Botanical Products in the Treatment and Control of Schistosomiasis: Recent Studies and Distribution of Active Plant Resources According to Affected Regions
Abstract
:1. Introduction
2. Genus Schistosoma and Its Biological Cycle Importance in Schistosomiasis
3. The Use of Drugs in the Treatment of Schistosomiasis
4. Biological Control of Intermediate Hosts as an Alternative Way
5. Recent Studies on Natural Resources of Affected Regions as an Alternative in the Treatment and Control of Schistosomiasis
5.1. Brazil
5.2. Africa
5.2.1. Plants Traditionally Used against Schistosomiasis
5.2.2. Recent Scientific Studies on Molluscicide Activity
5.2.3. In Vitro Investigation of Medicinal Plants against Schistosoma
5.3. Asia
5.3.1. Prevalence of Schistosomiasis in Asia
5.3.2. Plants Traditionally Used against Schistosomiasis in Asian Countries
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Steinmann, P.; Keiser, J.; Bos, R.; Tanner, M.; Utzinger, J. Schistosomiasis and water resources development: Systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 2006, 6, 411–425. [Google Scholar] [CrossRef]
- WHO. Schistosomiasis. Fact Sheet n.115. Available online: http://www.who.int/mediacentre/facesheets/fs115/en/index.html (accessed on 30 June 2019).
- WHO. The Control of Schistosomiasis. Geneva: Who, Report of The Who Expert Committee; WHO: Geneva, Switzerland, 1993; p. 86. [Google Scholar]
- WHO. Schistosomiasis. Key Facts. Available online: http://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 28 July 2020).
- Lackey, E.K.; Horrall, S. Schistosomiasis (Schistosoma Haematobium). Available online: https://www.ncbi.nlm.nih.gov/books/NBK554434 (accessed on 28 July 2020).
- Bergquist, R.; Utzinger, J.; Keiser, J. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative? Infect. Dis. Poverty 2017, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Abebe, N.; Erko, B.; Medhin, G.; Berhe, N. Clinico-epidemiological study of schistosomiasis mansoni in waja-timuga, district of alamata, northern ethiopia. Parasit Vectors 2014, 7, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odiere, M.R.; Rawago, F.O.; Ombok, M.; Secor, W.E.; Karanja, D.M.S.; Mwinzi, P.N.M.; Lammie, P.J.; Won, K. High prevalence of schistosomiasis in mbita and its adjacent islands of lake victoria, western kenya. Parasites Vectors 2012, 5, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salawu, O.T.; Odaibo, A.B. Schistosomiasis among pregnant women in rural communities in nigeria. Int. J. Gynaecol Obs. 2013, 122, 1–4. [Google Scholar] [CrossRef]
- Lapa, M.; Dias, B.; Jardim, C.; Fernandes, C.J.; Dourado, P.M.; Figueiredo, M.; Farias, A.; Tsutsui, J.; Terra-Filho, M.; Humbert, M.; et al. Cardiopulmonary manifestations of hepatosplenic schistosomiasis. Circulation 2009, 119, 1518–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badmos, K.B.; Komolafe, A.O.; Rotimi, O. Schistosomiasis presenting as acute appendicitis. East. Afr. Med. J. 2006, 83, 528–532. [Google Scholar]
- Anto, F.; Asoala, V.; Adjuik, M.; Anyorigiya, T.; Oduro, A.; Akazili, J.; Akweongo, P.; Ayivor, P.; Bimi, L.; Hodgson, A. Water contact activities and prevalence of schistosomiasis infection among school-age children in communities along an irrigation scheme in rural northern ghana. J. Bacteriol. Parasitol. 2013, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Tetteh-Quarcoo, P.B.; Attah, S.K.; Donkor, E.S.; Nyako, M.; Minamor, A.A.; Afutu, E.; Hervie, E.T.; Ayeh-Kumi, P.F. Urinary schistosomiasis in children—Still a concern in part of the ghanaian capital city. Open J. Med. Microbiol. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Meents, E.F.; Boyles, T.H. Schistosoma haematobium prevalence in school children in the rural eastern cape province, south africa. South. Afr. J. Epidemiol. Infect. 2010, 25, 28–29. [Google Scholar] [CrossRef]
- Augusto, G.; Nala, R.; Casmo, V.; Sabonete, A.; Mapaco, L.; Monteiro, J. Geographic distribution and prevalence of schistosomiasis and soil-transmitted helminths among schoolchildren in mozambique. Am. J. Trop. Med. Hyg. 2009, 81, 799–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkengazong, L.; Njiokou, F.; Asonganyi, T. Two years impact of single praziquantel treatment on urinary schistosomiasis in the barombi kotto focus, south west cameroon. J. Parasitol. Vect. Biol. 2013, 5, 83–89. [Google Scholar]
- King, C.H. Parasites and poverty: The case of schistosomiasis. Acta Trop. 2010, 113, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef]
- de Souza Andrade Filho, A.; de Queiroz, A.C.; dos Reis, M.G.; Amaral, R.M.; Brito, R.M. Neuroesquistossomose. Rev. Bras. Neurol. Psiquiatr. 2015, 19, 165–209. [Google Scholar]
- Inobaya, M.T.; Olveda, R.M.; Chau, T.N.; Olveda, D.U.; Ross, A.G. Prevention and control of schistosomiasis: A current perspective. Res. Rep. Trop. Med. 2014, 5, 65–75. [Google Scholar]
- Brasil; Saúde, M.d. Vigilância da Esquistossomose Mansoni: Diretrizes Técnicas, 4th ed.; Ministério da Saúde Brasília: Brasília, Brazil, 2014; p. 114. [Google Scholar]
- Katz, N.; Almeida, K. Esquistossomose, xistosa, barriga d’água. Ciência Cult. 2003, 55, 38–43. [Google Scholar]
- Andrade, Z.d.A. Schistosomiasis and liver fibrosis. Parasite Immunol. 2009, 31, 656–663. [Google Scholar] [CrossRef]
- Souza, F.; Vitorino, R.; Costa, A.; Júnior, F.; Santana, L.; Gomes, A. Schistosomiasis mansoni: General aspects, immunology, pathogenesis and natural history. Rev. Bras. Clin. Med. 2011, 9, 300–307. [Google Scholar]
- Colley, D.G.; Secor, W.E. Immunology of human schistosomiasis. Parasite Immunol. 2014, 36, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, R.S.; Esmat, G.; El-Baz, T. Human schistosomiasis: Clinical perspective: Review. J. Adv. Res. 2013, 4, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Doenhoff, M.J.; Modha, J.; Lambertucci, J.R. Anti-schistosome chemotherapy enhanced by antibodies specific for a parasite esterase. Immunology 1988, 65, 507–510. [Google Scholar]
- BRAZIL. Vigilância da Esquistossomose Mansoni: Diretrizes Técnicas/Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento 48 Devigilância Das Doenças Transmissíveis; Ministério da saúde. Secretaria de vigilância em saúde. Departamento de vigilância epidemiológica: Brasília, Brazil, 2014; p. 144. [Google Scholar]
- Xiao, S.H.; Catto, B.A.; Webster, L.T., Jr. Effects of praziquantel on different developmental stages of schistosoma mansoni In Vitro and In Vivo. J. Infect. Dis. 1985, 151, 1130–1137. [Google Scholar] [CrossRef]
- Hillman, G.R.; Senft, A.W.; Gibler, W.B. The mode of action of hycanthone revisited. J. Parasitol. 1978, 64, 754–756. [Google Scholar] [CrossRef]
- Cioli, D.; Pica-Mattoccia, L.; Archer, S. Antischistosomal drugs: Past, present … And future? Pharm. Ther. 1995, 68, 35–85. [Google Scholar] [CrossRef]
- Raff, H.; Carroll, T. Cushing’s syndrome: From physiological principles to diagnosis and clinical care. J. Physiol. 2015, 593, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A. Natural products as therapeutic agents for schistosomiasis. Res. J. Med. Plant. 2011, 5, 1–20. [Google Scholar]
- Adenowo, A.F.; Oyinloye, B.E.; Ogunyinka, B.I.; Kappo, A.P. Impact of human schistosomiasis in sub-saharan africa. Braz. J. Infect. Dis. 2015, 19, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Utzinger, J.; Chollet, J.; You, J.; Mei, J.; Tanner, M.; Xiao, S. Effect of combined treatment with praziquantel and artemether on schistosoma japonicum and schistosoma mansoni in experimentally infected animals. Acta Trop. 2001, 80, 9–18. [Google Scholar] [CrossRef]
- Cantanhede, S.P.D.; Marques, A.d.M.; Silva-Souza, N.; Valverde, A.L. Plant molluscicidal activity: A prophylactic alternative. Rev. Bras. Farmacogn. 2010, 20, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lui, Z.; Hu, L.; Zhong, J.; Li, Z. Studies on snail ecology in marshland of poyang lake region. J. Nanchang Univ. (Nat. Sci.) 1996, 20, 25–34. [Google Scholar]
- WHO. The Control Social Context of Schistosomiasis and Its Control. Available online: https://www.who.int/tdr/publications/documents/social-context-schistosomiasis.pdf?ua=1 (accessed on 30 June 2019).
- Weinbach, E.C.; Garbus, J. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature 1969, 221, 1016–1018. [Google Scholar] [CrossRef]
- WHO. Pesticides and Their Application: For the Control of Vectors and Pests of Public Health Importance, 6th ed.; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. World Health Assembly Resolution Wha 54.19. Elimination of Schistosomiasis. Available online: http://www.who.int/entity/neglected_diseases/mediacentre/WHA_54.19_Eng.pdf?ua=1 (accessed on 30 June 2019).
- WHO. Investing to Overcome the Global Impact of Neglected Tropical Diseases: Third Who Report on Neglected Tropical Diseases. Available online: https://apps.who.int/iris/bitstream/handle/10665/152781/9789241564861_eng.pdf?sequence=1 (accessed on 30 June 2019).
- Ismail, M.; Botros, S.; Metwally, A.; William, S.; Farghally, A.; Tao, L.F.; Day, T.A.; Bennett, J.L. Resistance to praziquantel: Direct evidence from schistosoma mansoni isolated from egyptian villagers. Am. J. Trop. Med. Hyg. 1999, 60, 932–935. [Google Scholar] [CrossRef]
- Jiwajinda, S.; Santisopasri, V.; Murakami, A.; Sugiyama, H.; Gasquet, M.; Riad, E.; Balansard, G.; Ohigashi, H. In Vitro anti-tumor promoting and anti-parasitic activities of the quassinoids from eurycoma longifolia, a medicinal plant in southeast asia. J. Ethnopharmacol. 2002, 82, 55–58. [Google Scholar] [CrossRef]
- Doenhoff, M.J.; Cioli, D.; Utzinger, J. Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis. 2008, 21, 659–667. [Google Scholar] [CrossRef]
- Jatsa, H.B.; de Jesus Pereira, C.A.; Pereira, A.B.D.; Negrão-Corrêa, D.A.; Braga, F.C.; Maciel, G.M.; Castilho, R.O.; Kamtchouing, P.; Teixeira, M.M. In Vitro evaluation of sida pilosa retz (malvaceae) aqueous extract and derived fractions on schistosoma mansoni. Pharmacol. Pharm. 2015, 6, 380. [Google Scholar]
- WHO. Summary of global update on preventive chemotherapy implementation in 2015. Wkly. Epidemiol. Rec. 2016, 39, 456–460. [Google Scholar]
- Hostettmann, K. On the use of plants and plant-derived compounds for the control of schistosomiasis. Naturwissenschaften 1984, 71, 247–251. [Google Scholar] [CrossRef]
- Simoben, C.V.; Ntie-Kang, F.; Akone, S.H.; Sippl, W. Compounds from african medicinal plants with activities against selected parasitic diseases: Schistosomiasis, trypanosomiasis and leishmaniasis. Nat. Prod. Bioprospect. 2018, 8, 151–169. [Google Scholar] [CrossRef] [Green Version]
- Fennell, C.W.; Lindsey, K.L.; McGaw, L.J.; Sparg, S.G.; Stafford, G.I.; Elgorashi, E.E.; Grace, O.M.; van Staden, J. Assessing african medicinal plants for efficacy and safety: Pharmacological screening and toxicology. J. Ethnopharmacol. 2004, 94, 205–217. [Google Scholar] [CrossRef]
- Ojewole, J.A. Indigenous plants and schistosomiasis control in south africa: Molluscicidal activity of some zulu medicinal plants. Bol. Latinoam. Caribe Plantas Med. Aromat. 2004, 3, 8–22. [Google Scholar]
- Archibald, R.G. The use of the fruit of the tree balanites aegyptiaca in the control of schistosomiasis in the sudan. Trans. R. Soc. Trop. Med. Hyg. 1933, 27, 207–210. [Google Scholar] [CrossRef]
- Wager, V.A. The possibility of eradicating bilharzia by extensive planting of the tree balanltes. South. Afr. Med. J. 1936, 10, 10–11. [Google Scholar]
- Mozley, A. Xxvi.—The fresh-water mollusca of the tanganyika territory and zanzibar protectorate, and their relation to human schistosomiasis. Trans. R. Soc. Edinb. 1939, 59, 687–744. [Google Scholar] [CrossRef]
- Lemma, A.; Goll, P.; Duncan, J.; Ma-zengia, B. Control of Schistosomiasis by the Use of Endod in Adwa, Ethiopia: Result of A 5-Year Study; Ministry of Health Cairo Proceedings of International Conference on Schistosomiasis: Cairo, Egypt; Ministry of Health Cairo: Cairo, Egypt, 1978; pp. 415–436.
- Neves, B.J.; Andrade, C.H.; Cravo, P.V. Natural products as leads in schistosome drug discovery. Molecules 2015, 20, 1872–1903. [Google Scholar] [CrossRef]
- Molgaard, P.; Nielsen, S.B.; Rasmussen, D.E.; Drummond, R.B.; Makaza, N.; Andreassen, J. Anthelmintic screening of zimbabwean plants traditionally used against schistosomiasis. J. Ethnopharmacol. 2001, 74, 257–264. [Google Scholar] [CrossRef]
- Allegretti, S.M.; Oliveira, C.; Oliveira, R.; Frezza, T.F.; Rehder, V.L.G. The use of brazilian medicinal plants to combat schistosoma mansoni. In Schistosomiasis; InTech: Rijeka, Croatia, 2012; pp. 27–70. [Google Scholar]
- Saúde, M.d. Situação Epidemiológica da Esquistossomose. Available online: http://portalsaude.saude.gov.br/index.php/oministerio/principal/leia-mais (accessed on 12 July 2020).
- Brazil. Ministério do Meio Ambiente. Biodiversidade. Available online: http://www.mma.gov.br (accessed on 12 July 2020).
- Parreira, N.A.; Magalhaes, L.G.; Morais, D.R.; Caixeta, S.C.; de Sousa, J.P.; Bastos, J.K.; Cunha, W.R.; Silva, M.L.; Nanayakkara, N.P.; Rodrigues, V.; et al. Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of baccharis dracunculifolia. Chem. Biodivers. 2010, 7, 993–1001. [Google Scholar] [CrossRef]
- Magalhaes, L.G.; Kapadia, G.J.; da Silva Tonuci, L.R.; Caixeta, S.C.; Parreira, N.A.; Rodrigues, V.; Da Silva Filho, A.A. In Vitro schistosomicidal effects of some phloroglucinol derivatives from dryopteris species against schistosoma mansoni adult worms. Parasitol. Res. 2010, 106, 395–401. [Google Scholar] [CrossRef]
- Caixeta, S.C.; Magalhaes, L.G.; de Melo, N.I.; Wakabayashi, K.A.; Aguiar Gde, P.; Aguiar Dde, P.; Mantovani, A.L.; Alves, J.M.; Oliveira, P.F.; Tavares, D.C.; et al. Chemical composition and In Vitro schistosomicidal activity of the essential oil of plectranthus neochilus grown in southeast brazil. Chem. Biodivers. 2011, 8, 2149–2157. [Google Scholar] [CrossRef]
- Melo, C.M.; de Lima, A.L.; Beltrao, E.I.; Cavalcanti, C.C.; de Melo-Junior, M.R.; Montenegro, S.M.; Coelho, L.C.; Correia, M.T.; Carneiro-Leao, A.M. Potential effects of cramoll 1,4 lectin on murine schistosomiasis mansoni. Acta Trop. 2011, 118, 152–158. [Google Scholar] [CrossRef]
- Moraes, J.; Nascimento, C.; Lopes, P.O.; Nakano, E.; Yamaguchi, L.F.; Kato, M.J.; Kawano, T. Schistosoma mansoni: In Vitro schistosomicidal activity of piplartine. Exp. Parasitol. 2011, 127, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Veras, L.M.; Guimaraes, M.A.; Campelo, Y.D.; Vieira, M.M.; Nascimento, C.; Lima, D.F.; Vasconcelos, L.; Nakano, E.; Kuckelhaus, S.S.; Batista, M.C.; et al. Activity of epiisopiloturine against schistosoma mansoni. Curr. Med. Chem. 2012, 19, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.N.; Rehder, V.L.; Santos Oliveira, A.S.; Junior, I.M.; de Carvalho, J.E.; de Ruiz, A.L.; Jeraldo Vde, L.; Linhares, A.X.; Allegretti, S.M. Schistosoma mansoni: In Vitro schistosomicidal activity of essential oil of baccharis trimera (less) dc. Exp. Parasitol. 2012, 132, 135–143. [Google Scholar] [CrossRef]
- Miranda, M.A.; Magalhaes, L.G.; Tiossi, R.F.; Kuehn, C.C.; Oliveira, L.G.; Rodrigues, V.; McChesney, J.D.; Bastos, J.K. Evaluation of the schistosomicidal activity of the steroidal alkaloids from solanum lycocarpum fruits. Parasitol. Res. 2012, 111, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Faria, R.X.; Rocha, L.M.; Souza, E.; Almeida, F.B.; Fernandes, C.P.; Santos, J.A.A. Molluscicidal activity of manilkara subsericea (mart.) dubard on biomphalaria glabrata (say, 1818). Acta Trop. 2018, 178, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Araújo, F.d.P.; Albuquerque, R.D.D.G.d.; Rangel, L.d.S.; Caldas, G.R.; Tietbohl, L.A.C.; Santos, M.G.; Ricci-Júnior, E.; Thiengo, S.; Fernandez, M.A.; Santos, J.A.A.d.; et al. Nanoemulsion containing essential oil from xylopia ochrantha mart. Produces molluscicidal effects against different species of biomphalaria (schistosoma hosts). Memórias Inst. Oswaldo Cruz 2019, 114. [Google Scholar] [CrossRef] [Green Version]
- de Melo, N.I.; Magalhaes, L.G.; de Carvalho, C.E.; Wakabayashi, K.A.; de, P.A.G.; Ramos, R.C.; Mantovani, A.L.; Turatti, I.C.; Rodrigues, V.; Groppo, M.; et al. Schistosomicidal activity of the essential oil of ageratum conyzoides l. (asteraceae) against adult schistosoma mansoni worms. Molecules 2011, 16, 762–773. [Google Scholar] [CrossRef]
- Santos, C.C.S.; Araújo, S.S.; Santos, A.L.L.M.; Almeida, E.C.V.; Dias, A.S.; Damascena, N.P.; Santos, D.M.; Santos, M.I.S.; Júnior, K.A.L.R.; Pereira, C.K.B.; et al. Evaluation of the toxicity and molluscicidal and larvicidal activities of schinopsis brasiliensis stem bark extract and its fractions. Rev. Bras. Farmacogn. 2014, 24, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Nwosu, D.C.; Nwachukwu, P.C.; Avoaja, D.A.; Ajero, C.M.U.; Nwanjo, H.U.; Obeagu, E.I.; Nnorom, R.M.; Okpara, K.E.; Kanu, S.N. Index of potential contamination for urinary schistosomiasis in afikpo north l.G.A. Ebonyi state, nigeria. Eur. J. Biomed. Pharm. Sci. 2015, 2, 439–450. [Google Scholar]
- Araujo Navas, A.L.; Hamm, N.A.S.; Soares Magalhães, R.J.; Stein, A. Mapping soil transmitted helminths and schistosomiasis under uncertainty: A systematic review and critical appraisal of evidence. PLoS Negl. Trop. Dis. 2016, 10, e0005208. [Google Scholar] [CrossRef]
- Houweling, T.A.; Karim-Kos, H.E.; Kulik, M.C.; Stolk, W.A.; Haagsma, J.A.; Lenk, E.J.; Richardus, J.H.; de Vlas, S.J. Socioeconomic inequalities in neglected tropical diseases: A systematic review. PLoS Negl. Trop. Dis. 2016, 10, e0004546. [Google Scholar] [CrossRef] [PubMed]
- Sacolo, H.; Chimbari, M.; Kalinda, C. Knowledge, attitudes and practices on schistosomiasis in sub-saharan africa: A systematic review. BMC Infect. Dis 2018, 18, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchings, A. Zulu Medicinal Plants: An Inventory; University of Natal Press: Pietermaritzburg, South Africa, 1996. [Google Scholar]
- Watt, J.M.; Breyer-Brandwijk, M.G. The medicinal and poisonous plants of southern and eastern africa being an account of their medicinal and other uses, chemical composition, pharmacological effects and toxicology in man and animal. Nature. 1933, 132, 336. [Google Scholar]
- Mangoyi, R.; Mukanganyama, S. In Vitro antifungal activities of selected medicinal plants from zimbabwe against candida albicans and candida krusei. Afr. J. Plant Sci. Biotechnol. 2011, 5, 1–7. [Google Scholar]
- Da Silva, G.; Serrano, R.; Silva, O. Maytenus heterophylla and maytenus senegalensis, two traditional herbal medicines. J. Nat. Sci. Biol. Med. 2011, 2, 59. [Google Scholar] [CrossRef] [Green Version]
- Cock, I.E.; Selesho, M.I.; Van Vuuren, S.F. A review of the traditional use of southern african medicinal plants for the treatment of selected parasite infections affecting humans. J. Ethnopharmacol. 2018, 220, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Sparg, S.G.; van Staden, J.; Jäger, A.K. Efficiency of traditionally used south african plants against schistosomiasis. J. Ethnopharmacol. 2000, 73, 209–214. [Google Scholar] [CrossRef]
- Waiganjo, N.; Yole, D.S.; Ochanda, H. Anti-schistosomal activity of five plant extracts on swiss white mice infected with schistosoma mansoni. IOSR J. Pharm. Biol. Sci. 2014, 9, 49–53. [Google Scholar] [CrossRef]
- Adetunji, V.; Salawu, O. Efficacy of ethanolic leaf extracts of carica papaya and terminalia catappa as molluscicides against the snail intermediate hosts of schistosomiasis. J. Med. Plants Res. 2010, 4, 2348–2352. [Google Scholar]
- Angaye, T. In-Vitro Comparative Molluscicidal Activities of Aqueous and Methanolic Extracts of Jatropha Curcas Leaves against Bulinus Globosus and Bulinus Rholfsi: Vectors of Urinary Schistosomiasis. Master’s Thesis, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria, 2013. [Google Scholar]
- Angaye, T.; Zige, D.; Didi, B.; Biobelemoye, N.; Gbodo, E. Comparative molluscicidal activities of methanolic and crude extracts of jatropha curcas leaves against biomphalaria pfeifferi. Greener J. Epidemiol. Public Health 2014, 2, 16–22. [Google Scholar] [CrossRef]
- Rug, M.; Ruppel, A. Toxic activities of the plant jatropha curcas against intermediate snail hosts and larvae of schistosomes. Trop. Med. Int. Health 2000, 5, 423–430. [Google Scholar] [CrossRef] [PubMed]
- El Kheir, Y.M.; El Tohami, M.S. Investigation of molluscicidal activity of certain sudanese plants used in folk-medicine. I. A preliminary biological screening for molluscicidal activity of certain sudanese plants used in folk-medicine. J. Trop. Med. Hyg. 1979, 82, 237–241. [Google Scholar] [PubMed]
- Angaye, T.C.; Bassey, S.E.; Ohimain, E.I.; Izah, S.C.; Asaigbe, P.I. Molluscicidal and synergicidal activities of the leaves of four niger delta mangrove plants against schistosomiasis vectors. J. Environ. Treat. Tech. 2015, 3, 35–40. [Google Scholar]
- Asemota, A.; Hassan, A.; Idu, M. Preliminary Screening of Some Nigerian Medicinal Plants for Molluscicidal Activities. Int. J. Anal. Pharm. Biochem. Sci. 2015, 4, 24–33. [Google Scholar]
- Jisaka, M.; Ohigashi, H.; Takagaki, T.; Nozaki, H.; Tada, T.; Hirota, M.; Irie, R.; Huffman, M.A.; Nishida, T.; Kaji, M.; et al. Bitter steroid glucosides, vernoniosides a1, a2, and a3, and related b1 from a possible medicinal plant, vernonia amygdalina, used by wild chimpanzees. Tetrahedron 1992, 48, 625–632. [Google Scholar] [CrossRef]
- Jisaka, M.; Ohigashi, H.; Takegawa, K.; Hirota, M.; Irie, R.; Huffman, M.A.; Koshimįzu, K. Steroid glucosides from vernonia amygdalina, a possible chimpanzee medicinal plant. Phytochemistry 1993, 34, 409–413. [Google Scholar] [CrossRef]
- Ogboli, A.; Nock, I.; Obdurahman, E.; Ibrahim, N. Medicinal application of vernonia amygdalina del leaf extracts in the treatment of schistosomiasis in mice. Niger. J. Nat. Prod. Med. 2000, 4, 73–75. [Google Scholar] [CrossRef]
- Agboola, O.I.; Ajayi, G.O.; Adesegun, S.A.; Adesanya, S.A. Comparative molluscicidal activities of fruit pericarp, leaves, seed and stem bark of blighia unijugata baker. Pharmacogn. J. 2011, 3, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Medina, J.M.; Peixoto, J.L.; Silva, A.A.; Haraguchi, S.K.; Falavigna, D.L.; Zamuner, M.L.; Sarragiotto, M.H.; Vidotti, G.J. Evaluation of the molluscicidal and schistosoma mansoni cercariae activity of croton floribundus extracts and kaurenoic acid. Rev. Bras. Farmacogn. 2009, 19, 207–211. [Google Scholar] [CrossRef] [Green Version]
- AL-ZANBAGI, N.A. Two molluscicides from saudi arabian euphorbia lesagainst bulinus wrighti. Science 2005, 17. [Google Scholar] [CrossRef]
- Aladesanmi, A.J. Tetrapleura tetraptera: Molluscicidal activity and chemical constituents. Afr. J. Tradit. Complementary Altern. Med. 2007, 4, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Yousif, F.; Wassel, G.; Boulos, L.; Labib, T.; Mahmoud, K.; El-Hallouty, S.; El Bardicy, S.; Mahmoud, S.; Ramzy, F.; Gohar, L.; et al. Contribution to In Vitro screening of egyptian plants for schistosomicidal activity. Pharm. Biol. 2012, 50, 732–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Seedi, H.R.; El-Shabasy, R.; Sakr, H.; Zayed, M.; El-Said, A.M.A.; Helmy, K.M.H.; Gaara, A.H.M.; Turki, Z.; Azeem, M.; Ahmed, A.M.; et al. Anti-schistosomiasis triterpene glycoside from the egyptian medicinal plant asparagus stipularis. Rev. Bras. Farmacogn. 2012, 22, 314–318. [Google Scholar] [CrossRef] [Green Version]
- Ramalhete, C.; Magalhaes, L.G.; Rodrigues, V.; Mulhovo, S.; Da Silva Filho, A.A.; Ferreira, M.J. In Vitro schistosomicidal activity of balsaminol f and karavilagenin c. Planta Med. 2012, 78, 1912–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekwu, E.M.; Bosompem, K.M.; Anyan, W.K.; Appiah-Opong, R.; Owusu, K.B.; Tettey, M.D.; Kissi, F.A.; Appiah, A.A.; Penlap Beng, V.; Nyarko, A.K. In Vitro assessment of anthelmintic activities of rauwolfia vomitoria (apocynaceae) stem bark and roots against parasitic stages of schistosoma mansoni and cytotoxic study. J Parasitol. Res. 2017, 2017, 2583969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muth, S.; Sayasone, S.; Odermatt-Biays, S.; Phompida, S.; Duong, S.; Odermatt, P. Schistosoma mekongi in cambodia and lao people’s democratic republic. Adv. Parasitol. 2010, 72, 179–203. [Google Scholar] [PubMed]
- Ross, A.G.; Sleigh, A.C.; Li, Y.; Davis, G.M.; Williams, G.M.; Jiang, Z.; Feng, Z.; McManus, D.P. Schistosomiasis in the people’s republic of china: Prospects and challenges for the 21st century. Clin. Microbiol. Rev. 2001, 14, 270–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, C.A.; Kurscheid, J.; Williams, G.M.; Clements, A.C.A.; Li, Y.; Zhou, X.N.; Utzinger, J.; McManus, D.P.; Gray, D.J. Asian schistosomiasis: Current status and prospects for control leading to elimination. Trop. Med. Infect. Dis. 2019, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Sulieman, Y.; Pengsakul, T.; Guo, Y. Development and effects of schistosoma japonicum (trematoda) on its intermediate host, oncomelania hupensis (gastropoda). Iran. J. Parasitol. 2013, 8, 212. [Google Scholar]
- Payne, G.; Carabin, H.; Tallo, V.; Alday, P.; Gonzalez, R.; Joseph, L.; Olveda, R.; McGarvey, S.T. Concurrent comparison of three water contact measurement tools in four endemic villages of the philippines. The schistosomiasis transmission ecology in the philippines project (step). Trop. Med. Int. Health 2006, 11, 834–842. [Google Scholar] [CrossRef]
- Gordon, C.A.; McManus, D.P.; Jones, M.K.; Gray, D.J.; Gobert, G.N. The increase of exotic zoonotic helminth infections: The impact of urbanization, climate change and globalization. Adv. Parasitol. 2016, 91, 311–397. [Google Scholar] [PubMed]
- Campa, P.; Develoux, M.; Belkadi, G.; Magne, D.; Lame, C.; Carayon, M.J.; Girard, P.M. Chronic schistosoma mekongi in a traveler--a case report and review of the literature. J. Travel Med. 2014, 21, 361–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.-G. Assessment of morbidity due to schistosoma japonicum infection in china. Infect. Dis. Poverty 2014, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.X.; Wu, W.; Liang, Y.J.; Jie, Z.L.; Wang, H.; Wang, W.; Huang, Y.X. New uses for old drugs: The tale of artemisinin derivatives in the elimination of schistosomiasis japonica in china. Molecules 2014, 19, 15058–15074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, F.H.; Xu, X.J.; Liu, J.B.; Dai, Y.H.; Dussart, G.; Trigwell, J. Toxicology of a potential molluscicide derived from the plant solanum xanthocarpum: A preliminary study. Ann. Trop. Med. Parasitol. 2002, 96, 325–331. [Google Scholar] [CrossRef]
- Utzinger, J.; Zhou, X.N.; Chen, M.G.; Bergquist, R. Conquering schistosomiasis in china: The long march. Acta Trop. 2005, 96, 69–96. [Google Scholar]
- Olveda, D.U.; Li, Y.; Olveda, R.M.; Lam, A.K.; McManus, D.P.; Chau, T.N.P.; Harn, D.A.; Williams, G.M.; Gray, D.J.; Ross, A.G.P. Bilharzia in the philippines: Past, present, and future. Int. J. Infect. Dis. 2014, 18, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gartner, F.; Correia da Costa, J.M. Praziquantel for schistosomiasis: Single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Dai, J.-R.; Li, H.-J.; Shen, X.-H.; Liang, Y.-S. The sensitivity of schistosoma japonicum to praziquantel: A field evaluation in areas with low endemicity of china. Am. J. Trop. Med. Hyg. 2012, 86, 834–836. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.S.; Li, H.J.; Dai, J.R.; Wang, W.; Qu, G.L.; Tao, Y.H.; Xing, Y.T.; Li, Y.Z.; Qian, K.; Wei, J.Y. Studies on resistance of schistosoma to praziquantel xiii resistance of schistosoma japonicum to praziquantel is experimentally induced in laboratory. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2011, 23, 605–610. [Google Scholar]
- Ahlemeyer, B.; Krieglstein, J. Neuroprotective effects of ginkgo biloba extract. Cell. Mol. Life Sci. 2003, 60, 1779–1792. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ye, Y.; Wang, P.; Chen, J.; Guo, T. Study on anti-bacterium activities of extract of ginkgo biloba leaves (egbs) and ginkgolic acids (gas). Food Sci. 2004, 25, 68–71. [Google Scholar]
- van Beek, T.A.; Montoro, P. Chemical analysis and quality control of ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 2009, 1216, 2002–2032. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Wu, C.; Fan, G.; Tang, Z.; Cao, F. The antibacterial activity and mechanism of ginkgolic acid c15:1. BMC Biotechnol. 2017, 17, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-Y.; Chen, J.; Han, B.-X.; Pan, G.-B.; Guo, D.-Z. Molluscicidal activities of ginkgo biloba leaf against the snail oncomelania hupensis. J. Med. Plants Res. 2010, 4, 2466–2472. [Google Scholar]
- Ren, Y.-S.; Li, Z.; Feng-Qing, X.; Li-li, L.; De-Ling, W.; Zhang, W.; Chuan-shan, J. A new triterpene from buddleja lindleyana with neuroprotective effect. Rec. Nat. Prod. 2017, 11, 356. [Google Scholar]
- Han, B.-X.; Guo, D.-Z.; Chen, J.; Mao, J. Effects of aibl on oncomelania hupensis, the intermediate snail host of schistosoma japonicum: An enzyme histochemical study. Asian Pac. J. Trop. Med. 2012, 5, 966–969. [Google Scholar] [CrossRef] [Green Version]
- Han, B.-X.; Chen, J. Acacetin-7-rutinoside from buddleja lindleyana, a new molluscicidal agent against oncomelania hupensis. Z. Nat. C 2014, 69, 186–190. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, M.; Zhang, P.; Song, Z.; Ma, Z.; Qu, H. Silver complexation and tandem mass spectrometry for differentiation of triterpenoid saponins from the roots of pulsatilla chinensis (bunge) regel. Rapid Commun. Mass Spectrom. 2008, 22, 3783–3790. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Xu, Q.M.; Liu, Y.L.; Li, X.R.; Yang, S.L.; Zhuge, H.X. Laboratory evaluation of the molluscicidal activity of pulsatilla chinensis (bunge) regel saponins against the snail oncomelania hupensis. Biomed. Environ. Sci. 2012, 25, 224–229. [Google Scholar]
- Kang, N.; Shen, W.; Gao, H.; Feng, Y.; Zhu, W.; Yang, S.; Liu, Y.; Xu, Q.; Yu, D. Antischistosomal properties of hederacolchiside a1 isolated from pulsatilla chinensis. Molecules 2018, 23, 1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamel, R.O.A.; Bayaumy, F.E.-Z.A. Ultrastructural alterations in schistosoma mansoni juvenile and adult male worms after in vitro incubation with primaquine. Memórias Inst. Oswaldo Cruz 2017, 112, 247–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, R.; Wang, W.; Dai, L.; Liu, B. Studies on the effect of the lixivium of cinnamomum camphora on peroxidase isozymes of oncomelania hupensis. J. Hubei Univ. (Nat. Sci.) 2003, 25, 330–331. [Google Scholar]
- Liu, Y.; Peng, Y.; Liu, F. Extraction of the active components of cinnamomum camphom and nerium indicum against oncomelania hupensis. J. Hubei Univ. (Nat. Sci.) 2006, 28, 81–83. [Google Scholar]
- Yang, F.; Long, E.; Wen, J.; Cao, L.; Zhu, C.; Hu, H.; Ruan, Y.; Okanurak, K.; Hu, H.; Wei, X. Linalool, derived from cinnamomum camphora (l.) presl leaf extracts, possesses molluscicidal activity against oncomelania hupensis and inhibits infection of schistosoma japonicum. Parasites Vectors 2014, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.J.; Zhang, Y.; Qiu, L.; Dong, X.; Jiang, B. Schistosomicidal and antioxidant flavonoids from astragalus englerianus. Planta Med. 2014, 80, 1727–1731. [Google Scholar] [CrossRef] [Green Version]
- Wan, K.; Wang, P.; Zhang, L. In Vivo and In Vitro activity of oil extract of garlic (allium sativum linnaeus) against schistosoma japonicum cercariae. Rev. Soc. Bras. Med. Trop. 2017, 50, 126–129. [Google Scholar] [CrossRef]
- Chen, Y.-Q.; Xu, Q.-M.; Li, X.-R.; Yang, S.-L.; Zhu-Ge, H.-X. In Vitro evaluation of schistosomicidal potential of curcumin against schistosoma japonicum. J. Asian Nat. Prod. Res. 2012, 14, 1064–1072. [Google Scholar] [CrossRef]
- Ke, W.; Lin, X.; Yu, Z.; Sun, Q.; Zhang, Q. Molluscicidal activity and physiological toxicity of macleaya cordata alkaloids components on snail oncomelania hupensis. Pestic. Biochem. Physiol. 2017, 143, 111–115. [Google Scholar] [CrossRef]
- Han, B.-X.; Chen, J.; Yang, X.; Wang, S.; Li, C.-G.; Han, F.-A. Molluscicidal activities of medicinal plants from eastern china against oncomelania hupensis, the intermediate host of schistosoma japonicum. Rev. Bras. Farmacogn. 2010, 20, 712–718. [Google Scholar] [CrossRef]
- Zou, F.; Duan, G.; Xie, Y.; Zhou, Y.; Dong, G.; Lin, R.; Zhu, X. Molluscicidal activity of the plant eupatorium adenophorum against oncomelania hupensis, the intermediate host snail of schistosoma japonicum. Ann. Trop. Med. Parasitol. 2009, 103, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-M.; Chen, S.-X.; Xia, L.; Chen, J. Molluscicidal activity against oncomelania hupensis of ginkgo biloba. Fitoterapia 2008, 79, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sporer, F.; Wink, M.; Jourdane, J.; Henning, R.; Li, Y.; Ruppel, A. Anthraquinones in rheum palmatum and rumex dentatus (polygonaceae), and phorbol esters in jatropha curcas (euphorbiaceae) with molluscicidal activity against the schistosome vector snails oncomelania, biomphalaria, and bulinus. Trop. Med. Int. Health 1997, 2, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cai, W.-M.; Wang, W.-X.; Yang, J.-M. Molluscicidal activity of nerium indicum mill, pterocarya stenoptera dc, and rumex japonicum houtt on oncomelania hupensis. Biomed. Environ. Sci. 2006, 19, 245. [Google Scholar] [PubMed]
- Wei, F.; Xu, X. Study on extraction of effect component for snail control from solanum xanthocarpum and its effect against to the snail. Chin. J. Zoonoses 2000, 16, 58–60. [Google Scholar]
Sub-Saharan African Region | Infected Individuals (Proportion) | Causal Agent | Source |
---|---|---|---|
Alamata district, Ethiopia | (73.9%) | S. mansoni | [7] |
Nigeria | (56%) | S. mansoni, S. mansoni and S. haematobium combined infection | [11] |
Sengerema district, nyamatongo ward, north-west Tanzania | School children aged 8–17 years (64.3%) | S. mansoni | [12] |
Tono irrigation canal, north Ghana | Children aged 6–15 years (33.2%/19.8%) | S. haematobium/S. mansoni | [12] |
Volta basin, Ghana | Adult male and female subjects (46.5%) | urinary schistosomiasis | [13] |
Eastern cape province, South Africa | School-age students (73.3%) | [14] | |
School children, Mozambique | (47%/1%) | S. haematobium/S. mansoni | [15] |
Zarima town, north-west Ethiopia | 319 elementary school children (37.9%) | S. mansoni | [16] |
South-west Cameroun | 69.17% | S. haematobium | [16] |
Plant Source | Extract/Oil/Substance | Biological Target | Ref. |
---|---|---|---|
Ageratum conyzoides L. | Leaf Essential Oil | Schistosoma mansoni | [71] |
Baccharis dracunculifolia | Leaf Essential Oil | Schistosoma mansoni | [61] |
Baccharis trimera | Leaf Essential Oil | Schistosoma mansoni | [67] |
Cratylia mollis | Cramoll-1,4-lectine | Schistosoma mansoni | [64] |
Dryopteris genus | Aspidin, Flavaspidic Acid, Methylene-bisaspidinol, Desaspidin | Schistosoma mansoni | [71] |
Pilocarpus microphyllus | Epiisopiloturine | Schistosoma mansoni | [66] |
Piper tuberculatum | Piplartine | Schistosoma mansoni | [65] |
Plectranthus neochilus | Leaf Essential Oil | Schistosoma mansoni | [63] |
Solanum lypocarpum | Fruit Alkaloidic Extract, Solasonine, Solamargine, Glycoalkaloid mixture | Schistosoma mansoni | [68] |
Manilkara subsericea | Crude Ethanolic Extract, Ethyl acetate Extract, Quercetin, Myricetin, Ursolic Acid | Biomphalaria glabrata | [69] |
Schinopsis brasiliensis | Stem bark chloroformic and ethyl acetate extracts | Biomphalaria glabrata | [72] |
Xylopia ochrantha Mart. | Leaf Essential Oil | Biomphalaria glabrata, B. straminea and B. tenagophila | [70] |
Plant Species | Part Used | Lethal Concentration (mg/mL) (t = 1 h) | Source |
---|---|---|---|
Abrus precatorius L. subsp. africanus Verdc. | Stem Root | 1.50.6 | [57] |
Berkheya speciosa (DC.) O.Hoffm. | Aqueous plant extract | > 6.25 | [82] |
Euclea divinorum Hiern | Aqueous plant extract | 50 | [82] |
Euclea natalensis A. DC. | Aqueous plant extract | > 3.13 | [82] |
Maytenus senegalensis (Lam.) Excell. | Leaves and stem Root Root and bark | 25 25 2.5 | [57] |
Ocimum americanum hexane, Ocimum americanum water | Whole plant | Worm reduction in mice (68.7 and 63.4%) vs. praziquantel (75.2%) | [83] |
Pterocarpus angolensis DC. | Leaves Stem Bark | 102 33.8 51.3 | [57] |
Sclerocarya birrea (A. Rich.) Hochst. subsp. Caffra | > 25 | [82] |
Plant Species | Plant Part /Extract | Snail Species | LC50 | Source |
---|---|---|---|---|
Avicennia germinans (L.) L. | Leaf/Methanol | Biomphalaria pfeifferi | 175 | [89] |
Leaf/Methanol | Bulinus globosus | 89.21 | ||
Leaf/Methanol | Bulinus rholfsi | 123.74 | ||
Blighia Unijugata Baker | fruit/ethyl acetate | Biomphalaria glabrata | 7.60 | [94] |
Pericarp/butanol | 15 | |||
Pericarp/water | 25 | |||
Carica papaya L. | Leaf/ethanol | Bulinus globosus | 619.10 | [84] |
Biomphalaria pfeifferi | 2716.30 | |||
Croton floribundus Spreng | Leaf/Hexane | Biomphalaria glabrata | 37.4 | [95] |
Leaf/Methanol | Biomphalaria glabrata | 14.8 | ||
Leaf/ethanol | Biomphalaria glabrata | 4.2 | ||
Euphorbia helioscopia L. | Leaf/cold water | Bulinus wright | 80 | [96] |
Leaf/hot water | 96.6 | |||
Leaf/methanol | 11.3 | |||
Leaf/chloroform | 80.5 | |||
Leaf/acetone | 8.9 | |||
Leaf/hexane | 99 | |||
Euphorbia schimperiana Scheele | Leaf/cold water | 81.8 | [96] | |
Leaf/hot water | 72.8 | |||
Leaf/ methanol | 2.3 | |||
Leaf/ chloroform | 3 | |||
Leaf/acetone | 10.1 | |||
Jatropha Curcas L. | Leaf/hexane | Bulinus natalensis and Bulinus truncatus | 18 | [87] |
Seed/methanol | 0.25 | |||
Root/ethanol | Bulinus truncatus and Bulinus natalensis | 60 | [88] | |
Leaves/methanol | Bulinus globosus and Bulinus rholfsi | 0.3 | [85] | |
Leaves/crude extract | Biomphalaria pfeifferi | > 500 | [86] | |
Leaves/methanol | Biomphalaria pfeifferi | 30 | [86] | |
Leaves/crude extract | Biomphalaria pfeifferi | > 500 | [86] | |
Seed/methanol | Biomphalaria pfeifferi | 25 | [87] | |
Jatropha glauca Vahl | Leaf/acetone | Biomphalaria pfeifferi | 6.76 | [96] |
Rhizophora mangle L. | Leaf/chloroform | Biomphalaria pfeifferi | 16.50 | [96] |
Leaf/methanol | Biomphalaria pfeifferi | 87.50 | [89] | |
Rhizophora racemosa G. Mey. | Leaf/methanol | Bulinus globosus | 87.50 | [89] |
Leaf/methanol | Bulinus rholfsi | 108.22 | ||
Leaf/methanol | Biomphalaria pfeifferi | 150 | ||
Terminalia catappa L. | Leaf/methanol | Bulinus globosus | 125 | [84] |
Leaf/methanol | Bulinus rholfsi | 85.51 | ||
Leaf/ethanol | Bulinus globosus | 1095.70 | ||
Tetrapleura tetraptera (Schum. and Thonn.) Taub. | Leaf/ethanol | Biomphalaria pfeifferi | 864.10 | [97] |
Fruit/methanol | Bulinus globosus | 1.33 | ||
Zanha goluogensis Hiern | Stem/ethanol | Biomphalaria glabrata | 60 | [96] |
Plant Species | Part | LC50 (ppm) | LC90 (ppm) |
---|---|---|---|
Myrtaceae | |||
Callistemon viminalis (Soland. Ex Gaertn) Cheel | Leaves | 6.56 | 9.49 |
Branches | 1.49 | 2.26 | |
C. rigidus R. Br. | Aerial Roots | 1.89 | 3.80 |
C. speciosus (Sims.) DC | Leaves/Branches | 1.80 | 5.50 |
C. citrinus Stapf | Leaves | 1.89 | 3.80 |
Branches | 1.80 | 4.10 | |
Eucalyptus citriodora Hook | Bark | 5.95 | 6.90 |
Branches | 10.00 | 11.07 | |
Eucalyptus rostrata Dehnh. | Branches | 7.80 | 13.50 |
Eugenia edulis Vell | Leaves | 5.93 | 10.08 |
E. javanica Lam | Branches | 9.70 | 12.90 |
Melaleuca leucadendron (L.) L. | Leaves | 1.90 | 2.50 |
Branches | 2.30 | 6.20 | |
M. stypheloides Sm. | Leaves/Branches | 4.80 | 8.70 |
Asclepiadaceae | |||
Cryptostegia grandiflora R. Br. | Branches | 11.40 | 23.80 |
Cruciferae | |||
Zilla spinosa (L.) Prantl | Fruits | 10.50 | 48.90 |
Moraceae | |||
Ficus trijuja L. | Branches | 14.40 | 39.50 |
Zygophylacae | |||
Fagonia mollis Delile | Herb | 3.70 | 22.40 |
Species Name | Plant Parts Used | Extraction Solvent | Activity (%Mortality/ LC or LD) Value | Active Compounds | References |
---|---|---|---|---|---|
Acorus gramineus | Rhizome, leaf | Ethanol | Exposure time = 72 h; Dose = 200 mg/L | [136] | |
Rhizome: 75% mortality | |||||
Leaf: 56.25% mortality | |||||
Buddleja lindleyana | Leaf | Ethanol | Ethanol: 100% mortality caused after 72 h exposure at a concentration of 200 mg/L | Acacetin-7-rutinoside: | [123,136] |
N-butanol for fractionations | LC50 = 36. 12 mg/L (24 h) | [124] | |||
N-butanol fractions: | |||||
Exposure time = 72 h; Dose = 50 mg/L | LC50 = 3.26 mg/L (72 h) | ||||
LC50 = 39.1 mg/L | |||||
LC90 = 59.28 mg/L | |||||
Clerodendron cyrtophyllum | Branch, Leaf | Ethanol | Exposure time = 72 h; Dose = 200 mg/L | [136] | |
Branch: 56.25% mortality | |||||
Leaf: 65% mortality | |||||
Eupatorium adenophorum | leaf, roots and stems | Water | Leaf extract: 100% mortality caused after 82 h exposure with 0.27% (w/v) extract | [137] | |
Roots extract: 56.7% mortality after 76 h with 0.86% (w/v) extract | |||||
Stem extract: 40 7% mortality after 82 h with 0.86% (w/v) extract | |||||
Ginkgo biloba | sarcotesta granule | petroleum ether, ethyl acetate, ethanol | Petroleum ether: LC50 =7.81 mg/L | Ginkgolic acids isolated from pretroleum extract caused snail mortalities to be 45% (C13:0), 65% (C15:1), 0% (C17:1); exposure time = 72 h; concentration of extract = 2 mg/L | [138] |
Ethyl acetate: LC50 = 27.33 mg/L | |||||
Ethanol: LC50 = 64.14 mg/L | |||||
Leaf | Ethanol | Ethanol: 100% mortality caused after 72 h exposure at a concentration of 100 mg/L | Petroleum ether fractioned of the ethanolic extracts caused 100% mortality at a dose of 35 mg/L; exposure time: 72 h | [121] | |
Hemerocallis fulva | Root | Ethanol | 76.25% mortality caused after 72 h at a concentration of 200 mg/L | [136] | |
Herba agrimoniae | Herb | Ethanol | 80% mortality caused after 72 h exposure; dose = 100 mg/L | [121] | |
Jatropha curcas | Seeds | Water extract | Around 50% snail mortality caused from 48 exposure at a concentration of 0.03% (w/v) | phorbol esters | [139] |
Oil was produced from nuts by pressure and phorbol esters were enriched by extracting five time with an equal volume of methanol. | |||||
Juglis cathayensis var. formosana | Fruit | Ethanol | 60% mortality caused after 72 h exposure at a concentration of 100 mg/L | [136] | |
Macleaya cordata (Willd) R. Br | Leaf | Ethanol | 1–7 alkaloid components were evaluated for molluscicidal activity. | [135] | |
Total Alkaloid was extracted | Highest activity (73.33% mortality) observed after 48 h exposure with 28 mg/L of Alkaloid component 2 | ||||
LC50 and LC90 values of Alkaloid component 2 = 6.35 and 121.23 mg/L, respectively | |||||
Nerium indicum Mill | Leaf | N-butanol, | Exposure time: 48 h | [140] | |
Water | N-butanol: LD50 =16.2 mg/L | ||||
Water: LD50 =13.2 mg/L | |||||
Peucedanum praerutorum | Root | Ethanol | 83.33% mortality caused after 72 h exposure; dose = 100 mg/L | [121] | |
Pterocarya Stenoptera DC | Leaf | N-butanol, Water | Exposure time = 48 h | [140] | |
N-butanol: LD50 = 505.1 mg/L | |||||
Water: LD50 = 359.5 mg/L | |||||
Pulsatilla chinensis (Bunge) Regel | Root | Water | LC50: 0.48 mg/L; exposure time = 24 h | hederacochiside C, hederacolchiside A1 | [132,133,134] |
Rheum palmatum | Root tubers | Water | > 50% snail mortality was achieved after 48 h exposure with 0.2% (v/v) | Anthraquinones including rhein, chrysophanol-anthron, rheum-emodin and physcion | [139] |
Rhumex dentatus | Root tubers | Water | > 50% snail mortality was achieved after 48 h exposure with 0.2% (v/v) | Anthraquinones including rhein, chrysophanol-anthron, rheum-emodin and physcion | [139] |
Rhinacanthus nasutus | herb | Ethanol | 81.25% mortality caused after 72 h exposure with 200 mg/L extract | [136] | |
Rumex japonicum | Roots | N-butanol and Water crude extracts | Exposure time = 48 h | [140] | |
N-butanol: LD50 =398.1 mg/L | |||||
Water: LD50 = 90.0 mg/L | |||||
Sapium sebiferum | fruit | Ethanol | 55% mortality caused after 72 h exposure with 200 mg/L extract | [136] | |
Solanum xanthocarpum (Schrad and Wendl) | Fruit | Ethanol | 100% snail mortality was achieved after 48 h exposure with 4.321 mg/L extract | [111] | |
LC50 = 0.181 mg/L for 72h of exposure | [141] | ||||
Torreya grandis | Leaf | Ethanol | 80% mortality caused after 72 h exposure; dose= 100 mg/L | [121] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte Galhardo de Albuquerque, R.D.; Mahomoodally, M.F.; Lobine, D.; Suroowan, S.; Rengasamy, K.R. Botanical Products in the Treatment and Control of Schistosomiasis: Recent Studies and Distribution of Active Plant Resources According to Affected Regions. Biology 2020, 9, 223. https://doi.org/10.3390/biology9080223
Duarte Galhardo de Albuquerque RD, Mahomoodally MF, Lobine D, Suroowan S, Rengasamy KR. Botanical Products in the Treatment and Control of Schistosomiasis: Recent Studies and Distribution of Active Plant Resources According to Affected Regions. Biology. 2020; 9(8):223. https://doi.org/10.3390/biology9080223
Chicago/Turabian StyleDuarte Galhardo de Albuquerque, Ricardo Diego, Mohamad Fawzi Mahomoodally, Devina Lobine, Shanno Suroowan, and Kannan RR Rengasamy. 2020. "Botanical Products in the Treatment and Control of Schistosomiasis: Recent Studies and Distribution of Active Plant Resources According to Affected Regions" Biology 9, no. 8: 223. https://doi.org/10.3390/biology9080223
APA StyleDuarte Galhardo de Albuquerque, R. D., Mahomoodally, M. F., Lobine, D., Suroowan, S., & Rengasamy, K. R. (2020). Botanical Products in the Treatment and Control of Schistosomiasis: Recent Studies and Distribution of Active Plant Resources According to Affected Regions. Biology, 9(8), 223. https://doi.org/10.3390/biology9080223