Brain Control Reproduction by the Endocrine System of Female Blue Gourami (Trichogaster trichopterus)
Abstract
:1. Introduction
2. Environmental, Internal, and Sexual Behavior Factors Affecting the Female Brain
3. The Hormones Involved in Reproduction and Growth in the Brain of Blue Gourami
4. Pituitary Hormones Control Reproduction in Female Blue Gourami
Funding
Acknowledgments
Conflicts of Interest
References
- Degani, G. Blue Gourami (Trichogaster trichopterus) Model for Labyrinth Fish; Laser Pages Publishing: Jerusalem, Israel, 2001; pp. 1–134. [Google Scholar]
- Forselius, S. Studies of anabantid fishes. Parts I II III Zool. Bidrag Fran Uppsala 1975, 32, 593–597. [Google Scholar]
- Degani, G. The effect of diet, population density and temperature on the growth of larvae and juveniles of Trichogaster trichopterus (Bloch & Schneider 1801). J. Aqua. Trop. 1991, 6, 135–141. [Google Scholar]
- Degani, G.; Gur, N. Growth of juvenile Trichogaster leerii (Bleeker, 1852) on diets with various protein levels. Aquac. Res. 1992, 23, 161–166. [Google Scholar] [CrossRef]
- Miller, R.J. Studies on the Social Behavior of the Blue Gourami, Trichogaster trichopterus (Pisces, Belontiidae). Copeia 1964, 1964, 469. [Google Scholar] [CrossRef]
- McKinnon, J.; Liley, N. Asymmetric Species in Response to Female Sexual Pheromones by Males of TwoSpecies of Trichogaster (Pisces: Belontidae). Can. J. Zool. 1986, 65, 1129–1134. [Google Scholar] [CrossRef]
- Degani, G.; Bar Ziv, M. Male Blue Gourami (Trichogaster trichopterus) Nest-Building Behavior Is Affected by Other Males and Females. Open J. Anim. Sci. 2016, 6, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Zouakh, D.; Chebel, F.; Bouaziz, A.; Kara, M.H. Reproduction, age and growth of Tilapia zillii (Cichlidae) in Oued Righ wetland (southeast Algeria). Cybium 2016, 40, 235–243. [Google Scholar]
- Degani, G. Somatolactin Transcription during Oogenesis in Female Blue Gourami (Trichogaster trichopterus). Adv. Biol. Chem. 2015, 5, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Degani, G. Oogenesis control in multi-spawning blue gourami (Trichogaster trichopterus) as a model for the Anabantidae family. Int. J. Sci. Res. 2016, 5, 179–184. [Google Scholar]
- Degani, G. The effect of sexual behavior on oocyte development and steroid changes in Trichogaster trichopterus. Copeia 1993, 4, 1091–1096. [Google Scholar] [CrossRef]
- Degani, G.; Schreibman, M.P. Pheronome of male blue gourami and its effect on vitellogenesis, steroidogenesis and cells in pituitary of female. J. Fish Biol. 1993, 43, 475–485. [Google Scholar]
- Becker, D.; Galili, N.; Degani, G. GCNS- identified steroids and steroids goucoronides in gonads and holding water in gonads and holding water of Trichogaster tricopterus (Anabantidea, Pallas 1770). Comp. Biochem. Physiol. 1992, 103B, 15–19. [Google Scholar]
- Yaron, Z.; Levavi-Sivan, B. Endocrine Regulation of Fish Reproduction. In Encyclopedia of Fish Physiology: From Genome to Environment; Farrell, A.P., Ed.; Academic Press: San Diego, CA, USA, 2011; Volume 2, pp. 1500–1508. [Google Scholar]
- Farmer, S.W.; Hayashida, T.; Papkoff, H.; Polenov, A.L. Characteristics of growth hormone isolated from sturgeon (Acipenser güldenstädti) pituitaries. Endocrinology 1981, 108, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.Y.W.; Rees, C.B.; Bryan, M.B.; Li, W. Neurogenic and Neuroendocrine Effects of Goldfish Pheromones. J. Neurosci. 2008, 28, 14492–14499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, G.; Degani, G. Involvement of GnRH, PACAP and PRP in the Reproduction of Blue Gourami Females (Trichogaster trichopterus). J. Mol. Neurosci. 2012, 48, 9730–9738. [Google Scholar] [CrossRef]
- Degani, G.; Alon, A.; Stoler, A.; Bercocvich, D. Evidence of a reproduction-related function for brine Kisspeptin 2 and its receptors in Anabantidae fish (Trichogaster trichopterus). Int. J. Zool. Investig. 2017, 2, 106–122. [Google Scholar]
- Levy, G.; David, D.; Degani, G. Effect of environmental temperature on growth- and reproduction-related hormones gene expression in the female blue gourami (Trichogaster trichopterus). Comp. Biochem. Physiol. Part A 2011, 160, 381–389. [Google Scholar] [CrossRef]
- Levy, G.; Degani, G. Evidence of a reproduction-related function for pituitary adenylate cyclase-activating polypeptide-related peptide in an Anabantidae fish. J. Mol. Endocrinol. 2011, 46, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Degani, G. The effects of human chorionic gonadotropin on steroid changes in Trichogaster trichopterus (B & S 1801). Comp. Biochem. Physiol. 1990, 96, 525–528. [Google Scholar]
- Degani, G. Effect of gonadotropin and steroids on vitellogenesis during ovarian development in Trichogaster trichopterus. J. Aquacult. Trop. 1994, 9, 15–23. [Google Scholar]
- Degani, G.; Boker, R. Sensitivity to maturation inducing steroids and gonadotropin in the oocytes of Blue gourami Trichogaster trichopterus, (Anabantidae, Pallas, 1770). Gen. Comp. Endinocrinol. 1992, 85, 430–439. [Google Scholar] [CrossRef]
- Degani, G.; Boker, R. Vitellogenesis level and induction of maturation in the ovary of the Blue Gourami Trichogaster trichopterus (Anabantidae, Pallas, 1770). J. Exp. Zool. 1992, 263, 330–337. [Google Scholar] [CrossRef]
- Degani, G. Oocytes Development in the Fry of Blue Gourami, Trichogaster trichopterus. Int. J. Zool. Investig. 2018, 4, 11–20. [Google Scholar]
- Jaroensutasinee, M. Bubble nest habitat characteristics of wild Siamese fighting fish. J. Fish Biol. 2000, 58, 1311–1319. [Google Scholar] [CrossRef]
- Degani, G. 11-ketotesterone (KT-11), Estradiol estradiol (E2) level and cytochrome P450 (bgCYP19a) Ttranscription of in the testis of male blue gourami (Trichogaster trichopterus). Int. J. Sci. Res. 2015, 4, 641–643. [Google Scholar]
- Degani, G. Expression of SOX3 and SOX9 Genes in Gonads of Blue Gourami. Adv. Boil. Chem. 2014, 4, 322–330. [Google Scholar] [CrossRef]
- Degani, G. Expression of the growth hormone and insulin-like growth factor 1 genes in the male and female blue gourami (Trichogaster trichopterus) at different temperatures. J. Asian Sci. Res. 2014, 4, 413–427. [Google Scholar]
- Degani, G. Involvement of GnRH and Gonadotropin Genes in Oocyte Development of Blue Gourami Females (Trichogaster trichopterus). Adv. Boil. Chem. 2014, 4, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Levy, G.; Degani, G. The Role of Brain Peptides in the Reproduction of Blue Gourami Males (Trichogaster trichopterus). J. Exp. Zool. Part A Ecol. Genet. Physiol. 2013, 319, 461–470. [Google Scholar] [CrossRef]
- Degani, G.; David, D.; Levy, G. The effect of temperature on oogensis and brain gene expression of hormone involved in reproduction and growth in female blue gourami (Treichogaster trichopterus). Indian J. Sci. Technol. 2011, 4, 109–1010. [Google Scholar]
- Degani, G.; Yom Din, S. Hormones Transcription in the Testis of Blue Gourami (Trichogaster trichopterus, Pallas 1770) During Sexual Behavior. Bull. UASVM Anim. Sci. Biotechnol. 2011, 68, 43–50. [Google Scholar]
- Levy, G.; Jackson, K.; Degani, G. Association between pituitary adenylate cyclase-activating polypeptide and reproduction in the blue gourami. Gen. Comp. Endocrinol. 2010, 166, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Degani, G.; Yom, S.S.; Goldberg, D.; Jackson, K. cDNA cloning of blue gourami (Trichogaster trichopterus) prolactin and its expression during the gonadal cycles of males and females. J. Endocrinol. Investig. 2010, 33, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Levy, G.; Gothilf, Y.; Degani, G. Brain gonadotropin releasing hormone3 expression variation during oogenesis and sexual behavior and its effect on pituitary hormonal expression in the blue gourami. Comp. Biochem. Physiol. Part A 2009, 154, 241–248. [Google Scholar] [CrossRef]
- Ezagouri, E.; Yom-Din, M.S.; Goldberg, D.; Jackson, K.; Levavi-Sivan, B.; Degani, G. Expression of the two CYP19 (P450 aromatase) genes in the male and female blue gourami (Trichogaster trichopterus) during the reproduction cycle. Gen. Comp. Endo. 2008, 159, 208–213. [Google Scholar] [CrossRef]
- Degani, G.; Jackson, K.; Goldberg, D.; Sarfati, R.; Avtalion, R. FSH, LH and growth hormone gene expiration in blue gourami (Trichogaster trichopterus, Pallas, 1770) during spermatogenesis and male sexual behavior. Zool. Sci. 2003, 20, 737–743. [Google Scholar] [CrossRef]
- Jackson, K.; Goldberg, G.; Ofir, R.; Abraham, M.; Degani, G. Blue gourami (Trichogaster trichopterus) gonadotropic subunits (I & II) cDNA sequences and expression during oogenesis. J. Mol. Endocrinol. 1999, 23, 177–187. [Google Scholar]
- Degani, G.; Boker, R.; Jackson, K. Gonadotropin, growth hormone cells and oocyte development in female gourami after injection of gonadotropin-releasing analogue. J. Aquacult. Trop. 1998, 13, 159–170. [Google Scholar]
- Mananos, E.; Zohar, Y.; Degani, G. The relationship between gonadotropin and sexual behavior of male Trichogaster trichopterus (Pallas). Indian J. Fish. 1997, 44, 239–246. [Google Scholar]
- Degani, G.; Mananos, E.L.; Jackson, K.; Abraham, M.; Zohar, Y. Changes in plasma and pituitary in female blue gourami during the end of vitellogenesis and final oocyte maturation. J. Exp. Zool. 1997, 279, 377–385. [Google Scholar] [CrossRef]
- Degani, G.; Gallagher, M.L. Steroid and carp pituitary extract influences on follicle frequency in vitellogenesis and maturation of Trichogaster trichopterus. Aquacult. Trop. 1996, 11, 39–48. [Google Scholar]
- Degani, G.; Jackson, K.; Marmelstein, G. The effect of LHRH analogue on sex steroid profiles in female Trichogaster trichopterus (Anabantidae, Pallas). J. Aquacult. Trop. 1995, 10, 297–307. [Google Scholar]
- Jackson, K.; Abraham, M.; Degani, G. Oocyte maturation triggered by the male in a tropical fish Trichogaster trichopterus. J. Morphol. 1994, 220, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Degani, G.; Gal, E.; Vaya, J. In vitro biosynthesis of steroids in ovary of female Trichogaster trichopterus (Pallas, 1770). Comp. Biochem. Physiol. 1994, 109, 715–723. [Google Scholar]
- Degani, G. Reproduction control in multi-spawning asynchronic Trichogaster trichopterus (Pallas) as a model for anabantidae family. Trends Comp. Biochem. Physiol. 1993, 1, 1269–1275. [Google Scholar]
- Degani, G. The effect of temperature, light, fish size and container size on breeding of Trichogaster trichopterus. Isr. J. Aquac. 1989, 41, 67–73. [Google Scholar]
- Jackson, K.; Abraham, M.; Degani, G. Cellular events in Trichogaster trichopterus adenohypophysis during final oocyte maturation. Indian J. Fish. 2005, 52, 1–13. [Google Scholar]
- Goldberg, D.; Jackson, K.; Yom-Din, S.; Degani, G. Growth hormone of Trichogaster trichopterus: cDNA cloning, sequencing and analysis of mRNA expression during oogenesis. J. Aqua. Trop. 2004, 19, 215–229. [Google Scholar]
- Crim, L.W.; Peter, R.E.; Van Der Kraak, G. The Use of LHRH Analogs in Aquaculture. In LHRH and Its Analogs; Vickery, B.H., Nestor, J.J., Eds.; Springer: Dordrecht, The Netherlands, 1987; eBook Packages Springer Book Archive. [Google Scholar]
- Degani, G. Steroids Controlled by Various Hormones Influence Oogenesis and Spermatogenesis of the Model Fish, Trichogaster Trichopterus (Anabantidae, Pallas). In Advances in Sex Steroids; Avid Science Publications: Telangana, India, 2017; Chapter 1, Sex Steroids; pp. 1–31. [Google Scholar]
- David, D.; Degani, G. Effect of Temperature on Gene Expression of Hormones that Control Growth and Reproduction in the Male Blue Gourami (Trichogaster trichopterus). J. Exp. Zool. 2011, 313A, 1–11. [Google Scholar]
- Zohar, Y.; Muñoz-Cueto, J.A.; Elizur, A.; Kah, O. Neuroendocrinology of reproduction in teleost fish. Gen. Comp. Endocrinol. 2010, 165, 438–455. [Google Scholar] [CrossRef]
- Degani, G.; Alon, A.; Hajouj, A.; Meerson, A. Vitellogenesis in the blue gourami (Trichogaster trichopterus) is accompanied by changes in the brain transcriptome. Fishes 2019, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Tsunekawa, K.; Moon, M.J.; Um, H.N.; Hwang, J.-I.; Osugi, T.; Otaki, N.; Sunakawa, Y.; Kim, K.; Vaudry, H.; et al. Molecular Evolution of Multiple Forms of Kisspeptins and GPR54 Receptors in Vertebrates. Endocrinology 2009, 150, 2837–2846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servili, A.; Le Page, Y.; Leprince, J.; Caraty, A.; Escobar, S.; Parhar, I.S.; Seong, J.Y.; Vaudry, H.; Kah, O. Organization of Two Independent Kisspeptin Systems Derived from Evolutionary-Ancient Kiss Genes in the Brain of Zebrafish. Endocrinology 2011, 152, 1527–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitahashi, T.; Ogawa, S.; Parhar, I.S. Cloning and Expression ofkiss2in the Zebrafish and Medaka. Endocrinology 2009, 150, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Liu, Y.; Huang, X.; Huang, W.; Lu, D.-Q.; Zhu, P.; Shi, Y.; Cheng, C.; Liu, X.; et al. Structural and functional multiplicity of the kisspeptin/GPR54 system in goldfish (Carassius auratus). J. Endocrinol. 2009, 201, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Espigares, F.; Rocha, A.; Gómez, A.; Carrillo, M.; Zanuy, S. Photoperiod modulates the reproductive axis of European sea bass through regulation of kiss1 and gnrh2 neuronal expression. Gen. Comp. Endocrinol. 2017, 240, 35–45. [Google Scholar] [CrossRef]
- Marvel, M.; Spicer, O.S.; Wong, T.-T.; Zmora, N.; Zohar, Y. Knockout of the Gnrh genes in zebrafish: Effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides. Biol. Rep. 2018, 99, 565–577. [Google Scholar]
- Degani, G.; Din, S.Y.; Hurvitz, A. Transcription of Insulin-like Growth Factor Receptor in Russian Sturgeon (Acipenser gueldenstaedtii) Ovary during Oogenesis. Univers. J. Agric. Res. 2017, 5, 119–124. [Google Scholar] [CrossRef] [Green Version]
Acronyms Gene ID | Full Name of the Gene | GenBank Function |
---|---|---|
Pre-Vitellogenesis | ||
CERS6 | Ceramide synthase 6 | DNA binding Dihydroceramide synthase. Catalyzes the acylation of sphingosine to form dihydroceramide. |
CERS5 | Ceramide synthase 5 | |
AAK1 | AP2 associated kinase 1 | Regulates clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit of the adaptor protein complex 2 (AP-2), which ensures high affinity binding of AP-2 to cargo membrane proteins during the initial stages of endocytosis. |
AHSG | (FETUA) alpha 2-HS glycoprotein | Probably involved in differentiation. |
CLSTN3 | Calsyntenin 3 | May modulate calcium-mediated postsynaptic signals. Complex formation with APBA2 and APP, stabilizes APP metabolism and enhances APBA2-mediated suppression of beta-APP40 secretion due to the retardation of intracellular APP maturation. |
ZEP1 | Zeaxanthin epoxidase | Converts zeaxanthin into antheraxanthin and subsequently violaxanthin. |
DLX5 | Distal-less homeobox 5 | Transcriptional factor involved in bone development. Acts as an immediate early BMP-responsive transcriptional activator essential for osteoblast differentiation. |
RGRF2 | Ras guanine nucleotide exchange factor 2 | Functions as a calcium-regulated nucleotide exchange factor activating both Ras and rac1 through the exchange of bound GDP for GTP. May function in synaptic plasticity. |
CRY1 | Cryptochrome-1 | Transcriptional repressor that forms a core component of the circadian clock. |
MBNL1 | Muscle blind like splicing regulator 1 | Negative regulation of axon extension involved in axon guidance. Metal ion binding. |
ROBO2 | Roundabout guidance receptor 2 |
|
IQEC3 | IQ motif and Sec7 domain 3 | Acts as a guanine nucleotide exchange factor (GEF) for ARF1. |
ATP1B2 | ATPase Na+/K+ transporting subunit Beta 2 | This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na+ and K+ ions across the plasma membrane. The exact function of the beta-2 subunit is not known. |
PHOP1 | Probable phosphatase phospho1 | Probable phosphatase, involved in bone mineralization. |
UNC80 | Unc-80 homolog, NALCN activator | Component of the NALCN sodium channel complex required for channel regulation. UNC80 is essential for NALCN sensitivity to extracellular calcium. |
ARX | Aristaless related homeobox | Appears to be indispensable for central nervous system development. May play a role in the neuronal differentiation of the ganglionic eminence and ventral thalamus. May also be involved in axonal guidance in the floor plate. |
Rtn4rl2 | Reticulon-4 receptor-like 2 | Cell surface receptor. Plays a functionally redundant role in postnatal brain development and in regulating axon regeneration in the adult central nervous system. Contributes to normal axon migration across the brain midline and normal formation of the corpus callosum. Protects motoneurons against apoptosis. |
Vitellogenesis | ||
RGRF1 | Ras Protein Specific Guanine Nucleotide Releasing Factor 1 | Promotes the exchange of Ras-bound GDP by GTP. |
EFNA3 | Ephrin A3 | Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. |
STAU2 | Staufen double-stranded RNA binding protein 2 | RNA binding. |
H2B1 | Histone H2B-like | DNA binding, protein heterodimerization activity. |
NFIC | Nuclear factor I C | Recognizes and binds the palindromic sequence 5′-TTGGCNNNNNGCCAA-3′ present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
JUNB | JunB proto-oncogene, AP-1 transcription factor subunit |
|
COF1 | Cofilin | Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity. Regulates actin cytoskeleton dynamics. Important for normal progress through mitosis and normal cytokinesis. |
EPS15 | Epidermal growth factor receptor pathway substrate 15 | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. |
CAMP3 | Calmodulin-regulated spectrin-associated protein 3 | Microtubule minus-end binding protein that acts as a regulator of non-centrosomal microtubule dynamics and organization. Specifically required for the biogenesis and maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites. |
RHG44 | Rho GTPase-activating protein 44-like | GTPase-activating protein (GAP) that stimulates the GTPase activity of Rho-type GTPases. Thereby, controls Rho-type GTPases cycling between their active GTP-bound and inactive GDP-bound states. |
TMEM59L | Transmembrane protein 59 like | Modulates the O-glycosylation and complex N-glycosylation steps occurring during the Golgi maturation of APP. Inhibits APP transport to the cell surface and further shedding. |
TSN8 | Tetraspanin-8 | Integrin binding |
YWHAE (1433E) | Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon |
|
RL36 | Ribosomal protein 36 60S large ribosomal subunit | Component of the large ribosomal subunit. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degani, G. Brain Control Reproduction by the Endocrine System of Female Blue Gourami (Trichogaster trichopterus). Biology 2020, 9, 109. https://doi.org/10.3390/biology9050109
Degani G. Brain Control Reproduction by the Endocrine System of Female Blue Gourami (Trichogaster trichopterus). Biology. 2020; 9(5):109. https://doi.org/10.3390/biology9050109
Chicago/Turabian StyleDegani, Gad. 2020. "Brain Control Reproduction by the Endocrine System of Female Blue Gourami (Trichogaster trichopterus)" Biology 9, no. 5: 109. https://doi.org/10.3390/biology9050109
APA StyleDegani, G. (2020). Brain Control Reproduction by the Endocrine System of Female Blue Gourami (Trichogaster trichopterus). Biology, 9(5), 109. https://doi.org/10.3390/biology9050109