosophila suzukii. Genome Announc. 2013, 1, e00032-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fineran, P.C.; Cans, C.I.; Ramsay, J.P.; Wilf, N.M.; Cossyleon, D.; Mcneil, M.B.; Williamson, N.R.; Monson, R.E.; Becher, S.A.; Stanton, J.L.; et al. Draft genome sequence of Serratia sp. strain ATCC 39006, a model bacterium for analysis of the biosynthesis and regulation of prodigiosin, a carbapenem, and gas vesicles. Genome Announc. 2013, 1, e01039-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alabed, D.; Huo, N.; Gu, Y.; McCue, K.F.; Thomson, J.G. Draft genome sequence of Serratia sp. 1D1416. Microbiol. Resour. Announc. 2019, 8, e01354-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopac, S.; Beatty, H.; Gialopsos, P.; Huntemann, M.; Clum, A.; Spunde, A.; Pillay, M.; Palaniappan, K.; Varghese, N.; Mikhailova, N.; et al. High-quality draft genome sequences of eight bacteria isolated from fungus gardens grown by Trachymyrmex septentrionalis Ants. Microbiol. Resour. Announc. 2018, 7, e00871-18. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Kwok, A.H.Y.; Jiang, J.; Ran, T.; Xu, D.; Wang, W.; Leung, F.C. Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLoS ONE 2015, 10, e0123061. [Google Scholar] [CrossRef] [Green Version]
- Roach, D.J.; Burton, J.N.; Lee, C.; Stackhouse, B.; Butler-Wu, S.M.; Cookson, B.T.; Shendure, J.; Salipante, S.J. A year of infection in the intensive care unit: Prospective whole genome sequencing of bacterial clinical isolates reveals cryptic transmissions and novel microbiota. PLoS Genet. 2015, 11, e1005413. [Google Scholar] [CrossRef]
- Daligault, H.E.; Davenport, K.W.; Minogue, T.D.; Broomall, S.M.; Bruce, D.C.; Chain, P.S.; Coyne, S.R.; Gibbons, H.S.; Jaissle, J.; Rosenzweig, C.N.; et al. Genome assembly of Serratia marcescens type strain ATCC 13880. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.W., II; Weisberg, A.J.; Tabima, J.F.; Grunwald, N.J.; Chang, J.H. Gall-ID: Tools for genotyping gall-causing phytopathogenic bacteria. PeerJ 2016, 4, e2222. [Google Scholar] [CrossRef] [Green Version]
- Weingarten, R.A.; Johnson, R.C.; Conlan, S.; Ramsburg, A.M.; Dekker, J.P.; Lau, A.F.; Khil, P.; Odom, R.T.; Deming, C.; Park, M.; et al. Genomic analysis of hospital plumbing reveals diverse reservoir of bacterial plasmids conferring carbapenem resistance. MBio 2018, 9, e02011-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, Y.; Khan, A.R.; Shin, J.H. Genome sequence of Serratia nematodiphila DSM 21420T, a symbiotic bacterium from entomopathogenic nematode. J. Biotechnol. 2015, 193, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Pei, D.; Hill-Clemons, C.; Carissimo, G.; Yu, W.; Vernick, K.D.; Xu, J. Draft genome sequences of two strains of Serratia spp. from the midgut of the malaria mosquito Anopheles gambiae. Genome Announc. 2016, 3, e00090-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poehlein, A.; Freese, H.M.; Daniel, R.; Simeonova, D.D. Draft genome sequence of Serratia sp. strain DD3, isolated from the guts of Daphnia magna. Genome Announc. 2014, 2, e00903-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Hitchings, M.D.; Mendoza, J.E.; Balanza, V.; Facey, P.D.; Dyson, P.J.; Bielza, P.; Del Sol, R. Comparative genomics of facultative bacterial symbionts isolated from European orius species reveals an ancestral symbiotic association. Front. Microbiol. 2017, 8, 1969. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L.; Leonard, M.T.; Fajardo-Cavazos, P.; Panayotova, N.; Farmerie, W.G.; Triplett, E.W.; Schuerger, A.C. Complete genome sequence of Serratia liquefaciens strain ATCC 27592. Genome Announc. 2013, 1, e00548-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iguchi, A.; Nagaya, Y.; Pradel, E.; Ooka, T.; Ogura, Y.; Katsura, K.; Kurokawa, K.; Oshima, K.; Hattori, M.; Parkhill, J.; et al. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen. Genome Biol. Evol. 2014, 6, 2096–2110. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Müller, R.; Wohlleben, W.; et al. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015, 43, W237–W243. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Kim, O.-S.; Cho, Y.-J.; Lee, K.; Yoon, S.-H.; Kim, M.; Na, H.; Park, S.-C.; Jeon, Y.S.; Lee, J.-H.; Yi, H.; et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef]
- Ludwig, W.; Strunk, O.; Westram, R.; Richter, L.; Meier, H.; Yadhukumar; Buchner, A.; Lai, T.; Steppi, S.; Jobb, G.; et al. ARB: A software environment for sequence data. Nucleic Acids Res. 2004, 32, 1363–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef] [PubMed] [Green Version]
- Anderson, M.T.; Mitchell, L.A.; Zhao, L.; Mobleya, H.L.T. Capsule production and glucose metabolism dictate fitness during Serratia marcescens bacteremia. MBio 2017, 8, e00740-17. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, F.X.; Espada, M.; Barbosa, P.; Rossi, M.J.; Vicente, C.S.L.; Mota, M. Non-specific transient mutualism between the plant parasitic nematode, Bursaphelenchus xylophilus, and the opportunistic bacterium Serratia quinivorans BXF1, a plant-growth promoting pine endophyte with antagonistic effects. Environ. Microbiol. 2016, 18, 5265–5276. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, H.; Chen, Y.; Lin, W.; Wang, C.; Chen, Z.; Han, N.; Bian, H.; Zhu, M.; Wang, J. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. New Phytol. 2012, 193, 81–95. [Google Scholar] [CrossRef]
- Charbonnier, T.; Le Coq, D.; McGovern, S.; Calabre, M.; Delumeau, O.; Aymerich, S.; Jules, M. Molecular and physiological logics of the pyruvate-induced response of a novel transporter in Bacillus subtilis. MBio 2017, 8, e00976-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, I.-N.; Smith, D.L.; Young, R. Holins: The protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 2000, 54, 799–825. [Google Scholar] [CrossRef]
- Ahn, S.-J.; Rice, K.C.; Oleas, J.; Bayles, K.W.; Burne, R.A. The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology 2010, 156, 3136–3147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Esker, M.H.; Kovács, Á.T.; Kuipers, O.P. From cell death to metabolism: Holin-antiholin homologues with new functions. MBio 2017, 8, e01963-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pao, S.S.; Paulsen, I.T.; Saier, M.H. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 1998, 62, 1–34. [Google Scholar] [CrossRef] [Green Version]
- D’Argenio, D.A.; Miller, S.I. Cyclic di-GMP as a bacterial second messenger. Microbiology 2004, 150, 2497–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacterial Strain | Accession Number | swrW | swrA |
---|---|---|---|
Serratia sp. AS12 | CP002774.1 | X | |
Serratia sp. AS13 | CP002775.1 | X | |
Serratia sp. FS14 | CP005927.1 | X | |
Serratia sp. SCBI | CP003424.1 | X | |
Serratia sp. YD25 | CP016948.1 | X | |
Serratia sp. SSNIH1 | CP026383.1 | X | |
Serratia sp. PWN146 | LT575490.1 | X | |
Serratia marcescens strain UMH8 | CP018927.1 | X | |
Serratia marcescens strain IOMTU 115 | AB894481.1 | X | |
Serratia marcescens subsp. marcescens ATCC 13880 | JMPQ01000033.1 | X | |
Serratia marcescens strain CDC_813-60 DP21 | JOVM01000004.1 | X | |
Serratia nematodiphila DZ0503SBS1 strain DSM 21420 | JPUX00000000.1 | X | |
Serratia marcescens VGH107 | AORJ00000000.1 | X | |
Serratia marcescens EGD-HP20 | AVSR00000000.1 | X | |
Serratia marcescens WW4 | CP003959.1 | X | |
Serratia marcescens BIDMC 81 | JJMZ01000006.1 | X | |
Serratia strain TEL NODE_13 | LDEG01000018.1 | X | |
Serratia plymuthica NBRC 102599T | BCTU00000000.1 | X | |
Serratia grimesii isolate BXF1 | LT883155.1 | X | |
Serratia grimesii strain A2 | JGVP00000000.1 | X | |
Serratia plymuthica AS9 | CP002773.1 | X | |
Serratia marcescens SM39 | AP013063.1 | X | |
Serratia marcescens SmUNAM836 | CP012685.1 | X | |
Serratia marcescens BIDMC 44 | JAPD01000005.1 | X | |
Serratia ureilytica Lr5/4 LG59 | JSFB01000001.1 | X | |
Serratia marcescens RSC-14 | CP012639.1 | X | |
Serratia marcescens subsp. marcescens AH0650_Sm1 AG2 | LFJS01000014.1 | X | |
Serratia marcescens subsp. marcescens Db11 | HG326223.1 | X |
Bacterial Strain | swrW Closest Relative Genes | Accession Number | Identity Percentage |
---|---|---|---|
Serratia marcescens EGD-HP20 | non-ribosomal peptide synthetase | ERH70695.1 | 99.52 |
Serratia marcescens WW4 | serrawettin W1 synthetase | AGE20181.1 | 100 |
Serratia sp. FS14 | putative serrawettin W1 synthetase | AIA46701.1 | 100 |
Serratia marcescens VGH107 | amino acid adenylation protein | EMF04443.1 | 99.12 |
Serratia nematodiphila DZ0503SBS1 strain DSM 21420 | non-ribosomal peptide synthetase | KFF87803.1 | 99.31 |
Serratia marcescens strain IOMTU 115 | putative serrawettin W1 synthetase | BAO21138.1 | 99.92 |
Serratia marcescens strain UMH8 | non-ribosomal peptide synthetase | ASM18665.1 | 99.01 |
Serratia marcescens subsp. marcescens ATCC 13880 | amino acid adenylation domain-containing protein | KFD14984.1 | 98.57 |
Serratia marcescens strain CDC_813-60 DP21 | non-ribosomal peptide synthetase | KFL05097.1 | 98.63 |
Serratia marcescens BIDMC 81 | non-ribosomal peptide synthetase | EZQ62923.1 | 95.12 |
Serratia strain TEL NODE_13 | non-ribosomal peptide synthetase | KLE36484.1 | 95.05 |
Serratia plymuthica NBRC 102599T | non-ribosomal peptide synthetase | WP_063202307.1 | 81.71 |
Serratia sp. AS13 | non-ribosomal peptide synthetase | AEG30284.1 | 81.48 |
Serratia plymuthica AS9 | non-ribosomal peptide synthetase | AEF47625.1 | 81.48 |
Serratia sp. AS12 | non-ribosomal peptide synthetase | WP_013814722.1 | 81.48 |
Serratia grimesii isolate BXF1 | amino acid adenylation domain-containing protein | SMZ58711.1 | 77.79 |
Serratia grimesii strain A2 | non-ribosomal peptide synthetase | KFB89923.1 | 78.17 |
Bacterial Strain | Enoylreductase Quinone Oxidoreductase | Ketoreductase 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase | Enoylreductase Dehydrogenase | Aromatic Amino Acid Aminotransferase |
---|---|---|---|---|
Serratia marcescens EGD-HP20 | ERH70706.1 | ERH70710.1 | ERH70714.1 | |
Serratia marcescens WW4 | AGE20192.1 | AGE20197.1 | AGE20201.1 | |
Serratia sp. FS14 | AIA46690.1 | AIA46685.1 | AIA46681.1 | |
Serratia marcescens VGH107 | EMF04432.1 | EMF04427.1 | EMF04423.1 | |
Serratia nematodiphila DZ0503SBS1 strain DSM 21420 | KFF87792.1 | KFF87787.1 | KFF87783.1 | |
Serratia marcescens strain IOMTU 115 | BAO21148.1 | BAO21153.1 | BAO21155.1 | |
Serratia marcescens strain UMH8 | ASM18675.1 | ASM18680.1 | ASM18684.1 | |
Serratia marcescens subsp. Marcescens ATCC 13880 | KFD14974.1 | KFD14969.1 | KFD14965.1 | |
Serratia marcescens strain CDC_813-60 DP21 | KFL04091.1 | KFL03204.1 | KFL04717.1 | |
Serratia marcescens BIDMC 81 | EZQ62938.1 | EZQ62913.1 | EZQ62903.1 | |
Serratia strain TEL NODE_13 | KLE36470.1 | KLE36494.1 | KLE36503.1 | |
Serratia plymuthica NBRC 102599T | WP_063202297.1 | WP_062868864.1 | WP_006328339.1 | |
Serratia sp. AS13 | AEG30270.1 | AEG30294.1 | AEG30297.1 | AEG30301.1 |
Serratia plymuthica AS9 | AEF47611.1 | AEF47635.1 | AEF47638.1 | AEF47642.1 |
Serratia sp. AS12 | WP_013814712.1 | WP_013814732.1 | WP_013814734.1 | WP_013814736.1 |
Serratia grimesii isolate BXF1 | SMZ58698.1 | SMZ58721.1 | SMZ58727.1 | SMZ58731.1 |
Serratia grimesii strain A2 | KFB89936.1 | KFB89913.1 | KFB89904.1 |
Bacterial Strain | swrA Closest Relative Genes | Accession Number | Identity Percentage |
---|---|---|---|
Serratia marcescens SM39 | Serratia marcescens SM39 DNA, complete genome | BAO35825.1 | 76.70 |
Serratia marcescens SmUNAM836 | Serratia marcescens strain SmUNAM836, complete genome | ALE98111.1 | 76.70 |
Serratia sp. SSNIH1 | Serratia sp. SSNIH1 chromosome, complete genome | AUY16873.1 | 76.70 |
Serratia sp. PWN146 | Serratia marcescens isolate PWN146_assembly genome assembly, chromosome | SAY45247.1 | 77.02 |
Serratia ureilytica Lr5/4 LG59 | Serratia marcescens strain UMH7, complete genome | KKO55915.1 | 76.38 |
Serratia marcescens RSC-14 | Serratia marcescens strain RSC-14, complete genome | ALD45109.1 | 76.38 |
Serratia marcescens BIDMC 44 | Serratia marcescens strain 1274 genome | ETX44761.1 | 77.35 |
Serratia sp. YD25 | Serratia sp. YD25, complete genome | AOF02338.1 | 93.57 |
Serratia sp. SCBI | Serratia sp. SCBI, complete genome | AIM23801.1 | 93.44 |
Serratia marcescens subsp. marcescens AH0650_Sm1 AG2 | Serratia marcescens strain BWH-23 chromosome, complete genome | KMU50701.1 | 99.40 |
Serratia marcescens subsp. marcescens Db11 | Serratia marcescens subsp. marcescens Db11, complete genome | CDG14244.1 | 99.32 |
Bacterial Strain | Enoylreductase Quinone Oxidoreductase | Ketoreductase 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase | Enoylreductase Dehydrogenase | Aminotransferase |
---|---|---|---|---|
Serratia marcescens SM39 | BAO35810.1 | BAO35835.1 | BAO35838.1 | BAO35842.1 |
Serratia marcescens SmUNAM836 | ALE98097.1 | ALE98121.1 | ALE98124.1 | ALE98128.1 |
Serratia sp. SSNIH1 | AUY16858.1 | AUY16883.1 | AUY16886.1 | AUY16890.1 |
Serratia sp. PWN146 | SAY45233.1 | SAY45257.1 | SAY45263.1 | SAY45267.1 |
Serratia ureilytica Lr5/4 LG59 | KKO55998.1 | KKO58381.1 | KKO57271.1 | |
Serratia marcescens RSC-14 | ALD45123.1 | ALD45099.1 | ALD45091.1 | |
Serratia marcescens BIDMC 44 | ETX44746.1 | ETX44771.1 | ETX44774.1 | ETX44778.1 |
Serratia sp. YD25 | AOF01119.1 | AOF01143.1 | ||
Serratia sp. SCBI | AIM23787.1 | AIM23811.1 | AIM23821.1 | |
Serratia marcescens subsp. marcescens AH0650_Sm1 AG2 | KMU50686.1 | KMU50711.1 | KMU50716.1 | KMU50720.1 |
Serratia marcescens subsp. marcescens Db11 | CDG14228.1 | CDG14254.1 | CDG14259.1 | CDG14263.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques-Pereira, C.; Proença, D.N.; Morais, P.V. Genome Sequences of Serratia Strains Revealed Common Genes in Both Serratomolides Gene Clusters. Biology 2020, 9, 482. https://doi.org/10.3390/biology9120482
Marques-Pereira C, Proença DN, Morais PV. Genome Sequences of Serratia Strains Revealed Common Genes in Both Serratomolides Gene Clusters. Biology. 2020; 9(12):482. https://doi.org/10.3390/biology9120482
Chicago/Turabian StyleMarques-Pereira, Catarina, Diogo Neves Proença, and Paula V. Morais. 2020. "Genome Sequences of Serratia Strains Revealed Common Genes in Both Serratomolides Gene Clusters" Biology 9, no. 12: 482. https://doi.org/10.3390/biology9120482
APA StyleMarques-Pereira, C., Proença, D. N., & Morais, P. V. (2020). Genome Sequences of Serratia Strains Revealed Common Genes in Both Serratomolides Gene Clusters. Biology, 9(12), 482. https://doi.org/10.3390/biology9120482