Regional Phenotypic Differences of the Opener Muscle in Procambarus clarkii: Sarcomere Length, Fiber Diameter, and Force Development
Abstract
:1. Introduction
2. Methods and Materials
2.1. Animals and Care
2.2. Dissection
2.3. Stimulation Paradigm
2.4. Measurement of Force
2.5. Electrophysiology
2.6. Muscle Anatomy
2.7. Statistical Analysis
3. Results
3.1. Force Generation in Three Regions of Opener Muscle
3.2. Sarcomere Length in Three Regions of Opener Muscle
3.3. Effect of Serotonin on Force Generation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zelena, J.; Soukup, T. The in-series and in-parallel components in the rat hindlimb tendon organs. Neuroscience. 1983, 9, 899–910. [Google Scholar] [CrossRef]
- Chen, J.; Hahn, D.; Power, G.A. Shortening-induced residual force depression in humans. J. Appl. Physiol. 2019, 126, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Stuart, D.G.; Mosher, C.C.; Gerlach, R.L.; Reinking, R.M. Mechanical arrangement and transducing properties of Golgi tendon organs. Exp. Brain Res. 1972, 14, 274–292. [Google Scholar] [CrossRef]
- Houk, J.; Henneman, E. Responses of Golgi tendon organs to active contractions of the soleus muscle of the cat. J. Neurophysiol. 1967, 30, 466–481. [Google Scholar] [CrossRef]
- Macmillan, D.L.; Dando, M.R. Tension receptors on the apodemes of muscles in the walking legs of the crab, Cancer magister. Mar. Behav. Physiol. 1972, 1, 185–208. [Google Scholar] [CrossRef]
- Cooper, R.L.; Hartman, H.B. Responses of bender apodeme tension receptors in the Dungeness crab, Cancer magister. Comp. Biochem. Physiol. 1994, 109, 479–486. [Google Scholar] [CrossRef]
- Caillé, J.; Ildefonse, M.; Rougier, O. Excitation-contraction coupling in skeletal muscle. Prog. Biophys. Molec. Biol. 1985, 46, 185–239. [Google Scholar] [CrossRef]
- LaFramboise, W.A.; Griffis, B.; Bonner, P.; Warren, W.; Scalise, D.; Guthrie, R.D.; Cooper, R.L. Muscle type-specific myosin isoforms in crustacean muscles. J. Exp. Biol. 2000, 286, 36–48. [Google Scholar] [CrossRef]
- Gunzel, D.; Galler, S.; Rathmayer, W. Fibre heterogeneity in the closer and opener muscles of crayfish walking legs. J. Exp. Biol. 1993, 175, 267–281. [Google Scholar]
- Mykles, D.L.; Medler, S.; Koenders, A.; Cooper, R.L. Myofibrillar protein isoform expression is correlated with synaptic efficacy in slow fibres of the claw and leg opener muscles of crayfish and lobster. J. Exp. Biol. 2002, 205, 513–522. [Google Scholar]
- Cooper, R.L.; Marin, L.; Atwood, H.L. Synaptic differentiation of a single motor neuron: Conjoint definition of transmitter release, presynaptic calcium signals, and ultrastructure. J. Neurosci. 1995, 15, 4209–4222. [Google Scholar] [CrossRef] [Green Version]
- Tryba, A.K.; Hartman, H.B. Dynamic responses of series force receptors innervating the opener muscle apodeme in the blue crab, Callinectes sapidus. J. Comp. Physiol. 1997, 180, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Majeed, Z.R.; Titlow, J.; Hartman, H.B.; Cooper, R.L. Proprioception and Tension Receptors in Crab Limbs: Student Laboratory Exercises. J. Vis. Exp. 2013. [Google Scholar] [CrossRef] [Green Version]
- Logsdon, S.; Johnstone, A.F.M.; Viele, K.; Cooper, R.L. The regulation of synaptic vesicles pools within motor nerve terminals during short-term facilitation and neuromodulation. J. Appl. Physiol. 2006, 100, 662–671. [Google Scholar] [CrossRef]
- Southard, R.C.; Haggard, J.; Crider, M.; Whiteheart, S.; Cooper, R. Influence of serotonin on the kinetics of vesicular release. Brain Res. 2000, 871, 16–28. [Google Scholar] [CrossRef]
- Goy, M.F.; Schwarz, T.L.; Kravitz, E.A. Serotonin-induced protein phosphorylation in a lobster neuromuscular preparation. J. Neurosci. 1984, 4, 611–626. [Google Scholar] [CrossRef] [Green Version]
- Goy, M.F.; Kravitz, E.A. Cyclic AMP only partially mediates the actions of serotonin at lobster neuromuscular junctions. J. Neurosci. 1989, 9, 369–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.S.; Cooper, R.L. Historical View and Physiology Demonstration at the NMJ of the Crayfish Opener Muscle. J. Vis. Exp. 2009. [Google Scholar] [CrossRef]
- McRae, T. Chemical removal or nitrite and chlorinating agents from municipal water supplies used for crayfish and aquarium finfish culture. Freshw. Crayfish J. Astacol. 1999, 12, 727–732. [Google Scholar]
- Dudel, J.; Kuffler, S.W. Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. 1961, 155, 543–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, P.K.; Atwood, H.L. Membrane resistance change induced by nitrate and other anions in long and short sarcomere muscle fibres of crayfish. Comp. Biochem. Physiol. 1971, 40, 265–271. [Google Scholar] [CrossRef]
- Battelle, B.A.; Kravitz, E.A. Targets of octopamine action in the lobster: Cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J. Pharmacol. Exp. Ther. 1978, 205, 438–448. [Google Scholar] [PubMed]
- Kravitz, E.A.; Glusman, S.; Harris-Warrick, R.M.; Livingstone, M.S.; Schwarz, T.; Goy, M.F. Amines and a peptide as neurohormones in lobsters: Actions on neuromuscular preparations and preliminary behavioural studies. J. Exp. Biol. 1980, 89, 159–175. [Google Scholar] [PubMed]
- Holsinger, R.C. The Effect of Regional Phenotypic Differences of Procambarus clarkii Opener Muscle on Sarcomere Length, Fiber Diameter, and Force Development. Master’s Thesis, University of Kentucky, College of Arts and Sciences, Lexington, KY 40506, USA, April 2013. [Google Scholar]
- Glusman, S.; Kravitz, E.A. The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations. J. Physiol. Lond. 1982, 325, 223–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabor, J.; Cooper, R.L. Physiologically identified 5-HT2 -like receptors at the crayfish neuromuscular junction. Brain Res. 2002, 932, 91–98. [Google Scholar] [CrossRef]
- Spitzer, N.; Edwards, D.H.; Baro, D.J. Conservation of structure, signaling and pharmacology between two serotonin receptor subtypes from decapod crustaceans, Panulirus interruptus and Procambarus clarkii. J. Exp. Biol. 2008, 211, 92–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.N.; Tang, Y.G.; Zucker, R.S. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol. 1999, 81, 781–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiumara, F.; Giovedì, S.; Menegon, A.; Milanese, C.; Merlo, D.; Montarolo, P.G.; Valtorta, F.; Benfenati, F.; Ghirardi, M. Phosphorylation by cAMP-dependent protein kinase is essential for synapsin-induced enhancement of neurotransmitter release in invertebrate neurons. J. Cell. Sci. 2004, 117, 5145–5154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.-H.; Cooper, R.L. Serotonin and synaptic transmission at invertebrate neuromuscular junctions. Exp. Neurobiol. 2012, 21, 101–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Frequency of Stimulation | ||||||||
---|---|---|---|---|---|---|---|---|
Intact Tissue | 5 Hz | 10 Hz | 20 Hz | 30 Hz | 40 Hz | 50 Hz | 60 Hz | 70 Hz |
Distal | 0.003 | 0.021 | 0.013 | 0.008 | 0.004 | 0.005 | 0.011 | 0.015 |
Central | 0.003 | 0.014 | 0.004 | 0.024 | 0.058 | 0.058 | 0.085 | 0.091 |
Proximal | 0.003 | 0.022 | 0.019 | 0.018 | 0.015 | 0.015 | 0.026 | 0.016 |
Frequency of Stimulation | ||||||||
---|---|---|---|---|---|---|---|---|
Intact Tissue | 5 Hz | 10 Hz | 20 Hz | 30 Hz | 40 Hz | 50 Hz | 60 Hz | 70 Hz |
Distal | 0.001 | 0.0216 | −0.013 | 0.0167 | 0.015 | 0.005 | 0.048 | 0.012 |
Central | 0.001 | 0.011 | 0.033 | 0.061 | 0.006 | 0.02 | 0.031 | 0.049 |
Proximal | 0.002 | −0.017 | 0.013 | −0.005 | 0.009 | 0.013 | −0.013 | −0.009 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holsinger, R.C.; Cooper, R.L. Regional Phenotypic Differences of the Opener Muscle in Procambarus clarkii: Sarcomere Length, Fiber Diameter, and Force Development. Biology 2020, 9, 118. https://doi.org/10.3390/biology9060118
Holsinger RC, Cooper RL. Regional Phenotypic Differences of the Opener Muscle in Procambarus clarkii: Sarcomere Length, Fiber Diameter, and Force Development. Biology. 2020; 9(6):118. https://doi.org/10.3390/biology9060118
Chicago/Turabian StyleHolsinger, Rachel C., and Robin L. Cooper. 2020. "Regional Phenotypic Differences of the Opener Muscle in Procambarus clarkii: Sarcomere Length, Fiber Diameter, and Force Development" Biology 9, no. 6: 118. https://doi.org/10.3390/biology9060118
APA StyleHolsinger, R. C., & Cooper, R. L. (2020). Regional Phenotypic Differences of the Opener Muscle in Procambarus clarkii: Sarcomere Length, Fiber Diameter, and Force Development. Biology, 9(6), 118. https://doi.org/10.3390/biology9060118