Cognitive Stimulation Induces Differential Gene Expression in Octopus vulgaris: The Key Role of Protocadherins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Model and Subject Details
2.2. Acclimatization Experiment
2.3. Cognitive Stimulation
2.4. RNA Extraction, Selection and Primer Design, and Gene Expression Pattern
3. Results
3.1. Acclimatization Experiment
3.2. Gene Expression Patterns
3.2.1. Control Animal Group
3.2.2. Tested and Wild Animal Groups
4. Discussion
4.1. Selected Gene Expression Analysis in Octopus Brain Areas
4.2. Learning Centers of the Octopus’s Brain
4.3. Lower Motor Centers of The Octopus’s Brain
4.4. The Multi-Sense Integration Area
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kuba, M.; Meisel, D.V.; Byrne, R.A.; Griebel, U.; Mather, J.A. Looking at play in Octopus vulgaris. Berl. Paläontol. Abh. 2003, 3, 163–169. [Google Scholar]
- Richter, J.N.; Hochner, B.; Kuba, M.J. Pull or push? Octopuses solve a puzzle problem. PLoS ONE 2016, 11, e0152048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boal, J.G.; Dunham, A.W.; Williams, K.T.; Hanlon, R.T. Experimental evidence for spatial learning in octopuses (Octopus bimaculoides). J. Comp. Psychol. 2000, 114, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Hvorecny, L.M.; Grudowski, J.L.; Blakeslee, C.J.; Simmons, T.L.; Roy, P.R.; Brooks, J.A.; Hanner, R.M.; Beigel, M.E.; Karson, M.A.; Nichols, R.H.; et al. Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Anim. Cogn. 2007, 10, 449–459. [Google Scholar] [CrossRef]
- Gutnick, T.; Byrne, R.A.; Hochner, B.; Kuba, M. Octopus vulgaris uses visual information to determine the location of its arm. Curr. Biol. 2011, 21, 460–462. [Google Scholar] [CrossRef] [Green Version]
- Kuba, M.J.; Byrne, R.A.; Burghardt, G.M. A new method for studying problem solving and tool use in stingrays (Potamotrygon castexi). Anim. Cogn. 2010, 13, 507–513. [Google Scholar] [CrossRef]
- Kuba, M.J.; Gutnick, T.; Burghardt, G.M. Learning from play in octopus. In Cephalopod Cognition; Darmaillacq, A.-S., Dickel, L., Mather, J., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 57–67. [Google Scholar]
- Mather, J.A. Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J. Zool. 1991, 224, 27–39. [Google Scholar] [CrossRef]
- Mather, J.A. Cephalopod consciousness: Behavioural evidence. Conscious. Cogn. 2008, 17, 37–48. [Google Scholar] [CrossRef]
- Bertapelle, C.; Polese, G.; Di Cosmo, A. Enriched environment increases PCNA and PARP1 levels in Octopus vulgaris central nervous system: First evidence of adult neurogenesis in lophotrochozoa. J. Exp. Zool. B Mol. Dev. Evol. 2017. [Google Scholar] [CrossRef]
- De Lisa, E.; De Maio, A.; Moroz, L.L.; Moccia, F.; Mennella, M.R.; Di Cosmo, A. Characterization of novel cytoplasmic PARP in the brain of Octopus vulgaris. Biol. Bull. 2012, 222, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Di Cosmo, A.; Bertapelle, C.; Porcellini, A.; Polese, G. Magnitude assessment of adult neurogenesis in the Octopus vulgaris brain using a flow cytometry-based technique. Front. Physiol. 2018, 9, 1050. [Google Scholar] [CrossRef]
- Albertin, C.B.; Simakov, O.; Mitros, T.; Wang, Z.Y.; Pungor, J.R.; Edsinger-Gonzales, E.; Brenner, S.; Ragsdale, C.W.; Rokhsar, D.S. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 2015, 524, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Liscovitch-Brauer, N.; Alon, S.; Porath, H.T.; Elstein, B.; Unger, R.; Ziv, T.; Admon, A.; Levanon, E.Y.; Rosenthal, J.J.; Eisenberg, E. Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell 2017, 169, 191–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styfhals, R.; Seuntjens, E.; Simakov, O.; Sanges, R.; Fiorito, G. In silico identification and expression of protocadherin gene family in Octopus vulgaris. Front. Physiol. 2018, 9, 1905. [Google Scholar] [CrossRef] [PubMed]
- Hertel, N.; Krishna, K.; Nuernberger, M.; Redies, C. A cadherin-based code for the divisions of the mouse basal ganglia. J. Comp. Neurol. 2008, 508, 511–528. [Google Scholar] [CrossRef] [PubMed]
- Hertel, N.; Redies, C.; Medina, L. Cadherin expression delineates the divisions of the postnatal and adult mouse amygdala. J. Comp. Neurol. 2012, 520, 3982–4012. [Google Scholar] [CrossRef] [PubMed]
- Junghans, D.; Heidenreich, M.; Hack, I.; Taylor, V.; Frotscher, M.; Kemler, R. Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system. Eur. J. Neurosci. 2008, 27, 559–571. [Google Scholar] [CrossRef]
- Kim, S.Y.; Mo, J.W.; Han, S.; Choi, S.Y.; Han, S.B.; Moon, B.H.; Rhyu, I.J.; Sun, W.; Kim, H. The expression of non-clustered protocadherins in adult rat hippocampal formation and the connecting brain regions. Neuroscience 2010, 170, 189–199. [Google Scholar] [CrossRef]
- Krishna, K.K.; Hertel, N.; Redies, C. Cadherin expression in the somatosensory cortex: Evidence for a combinatorial molecular code at the single-cell level. Neuroscience 2011, 175, 37–48. [Google Scholar] [CrossRef]
- Goodman, K.M.; Rubinstein, R.; Dan, H.; Bahna, F.; Mannepalli, S.; Ahlsen, G.; Thu, C.A.; Sampogna, R.V.; Maniatis, T.; Honig, B.; et al. Protocadherin cis-dimer architecture and recognition unit diversity. Proc. Natl. Acad. Sci. USA 2017, 114, E9829–E9837. [Google Scholar] [CrossRef] [Green Version]
- Peek, S.L.; Mah, K.M.; Weiner, J.A. Regulation of neural circuit formation by protocadherins. Cell. Mol. Life Sci. 2017, 74, 4133–4157. [Google Scholar] [CrossRef] [PubMed]
- Blake, J.A.; Thomas, M.; Thompson, J.A.; White, R.; Ziman, M. Perplexing pax: From puzzle to paradigm. Dev. Dyn. 2008, 237, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- Blake, J.A.; Ziman, M.R. Pax genes: Regulators of lineage specification and progenitor cell maintenance. Development 2014, 141, 737–751. [Google Scholar] [CrossRef] [Green Version]
- Scherholz, M.; Redl, E.; Wollesen, T.; de Oliveira, A.L.; Todt, C.; Wanninger, A. Ancestral and novel roles of Pax family genes in mollusks. BMC Evol. Biol. 2017, 17, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollesen, T.; Monje, S.V.R.; Todt, C.; Degnan, B.M.; Wanninger, A. Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development. BMC Evol. Biol. 2015, 15, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ericson, J.; Rashbass, P.; Schedl, A.; Brenner-Morton, S.; Kawakami, A.; van Heyningen, V.; Jessell, T.M.; Briscoe, J. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 1997, 90, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Monsoro-Burq, A.H. PAX transcription factors in neural crest development. Semin. Cell Dev. Biol. 2015, 44, 87–96. [Google Scholar] [CrossRef]
- Thompson, J.A.; Ziman, M. Pax genes during neural development and their potential role in neuroregeneration. Prog. Neurobiol. 2011, 95, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Breitling, R.; Gerber, J.K. Origin of the paired domain. Dev. Genes Evol. 2000, 210, 644–650. [Google Scholar] [CrossRef]
- He, H.; Noll, M. Differential and redundant functions of gooseberry and gooseberry neuro in the central nervous system and segmentation of the Drosophila embryo. Dev. Biol. 2013, 382, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Kilchherr, F.; Baumgartner, S.; Bopp, D.; Frei, E.; Noll, M. Isolation of the paired gene of Drosophila and its spatial expression during early embryogenesis. Nature 1986, 321, 493–499. [Google Scholar] [CrossRef]
- Colomb, S.; Joly, W.; Bonneaud, N.; Maschat, F. A concerted action of Engrailed and Gooseberry-Neuro in neuroblast 6-4 is triggering the formation of embryonic posterior commissure bundles. PLoS ONE 2008, 3, e2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaerts, P.; Munoz-Marmol, A.M.; Glardon, S.; Castillo, E.; Sun, H.; Li, W.H.; Gehring, W.J.; Salo, E. Isolation and expression of a Pax-6 gene in the regenerating and intact Planarian Dugesia(G)tigrina. Proc. Natl. Acad. Sci. USA 1999, 96, 558–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salo, E.; Pineda, D.; Marsal, M.; Gonzalez, J.; Gremigni, V.; Batistoni, R. Genetic network of the eye in Platyhelminthes: Expression and functional analysis of some players during planarian regeneration. Gene 2002, 287, 67–74. [Google Scholar] [CrossRef]
- Quigley, I.K.; Xie, X.; Shankland, M. Hau-Pax6A expression in the central nervous system of the leech embryo. Dev. Genes Evol. 2007, 217, 459–468. [Google Scholar] [CrossRef]
- Buresi, A.; Croll, R.P.; Tiozzo, S.; Bonnaud, L.; Baratte, S. Emergence of sensory structures in the developing epidermis in Sepia officinalis and other coleoid cephalopods. J. Comp. Neurol. 2014, 522, 3004–3019. [Google Scholar] [CrossRef]
- Gehring, W.J. New perspectives on eye development and the evolution of eyes and photoreceptors. J. Hered. 2005, 96, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Gehring, W.J.; Ikeo, K. Pax 6: Mastering eye morphogenesis and eye evolution. Trends Genet. 1999, 15, 371–377. [Google Scholar] [CrossRef]
- O’Brien, E.K.; Degnan, B.M. Expression of POU, Sox, and Pax genes in the brain ganglia of the tropical abalone Haliotis asinina. Mar. Biotechnol. N. Y. 2000, 2, 545–557. [Google Scholar] [CrossRef]
- Tomarev, S.I.; Callaerts, P.; Kos, L.; Zinovieva, R.; Halder, G.; Gehring, W.; Piatigorsky, J. Squid Pax-6 and eye development. Proc. Natl. Acad. Sci. USA 1997, 94, 2421–2426. [Google Scholar] [CrossRef] [Green Version]
- Passamaneck, Y.J.; Furchheim, N.; Hejnol, A.; Martindale, M.Q.; Luter, C. Ciliary photoreceptors in the cerebral eyes of a protostome larva. EvoDevo 2011, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loosli, F.; Kmita-Cunisse, M.; Gehring, W.J. Isolation of a Pax-6 homolog from the ribbonworm Lineus sanguineus. Proc. Natl. Acad. Sci. USA 1996, 93, 2658–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navet, S.; Buresi, A.; Baratte, S.; Andouche, A.; Bonnaud-Ponticelli, L.; Bassaglia, Y. The Pax gene family: Highlights from cephalopods. PLoS ONE 2017, 12, e0172719. [Google Scholar] [CrossRef] [PubMed]
- Nodl, M.T.; Fossati, S.M.; Domingues, P.; Sanchez, F.J.; Zullo, L. The making of an octopus arm. EvoDevo 2015, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Nodl, M.T.; Kerbl, A.; Walzl, M.G.; Muller, G.B.; de Couet, H.G. The cephalopod arm crown: Appendage formation and differentiation in the Hawaiian bobtail squid Euprymna scolopes. Front. Zool. 2016, 13, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, C.; Renner, S.; Luer, K.; Technau, G.M. The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in the Drosophila embryonic CNS. Dev. Dyn. 2007, 236, 3562–3568. [Google Scholar] [CrossRef]
- Meyer, N.P.; Seaver, E.C. Neurogenesis in an annelid: Characterization of brain neural precursors in the polychaete Capitella sp. I. Dev. Biol. 2009, 335, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Robinow, S.; White, K. Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. J. Neurobiol. 1991, 22, 443–461. [Google Scholar] [CrossRef]
- Quattrone, A.; Pascale, A.; Nogues, X.; Zhao, W.; Gusev, P.; Pacini, A.; Alkon, D.L. Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 11668–11673. [Google Scholar] [CrossRef] [Green Version]
- Samson, M.L.; Chalvet, F. Found in neurons, a third member of the Drosophila elav gene family, encodes a neuronal protein and interacts with elav. Mech. Dev. 2003, 120, 373–383. [Google Scholar] [CrossRef]
- Buresi, A.; Canali, E.; Bonnaud, L.; Baratte, S. Delayed and asynchronous ganglionic maturation during cephalopod neurogenesis as evidenced by Sof-elav1 expression in embryos of Sepia officinalis (Mollusca, Cephalopoda). J. Comp. Neurol. 2013, 521, 1482–1496. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Warburton, D.; Brown, L.Y.; Yu, C.Y.; Roeder, E.R.; Stengel-Rutkowski, S.; Hennekam, R.C.; Muenke, M. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat. Genet. 1998, 20, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Hatayama, M.; Tohmonda, T.; Itohara, S.; Aruga, J.; Mikoshiba, K. Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev. Biol. 2004, 270, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Aruga, J. Lophotrochozoan zic genes. Adv. Exp. Med. Biol. 2018, 1046, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Aamar, E.; Dawid, I.B. Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev. Biol. 2008, 318, 335–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, S.; Emond, M.R.; Duy, P.Q.; Hao, L.T.; Beattie, C.E.; Jontes, J.D. Protocadherin-18b interacts with Nap1 to control motor axon growth and arborization in zebrafish. Mol. Biol. Cell 2014, 25, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.M.; Riazuddin, S.; Aye, S.; Ali, R.A.; Venselaar, H.; Anwar, S.; Belyantseva, P.P.; Qasim, M.; Riazuddin, S.; Friedman, T.B. Gene structure and mutant alleles of PCDH15: Nonsyndromic deafness DFNB23 and type 1 Usher syndrome. Hum. Genet. 2008, 124, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Di Cosmo, A.; Polese, G.; Bertapelle, C.; Palumbo, A.L.; Zullo, L. Cefalopodi. Benessere ed Animal Care Dell’animale da Laboratorio; Le Point Veterinaire Italie: Milano, Italy, 2015. [Google Scholar]
- Maselli, V.; Al-Soudy, A.S.; Buglione, M.; Aria, M.; Polese, G.; Di Cosmo, A. Sensorial hierarchy in Octopus vulgaris’s food choice: Chemical vs. visual. Animals 2020, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Polese, G.; Winlow, W.; Di Cosmo, A. Dose-dependent effects of the clinical anesthetic isoflurane on Octopus vulgaris: A contribution to cephalopod welfare. J. Aquat. Anim. Health 2014, 26, 285–294. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Konefal, S.; Elliot, M.; Crespi, B. The adaptive significance of adult neurogenesis: An integrative approach. Front. Neuroanat. 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, M.J. Octopus. Physiology and Behaviour of an Advanced Invertebrate; Chapman and Hall: New York, NY, USA, 1978. [Google Scholar] [CrossRef]
- Alagramam, K.N.; Zahorsky-Reeves, J.; Wright, C.G.; Pawlowski, K.S.; Erway, L.C.; Stubbs, L.; Woychik, R.P. Neuroepithelial defects of the inner ear in a new allele of the mouse mutation Ames waltzer. Hear. Res. 2000, 148, 181–191. [Google Scholar] [CrossRef]
- Merzdorf, C.S.; Sive, H.L. The zic1 gene is an activator of Wnt signaling. Int. J. Dev. Biol. 2006, 50, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Koyabu, Y.; Aruga, J.; Mikoshiba, K. A novel member of the Xenopus Zic family, Zic5, mediates neural crest development. Mech. Dev. 2000, 99, 83–91. [Google Scholar] [CrossRef]
- Messenger, J.B. The peduncle lobe: A visuo-motor centre in octopus. Proc. R. Soc. Lond. B Biol. Sci. 1967, 167, 225–251. [Google Scholar] [CrossRef] [PubMed]
- Nixon, M.; Young, J.Z. The Brain and Lives of Cephalopods; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Young, J.Z. The Anatomy of the Nervous System of Octopus vulgaris; Oxford University Press: New York, NY, USA, 1971; p. 690. [Google Scholar]
- Di Cosmo, A.; Maselli, V.; Polese, G. Octopus vulgaris: An alternative in evolution. In Marine Organisms as Model Systems in Biology and Medicine; Results and Problems in Cell Differentiation; Kloc, M., Kubiak, J.Z., Eds.; Springer: Cham, Switzerland, 2018; Volume 65, pp. 585–598. [Google Scholar] [CrossRef]
- Di Cosmo, A.; Polese, G. Cephalopod Olfaction. In Oxford Research Encyclopedia of Neuroscience; Oxford University Press: Oxford, UK, 2017; Volume 1, pp. 1–15. [Google Scholar]
- Polese, G.; Bertapelle, C.; Di Cosmo, A. Role of olfaction in Octopus vulgaris reproduction. Gen. Comp. Endocrinol. 2015, 210, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Polese, G.; Bertapelle, C.; Di Cosmo, A. Olfactory organ of Octopus vulgaris: Morphology, plasticity, turnover and sensory characterization. Biol. Open 2016, 5, 611–619. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maselli, V.; Polese, G.; Al-Soudy, A.-S.; Buglione, M.; Di Cosmo, A. Cognitive Stimulation Induces Differential Gene Expression in Octopus vulgaris: The Key Role of Protocadherins. Biology 2020, 9, 196. https://doi.org/10.3390/biology9080196
Maselli V, Polese G, Al-Soudy A-S, Buglione M, Di Cosmo A. Cognitive Stimulation Induces Differential Gene Expression in Octopus vulgaris: The Key Role of Protocadherins. Biology. 2020; 9(8):196. https://doi.org/10.3390/biology9080196
Chicago/Turabian StyleMaselli, Valeria, Gianluca Polese, Al-Sayed Al-Soudy, Maria Buglione, and Anna Di Cosmo. 2020. "Cognitive Stimulation Induces Differential Gene Expression in Octopus vulgaris: The Key Role of Protocadherins" Biology 9, no. 8: 196. https://doi.org/10.3390/biology9080196
APA StyleMaselli, V., Polese, G., Al-Soudy, A. -S., Buglione, M., & Di Cosmo, A. (2020). Cognitive Stimulation Induces Differential Gene Expression in Octopus vulgaris: The Key Role of Protocadherins. Biology, 9(8), 196. https://doi.org/10.3390/biology9080196