Overexpression of T-bet, GATA-3 and TGF-ß Induces IFN-γ, IL-4/13A, and IL-17A Expression in Atlantic Salmon
Abstract
:1. Introduction
2. Material and Methods
2.1. Fish
2.2. Plasmid Construction Used for Intramuscular Injection
2.3. Cell Culture and Transfection Assay
2.4. Injection of Plasmid DNA, Experimental Challenge and Sampling
2.5. Sampling for qPCR
2.6. Reverse Transcription and Quantitative PCR (qPCR)
2.7. Fluorescence Microscopy
2.8. Statistical Analysis
3. Results
3.1. In Vitro Expression of T-bet, GATA-3 and TGF-ß
3.2. Fluorescence Microscopical Detection of RFP In Vivo
3.3. Gene Expression after Intramuscular Plasmid Injection and P. salmonis Challenge
3.4. Gene Expression Post-Intra-Muscular Plasmid Injection and V. anguillarum Challenge
4. Experimental Challenge Study
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Li, L.; Petrovsky, N. Molecular Adjuvants for DNA Vaccines. Curr. Issues Mol. Biol. 2017, 22, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Holvold, L.B.; Myhr, A.I.; Dalmo, R.A. Strategies and hurdles using DNA vaccines to fish. Vet. Res. 2014, 45, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalmo, R.A. DNA vaccines for fish: Review and perspectives on correlates of protection. J. Fish Dis. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naito, T.; Tanaka, H.; Naoe, Y.; Taniuchi, I. Transcriptional control of T-cell development. Int. Immunol. 2011, 23, 661–668. [Google Scholar] [CrossRef]
- Agnello, D.; Lankford, C.S.; Bream, J.; Morinobu, A.; Gadina, M.; O’Shea, J.J.; Frucht, D.M. Cytokines and transcription factors that regulate T helper cell differentiation: New players and new insights. J. Clin. Immunol. 2003, 23, 147–161. [Google Scholar] [CrossRef]
- Abebe, F.; Bjune, G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin. Exp. Immunol. 2009, 157, 235–243. [Google Scholar] [CrossRef]
- Schmitt, N.; Ueno, H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 2015, 34, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Aujla, S.J.; Chan, Y.R.; Zheng, M.; Fei, M.; Askew, D.J.; Pociask, D.A.; Reinhart, T.A.; McAllister, F.; Edeal, J.; Gaus, K. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 2008, 14, 275–281. [Google Scholar] [CrossRef]
- Lazarevic, V.; Glimcher, L.H. T-bet in disease. Nat. Immunol. 2011, 12, 597–606. [Google Scholar] [CrossRef]
- Szabo, S.J.; Sullivan, B.M.; Stemmann, C.; Satoskar, A.R.; Sleckman, B.P.; Glimcher, L.H. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science (New York NY) 2002, 295, 338–342. [Google Scholar] [CrossRef]
- Pandolfi, P.P.; Roth, M.E.; Karis, A.; Leonard, M.W.; Dzierzak, E.; Grosveld, F.G.; Engel, J.D.; Lindenbaum, M.H. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet. 1995, 11, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.F.; Min, B.; Hu-Li, J.; Watson, C.J.; Grinberg, A.; Wang, Q.; Killeen, N.; Urban, J.F.; Guo, L.Y.; Paul, W.E. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat. Immunol. 2004, 5, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.-Y.; Truitt, M.L.; Ho, I.-C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl. Acad. Sci. USA 2004, 101, 1993–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagi, R.; Zhong, C.; Northrup, D.L.; Yu, F.; Bouladoux, N.; Spencer, S.; Hu, G.; Barron, L.; Sharma, S.; Nakayama, T. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 2014, 40, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Haraguchi, N.; Ishii, Y.; Morishima, Y.; Yoh, K.; Matsuno, Y.; Kikuchi, N.; Sakamoto, T.; Takahashi, S.; Hizawa, N. Impairment of host defense against disseminated candidiasis in mice overexpressing GATA-3. Infect. Immun. 2010, 78, 2302–2311. [Google Scholar] [CrossRef] [Green Version]
- Belkaid, Y.; Rouse, B.T. Natural regulatory T cells in infectious disease. Nat. Immunol. 2005, 6, 353–360. [Google Scholar] [CrossRef]
- Schmitt, E.G.; Williams, C.B. Generation and function of induced regulatory T cells. Front. Immunol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Pandiyan, P.; Zhu, J. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells. Cytokine 2015, 76, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Li, M.O.; Wan, Y.Y.; Flavell, R.A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1-and Th17-cell differentiation. Immunity 2007, 26, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Hirahara, K.; Ghoreschi, K.; Laurence, A.; Yang, X.-P.; Kanno, Y.; O’Shea, J.J. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev. 2010, 21, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Plouffe, D.A.; Hanington, P.C.; Walsh, J.G.; Wilson, E.C.; Belosevic, M. Comparison of select innate immune mechanisms of fish and mammals. Xenotransplantation 2005, 12, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Romo, M.R.; Perez-Martinez, D.; Ferrer, C.C. Innate immunity in vertebrates: An overview. Immunology 2016, 148, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Hordvik, I. Immunoglobulin Isotypes in Atlantic Salmon, Salmo Salar. Biomolecules 2015, 5, 166–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Greiner-Tollersrud, L.; Koop, B.F.; Robertsen, B. Atlantic salmon possesses two clusters of type I interferon receptor genes on different chromosomes, which allows for a larger repertoire of interferon receptors than in zebrafish and mammals. Dev. Comp. Immunol. 2014, 47, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, T.; Shibasaki, Y.; Matsuura, Y. T Cells in Fish. Biology 2015, 4, 640–663. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Takizawa, F.; Fischer, U.; Dijkstra, J.M. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. Biology 2015, 4, 814–859. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Secombes, C.J. The Function of Fish Cytokines. Biology 2016, 5, 23. [Google Scholar] [CrossRef]
- Rozas, M.; Enríquez, R. Piscirickettsiosis and Piscirickettsia salmonis in fish: A review. J. Fish Dis. 2014, 37, 163–188. [Google Scholar] [CrossRef]
- Frans, I.; Michiels, C.W.; Bossier, P.; Willems, K.A.; Lievens, B.; Rediers, H. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. J. Fish Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef]
- Kumari, J.; Bogwald, J.; Dalmo, R.A. Transcription factor GATA-3 in Atlantic salmon (Salmo salar): Molecular characterization, promoter activity and expression analysis. Mol. Immunol. 2009, 46, 3099–3107. [Google Scholar] [CrossRef]
- Kumari, J.; Zhang, Z.; Swain, T.; Chi, H.; Niu, C.; Bøgwald, J.; Dalmo, R.A. Transcription factor T-bet in Atlantic salmon: Characterization and gene expression in mucosal tissues during Aeromonas salmonicida infection. Front. Immunol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, A.A.; Leef, M.J.; Bridle, A.R.; Carson, J.; Nowak, B.F. Effect of vaccination against yersiniosis on the relative percent survival, bactericidal and lysozyme response of Atlantic salmon, Salmo salar. Aquaculture 2011, 315, 201–206. [Google Scholar] [CrossRef]
- Kumari, J.; Bøgwald, J.; Dalmo, R.A. Eomesodermin of Atlantic Salmon: An Important Regulator of Cytolytic Gene and Interferon Gamma Expression in Spleen Lymphocytes. PLoS ONE 2013, 8, e55893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Maisey, K.; Montero, R.; Corripio-Miyar, Y.; Toro-Ascuy, D.; Valenzuela, B.; Reyes-Cerpa, S.; Sandino, A.M.; Zou, J.; Wang, T.H.; Secombes, C.J.; et al. Isolation and Characterization of Salmonid CD4(+) T Cells. J. Immunol. 2016, 196, 4150–4163. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, F.; Magadan, S.; Parra, D.; Xu, Z.; Korytar, T.; Boudinot, P.; Sunyer, J.O. Novel Teleost CD4-Bearing Cell Populations Provide Insights into the Evolutionary Origins and Primordial Roles of CD4(+) Lymphocytes and CD4(+) Macrophages. J. Immunol. 2016, 196, 4522–4535. [Google Scholar] [CrossRef] [Green Version]
- Løvoll, M.; Dalmo, R.A.; Bøgwald, J. Extrahepatic synthesis of complement components in the rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2007, 23, 721–731. [Google Scholar] [CrossRef]
- Thorarensen, H.; Kubiriza, G.K.; Imsland, A.K. Experimental design and statistical analyses of fish growth studies. Aquaculture 2015, 448, 483–490. [Google Scholar] [CrossRef]
- Tonheim, T.C.; Dalmo, R.A.; Bøgwald, J.; Seternes, T. Specific uptake of plasmid DNA without reporter gene expression in Atlantic salmon (Salmo salar L.) kidney after intramuscular administration. Fish Shellfish Immunol. 2008, 24, 90–101. [Google Scholar] [CrossRef]
- Hølvold, L.B.; Fredriksen, B.N.; Bøgwald, J.; Dalmo, R.A. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano-and microparticles. Fish Shellfish Immunol. 2013, 35, 890–899. [Google Scholar] [CrossRef] [Green Version]
- Herweijer, H.; Wolff, J. Progress and prospects: Naked DNA gene transfer and therapy. Gene Ther. 2003, 10, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romøren, K.; Thu, B.J.; Evensen, Ø. Expression of luciferase in selected organs following delivery of naked and formulated DNA to rainbow trout (Oncorhynchus mykiss) by different routes of administration. Fish Shellfish Immunol. 2004, 16, 251–264. [Google Scholar] [CrossRef]
- Sudha, P.M.; Low, S.; Kwang, J.; Gong, Z. Multiple tissue transformation in adult zebrafish by gene gun bombardment and muscular injection of naked DNA. Mar. Biotechnol. 2001, 3, 119–125. [Google Scholar] [CrossRef]
- Zheng, F.; Sun, X.; Liu, H.; Wu, X.; Zhong, N.; Wang, B.; Zhou, G. Distribution and expression in vitro and in vivo of DNA vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Chin. J. Oceanol. Limnol. 2010, 28, 67–74. [Google Scholar] [CrossRef]
- Tonheim, T.C.; Bøgwald, J.; Dalmo, R.A. What happens to the DNA vaccine in fish? A review of current knowledge. Fish Shellfish Immunol. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Miller, S.A.; Weinmann, A.S. Molecular mechanisms by which T-bet regulates T-helper cell commitment. Immunol. Rev. 2010, 238, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.R. Transcriptional regulation of T helper type 2 differentiation. Immunology 2014, 141, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, E.; Lorenzen, N.; Einer-Jensen, K.; Brudeseth, B.; Evensen, O. Time course study of in situ expression of antigens following DNA-vaccination against VHS in rainbow trout (Oncorhynchus mykiss Walbaum) fry. Fish Shellfish Immun. 2005, 19, 27–41. [Google Scholar] [CrossRef]
- Ruiz, S.; Tafalla, C.; Cuesta, A.; Estepa, A.; Coll, J.M. In vitro search for alternative promoters to the human immediate early cytomegalovirus (IE-cMV) to express the G gene of viral haemorrhagic septicemia virus (VHSV) in fish epithelial cells. Vaccine 2008, 26, 6620–6629. [Google Scholar] [CrossRef]
- Martinez-Lopez, A.; Chinchilla, B.; Encinas, P.; Gomez-Casado, E.; Estepa, A.; Coll, J.M. Replacement of the human cytomegalovirus promoter with fish enhancer and core elements to control the expression of the G gene of viral haemorrhagic septicemia virus (VHSV). J. Biotechnol. 2012, 164, 171–178. [Google Scholar] [CrossRef]
- Bearzotti, M.; Perrot, E.; Michard-Vanhee, C.; Jolivet, G.; Attal, J.; Theron, M.C.; Puissant, C.; Dreano, M.; Kopchick, J.J.; Powell, R. Gene expression following transfection of fish cells. J. Biotechnol. 1992, 26, 315–325. [Google Scholar] [CrossRef]
- Sunyer, J.O. Fishing for mammalian paradigms in the teleost immune system. Nat. Immunol. 2013, 14, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Koppang, E.O.; Fischer, U.; Moore, L.; Tranulis, M.A.; Dijkstra, J.M.; Kollner, B.; Aune, L.; Jirillo, E.; Hordvik, I. Salmonid T cells assemble in the thymus, spleen and in novel interbranchial lymphoid tissue. J. Anat. 2010, 217, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Leal, E.; Granja, A.G.; Zarza, C.; Tafalla, C. Distribution of T Cells in Rainbow Trout (Oncorhynchus mykiss) Skin and Responsiveness to Viral Infection. PLoS ONE 2016, 11, e0147477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.; Alnabulsi, A.; Secombes, C.J.; Bird, S. Identification and characterization of the transcription factors involved in T-cell development, T-bet, stat6 and foxp3, within the zebrafish, Danio rerio. FEBS J. 2010, 277, 128–147. [Google Scholar] [CrossRef] [PubMed]
- Monte, M.M.; Wang, T.; Holland, J.W.; Zou, J.; Secombes, C.J. Cloning and characterization of rainbow trout interleukin-17A/F2 (IL-17A/F2) and IL-17 receptor A: Expression during infection and bioactivity of recombinant IL-17A/F2. Infect. Immun. 2013, 81, 340–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, J.S.; Rohovec, J.S.; Fryer, J.L. Location of Vibrio anguillarum in Tissues of Infected Rainbow Trout (Salmo gairdneri) Using the Fluorescent Antibody Technique. Fish Pathol. 1985, 20, 229–235. [Google Scholar] [CrossRef]
- Peck, A.; Mellins, E.D. Precarious balance: Th17 cells in host defense. Infect. Immun. 2010, 78, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Fei, C.; Wu, H.; Yang, M.; Liu, Q.; Wang, Q.; Zhang, Y. Transcriptome profiling reveals Th17-like immune responses induced in zebrafish bath-vaccinated with a live attenuated Vibrio anguillarum. PLoS ONE 2013. [Google Scholar] [CrossRef]
- Plotkin, S.A. Is there a formula for an effective CMV vaccine? J. Clin. Virol. 2002, 25, 13–21. [Google Scholar] [CrossRef]
- Dubie, R.A.; Maksaereekul, S.; Shacklett, B.L.; Lemongello, D.; Cole, K.S.; Villinger, F.; Blozis, S.A.; Luciw, P.A.; Sparger, E.E. Co-immunization with IL-15 enhances cellular immune responses induced by a vif-deleted simian immunodeficiency virus proviral DNA vaccine and confers partial protection against vaginal challenge with SIVmac251. Virology 2009, 386, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wozniak, T.M.; Ryan, A.A.; Triccas, J.A.; Britton, W.J. Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection. Infect. Immun. 2006, 74, 557–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Injected with | No. Fish in Total | No. Fish for Sampling | No. Fish for Challenge |
---|---|---|---|---|
1 | pTagRFP-T-bet | 210 | 90 | 120 |
2 | pTagRFP-GATA-3 | 210 | 90 | 120 |
3 | pTagRFP-TGF-β | 210 | 90 | 120 |
4 | pTagRFP-N | 210 | 90 | 120 |
5 | PBS | 210 | 90 | 120 |
6 | Day 0 sampling | 15 | ||
Total fish | 1065 | 450 | 600 |
Gene | Primer | Sequence | Application | Acc. No. |
---|---|---|---|---|
T-bet | T-bet _F | TCAGATCTCGAGATGGGCGGCATAGGTGGCAATCTTT | Plasmid construct | GU979861 |
T-bet_R | CCGGGCCCGCGGTCAGTGGGAATAAAAGCCGTAGTAG | |||
GATA-3 | GATA-3_F | TCAGATCTCGAGATGGAAGTATCCGCCGACCAACCCC | Plasmid construct | EU418015 |
GATA-3_R | CCGGGCCCGCGGCTAGCCCATGGCAGAGACCATACTG | |||
pTag-RFP-N vector | pTag-RFP-N_F | ACAACTCCGCCCCATTGACGCAAAT | Plasmid construct | Cat. # FP142 |
pTAG-RFP-N_R | CCGCCCTCGACCACCTTGATTCTCATG | |||
T-bet | AsT-bet_F | CAGCAAAGTGTCACCTCCAA | Real-time | GU979861 |
AsT-bet_R | GGGCTTGTAGAAGCTGTTGC | |||
GATA-3 | AsGATA-3_F | CCCAAGCGACGACTGTCT | Real-time | EU418015 |
AsGATA-3_R | TCGTTTGACAGTTTGCACATGATG | |||
IL-4/13A | AsIL4/13A_F | CCGACATCTGAGGGTTTACAAC | Real-time | AB574339 |
AsIL4/13A_R | TGCCCTCCGCCTGGTTGTC | |||
IFN-γ | AsIFN-γ_F | CGTGTATCGGAGTATCTTCAACCA | Real-time | AY795563 |
AsIFN-γ_R | CTCCTGAACCTTCCCCTTGAC | |||
V. anguillarum | Vang16SRNA_F | CATGGCTCAGATTGAACGCTG | Real-time | X71830 |
Vang16SRNA_R | CCACATCAGGGCAATTTCCTAG | |||
P. salmonis | Pisci16SRNA_F | AGGGAGACTGCCGGTGATA | Real-time | PSU36941 |
Pisci16SRNA_R | ACTACGAGGCGCTTTCTCA | |||
EF-1α | AsEF1α_F | CACCACCGGCCATCTGATCTACAA | Real-time | AF321836 |
AsEF1α_R | CACCACCGGCCATCTGATCTACAA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slettjord, T.H.; Sekkenes, H.J.; Chi, H.; Bøgwald, J.; Swain, T.; Dalmo, R.A.; Kumari Swain, J. Overexpression of T-bet, GATA-3 and TGF-ß Induces IFN-γ, IL-4/13A, and IL-17A Expression in Atlantic Salmon. Biology 2020, 9, 82. https://doi.org/10.3390/biology9040082
Slettjord TH, Sekkenes HJ, Chi H, Bøgwald J, Swain T, Dalmo RA, Kumari Swain J. Overexpression of T-bet, GATA-3 and TGF-ß Induces IFN-γ, IL-4/13A, and IL-17A Expression in Atlantic Salmon. Biology. 2020; 9(4):82. https://doi.org/10.3390/biology9040082
Chicago/Turabian StyleSlettjord, Tiril H., Hege J. Sekkenes, Heng Chi, Jarl Bøgwald, Trilochan Swain, Roy A. Dalmo, and Jaya Kumari Swain. 2020. "Overexpression of T-bet, GATA-3 and TGF-ß Induces IFN-γ, IL-4/13A, and IL-17A Expression in Atlantic Salmon" Biology 9, no. 4: 82. https://doi.org/10.3390/biology9040082
APA StyleSlettjord, T. H., Sekkenes, H. J., Chi, H., Bøgwald, J., Swain, T., Dalmo, R. A., & Kumari Swain, J. (2020). Overexpression of T-bet, GATA-3 and TGF-ß Induces IFN-γ, IL-4/13A, and IL-17A Expression in Atlantic Salmon. Biology, 9(4), 82. https://doi.org/10.3390/biology9040082