Determining Ancestry between Rodent- and Human-Derived Virus Sequences in Endemic Foci: Towards a More Integral Molecular Epidemiology of Lassa Fever within West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. LASV Sequences in Mastomys
2.2. LASV Sequences in Humans
2.3. Phylogenetic Analysis
- One partition, NP full sequence for 226 taxa;
- Substitution model as GTR + gamma without codon partition;
- Lognormal relax clock;
- Coalescent tree with a constant size population;
- MCMC = 10 M, echo states, and log parameters every 10,000.
- Two partitions, GP 900 nt and NP 712 nt for 198 sequences. The substitution models, clock, and trees are linked;
- Eight taxa were defined: Homo Ekpoma, Homo Kenema, Mastomys Denguedou, Mastomys Ekpoma, Mastomys Faranah, Mastomys Kenema, Mastomys Madina, and Mastomys Mali;
- Tip dates at the nearest day;
- Substitution model as GTR + gamma and codon partition with positions 1,2,3;
- Strict (model 2a) or uncorrelated relaxed (model 2b) or random local (model 2c) or fixed local (model 2d) clock;
- Coalescent tree with a constant size population;
- MCMC = 50 M, echo states, and log parameters every 50,000.
3. Results
3.1. LASV in Mastomys
3.2. LASV in Homo
4. Discussion
4.1. LASV Emergence Per Locality
4.2. LASV Emergence Per Host
4.3. Future Sampling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCormick, J.B.; Fisher-Hoch, S.P. Lassa fever. Curr. Top Microbiol. Immunol. 2002, 262, 75–109. [Google Scholar] [PubMed]
- Monath, T.P.; Newhouse, V.F.; Kemp, G.E.; Setzer, H.W.; Cacciapuoti, A. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science 1974, 185, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Olayemi, A.; Cadar, D.; Magassouba, N.; Obadare, A.; Kourouma, F.; Oyeyiola, A.; Fasogbon, S.; Igbokwe, J.; Rieger, T.; Bockholt, S.; et al. New Hosts of The Lassa Virus. Sci. Rep. 2016, 6, 25280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen, M.D.; Rollin, P.E.; Ksiazek, T.G.; Hustad, H.L.; Bausch, D.G.; Demby, A.H.; Bajani, M.D.; Peters, C.J.; Nichol, S.T. Genetic diversity among Lassa virus strains. J. Virol. 2000, 74, 6992–7004. [Google Scholar] [CrossRef] [Green Version]
- Kouadio, L.; Nowak, K.; Akoua-Koffi, C.; Weiss, S.; Allali, B.K.; Witkowski, P.T.; Kruger, D.H.; Couacy-Hyman, E.; Calvignac-Spencer, S.; Leendertz, F.H. Lassa Virus in Multimammate Rats, Cote d’Ivoire 2013. Emerg. Infect. Dis. 2015, 21, 1481–1483. [Google Scholar] [CrossRef] [Green Version]
- Safronetz, D.; Lopez, J.E.; Sogoba, N.; Malga, O.; Dahlstrom, E.; Zivcec, M.; Feldmann, F.; Haddock, E.; Fischer, R.J.; Anderson, J.M.; et al. Detection of Lassa virus, Mali. Emerg. Infect. Dis. 2010, 16, 1123–1126. [Google Scholar] [CrossRef]
- Whitmer, S.L.M.; Strecker, T.; Cadar, D.; Dienes, H.P.; Faber, K.; Patel, K.; Brown, S.M.; Davis, W.G.; Klena, J.D.; Rollin, P.E.; et al. New Lineage of Lassa Virus, Togo, 2016. Emerg. Infect. Dis. 2018, 24, 599–602. [Google Scholar] [CrossRef]
- Andersen, K.G.; Shapiro, B.J.; Matranga, C.B.; Sealfon, R.; Lin, A.E.; Moses, L.M.; Folarin, O.A.; Goba, A.; Odia, I.; Ehiane, P.E.; et al. Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell 2015, 162, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Kafetzopoulou, L.E.; Pullan, S.T.; Lemey, P.; Suchard, M.A.; Ehichioya, D.U.; Pahlmann, M.; Thielebein, A.; Hinzmann, J.; Oestereich, L.; Wozniak, D.M.; et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 2019, 363, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Siddle, K.J.; Eromon, P.; Barnes, K.G.; Mehta, S.; Oguzie, J.U.; Odia, I.; Schaffner, S.F.; Winnicki, S.M.; Shah, R.R.; Qu, J.; et al. Genomic Analysis of Lassa Virus during an Increase in Cases in Nigeria in 2018. N. Engl. J. Med. 2018, 379, 1745–1753. [Google Scholar] [CrossRef]
- Fichet-Calvet, E.; Olschlager, S.; Strecker, T.; Koivogui, L.; Becker-Ziaja, B.; Camara, A.B.; Soropogui, B.; Magassouba, N.; Gunther, S. Spatial and temporal evolution of Lassa virus in the natural host population in Upper Guinea. Sci. Rep. 2016, 6, 21977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecompte, E.; Fichet-Calvet, E.; Daffis, S.; Koulémou, K.; Sylla, S.; Kourouma, F.; Doré, A.; Soropogui, B.; Aniskin, V.; Allali, B.; et al. Mastomys natalensis and Lassa fever, West Africa. Emerg. Infect. Dis. 2006, 12, 1971–1974. [Google Scholar] [CrossRef] [PubMed]
- Leski, T.A.; Stockelman, M.G.; Moses, L.M.; Park, M.; Stenger, D.A.; Ansumana, R.; Bausch, D.G.; Lin, B. Sequence variability and geographic distribution of Lassa virus, Sierra Leone. Emerg. Infect. Dis. 2015, 21, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Olayemi, A.; Obadare, A.; Oyeyiola, A.; Igbokwe, J.; Fasogbon, S.; Igbahenah, F.; Ortsega, D.; Asogun, D.; Umeh, P.; Vakkai, I.; et al. Arenavirus Diversity and Phylogeography of Mastomys natalensis Rodents, Nigeria. Emerg. Infect. Dis. 2016, 22, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Hjelle., B.; Torrez-Martinez, N.; Koster, F.T.; Jay, M.; Ascher, M.S.; Brown, T.; Reynolds, P.; Ettestad, P.; Voorhees, R.E.; Sarisky, J.; et al. Epidemiologic linkage of rodent and human hantavirus genomic sequences in case investigations of hantavirus pulmonary syndrome. J. Infect. Dis. 1996, 173, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.M.; Bowen, M.D.; Ksiazek, T.G.; Johnson, A.M.; Bowen, M.D.; Ksiazek, T.G.; Williams, R.J.; Bryan, R.T.; Mills, J.N.; Peters, C.J.; et al. Laguna Negra virus associated with HPS in western Paraguay and Bolivia. Virology 1997, 238, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plyusnin, A.; Mustonen, J.; Asikainen, K.; Plyusnina, A.; Niemimaa, J.; Henttonen, H.; Vaheri, A. Analysis of puumala hantavirus genome in patients with nephropathia epidemica and rodent carriers from the sites of infection. J. Med. Virol. 1999, 59, 397–405. [Google Scholar] [CrossRef]
- Schilling, S.; Emmerich, P.; Klempa, B.; Auste, B.; Schnaith, E.; Schmitz, H.; Kruger, D.H.; Gunther, S.; Meisel, H. Hantavirus disease outbreak in Germany: Limitations of routine serological diagnostics and clustering of virus sequences of human and rodent origin. J. Clin. Microbiol. 2007, 45, 3008–3014. [Google Scholar] [CrossRef] [Green Version]
- Emonet, S.; Retornaz, K.; Gonzalez, J.P.; de Lamballerie, X.; Charrel, R.N. Mouse-to-human transmission of variant lymphocytic choriomeningitis virus. Emerg. Infect. Dis. 2007, 13, 472–475. [Google Scholar] [CrossRef]
- Ehichioya, D.U.; Hass, M.; Becker-Ziaja, B.; Ehimuan, J.; Asogun, D.A.; Fichet-Calvet, E.; Kleinsteuber, K.; Lelke, M.; Meulen, J.; Akpede, G.; et al. Current molecular epidemiology of Lassa virus in Nigeria. J. Clin. Microbiol. 2011, 49, 1157–1161. [Google Scholar] [CrossRef] [Green Version]
- Safronetz, D.; Sogoba, N.; Lopez, J.E.; Maiga, O.; Dahlstrom, E.; Zivcec, M.; Feldmann, F.; Haddock, E.; Fischer, R.J.; Anderson, J.M.; et al. Geographic distribution and genetic characterization of Lassa virus in sub-Saharan Mali. PLoS Negl. Trop. Dis. 2013, 7, e2582. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalis, A.; Leblois, R.; Lecompte, E.; Denys, C.; Ter Meulen, J.; Wirth, T. The impact of human conflict on the genetics of Mastomys natalensis and Lassa virus in West Africa. PLoS ONE 2012, 7, e37068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.I.; Souza, C.K.; Trovao, N.S. Human-Origin Influenza A(H3N2) Reassortant Viruses in Swine, Southeast Mexico. Emerg. Infect. Dis. 2019, 25, 691–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, H.K.; Vijaykrishna, D.; Premarathna, A.G.; Jayamaha, C.J.S.; Wickramasinghe, G.; Cheung, C.L.; Yeung, M.F.; Poon, L.L.M.; Perera, A.K.C.; Barr, I.G.; et al. Molecular epidemiology of influenza A(H1N1)pdm09 virus among humans and swine, Sri Lanka. Emerg. Infect. Dis. 2014, 20, 2080–2084. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Zhao, C.; Guo, T.; Xu, Y.; Wang, W.; Liu, H.; Wang, Y. Detection of Hepatitis E Virus in Raw Pork and Pig Viscera As Food in Hebei Province of China. Foodborne Pathog. Dis. 2019, 16, 325–330. [Google Scholar] [CrossRef]
- Negrey, J.D.; Reddy, R.B.; Scully, E.J.; Phillips-Garcia, S.; Owens, L.A.; Langergraber, K.E.; Mitani, J.C.; Emery, T.M.; Wrangham, R.W.; Muller, M.N.; et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. 2019, 8, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Olarinmoye, A.O.; Kamara, V.; Jomah, N.D.; Olusaga, B.O.; Ishola, O.O.; Kamara, A.; Luka, P.D. Molecular detection of rabies virus strain with N-gene that clustered with China lineage 2 co-circulating with Africa lineages in Monrovia, Liberia: First reported case in Africa. Epidemiol. Infect. 2019, 147, e85. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.I.; Vincent, A.L. Reverse zoonosis of influenza to swine: New perspectives on the human-animal interface. Trends Microbiol. 2015, 23, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Lunkenheimer, K.; Hufert, F.T.; Schmitz, H. Detection of Lassa virus RNA in specimens from patients with Lassa fever by using the polymerase chain reaction. J. Clin. Microbiol. 1990, 28, 2689–2692. [Google Scholar] [CrossRef] [Green Version]
- Asogun, D.A.; Adomeh, D.I.; Ehimuan, J.; Odia, I.; Hass, M.; Gabriel, M.; Olschlager, S.; Backer-Ziaja, B.; Folarin, O.; Phelan, E.; et al. Molecular diagnostics for Lassa fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons learnt from two years of laboratory operation. PLoS Negl. Trop. Dis. 2012, 6, e1839. [Google Scholar] [CrossRef] [PubMed]
Taxon | Model 2a | Model 2b |
---|---|---|
Homo Ekpoma | 65 (54–76) | 63 (50–77) |
Homo Kenema | 66 (58–76) | 66(55–77) |
Mastomys Denguedou | 20 (18–23) | 20 (17–24) |
Mastomys Ekpoma | 56 (47–64) | 54 (45–64) |
Mastomys Faranah | 75 (64–87) | 71 (59–85) |
Mastomys Kenema | 54 (49–59) | 53 (49–59) |
Mastomys Madina | 39 (32–46) | 38 (29–47) |
Mastomys Mali | 96 (81–113) | 89 (69–112) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olayemi, A.; Adesina, A.S.; Strecker, T.; Magassouba, N.; Fichet-Calvet, E. Determining Ancestry between Rodent- and Human-Derived Virus Sequences in Endemic Foci: Towards a More Integral Molecular Epidemiology of Lassa Fever within West Africa. Biology 2020, 9, 26. https://doi.org/10.3390/biology9020026
Olayemi A, Adesina AS, Strecker T, Magassouba N, Fichet-Calvet E. Determining Ancestry between Rodent- and Human-Derived Virus Sequences in Endemic Foci: Towards a More Integral Molecular Epidemiology of Lassa Fever within West Africa. Biology. 2020; 9(2):26. https://doi.org/10.3390/biology9020026
Chicago/Turabian StyleOlayemi, Ayodeji, Adetunji Samuel Adesina, Thomas Strecker, N’Faly Magassouba, and Elisabeth Fichet-Calvet. 2020. "Determining Ancestry between Rodent- and Human-Derived Virus Sequences in Endemic Foci: Towards a More Integral Molecular Epidemiology of Lassa Fever within West Africa" Biology 9, no. 2: 26. https://doi.org/10.3390/biology9020026
APA StyleOlayemi, A., Adesina, A. S., Strecker, T., Magassouba, N., & Fichet-Calvet, E. (2020). Determining Ancestry between Rodent- and Human-Derived Virus Sequences in Endemic Foci: Towards a More Integral Molecular Epidemiology of Lassa Fever within West Africa. Biology, 9(2), 26. https://doi.org/10.3390/biology9020026