The Digital Value Stream Twin
Abstract
:1. Introduction and State of the Art
- “What are the objectives of the DVST?”
- “What requirements must the DVST fulfill to be used in practice?”
- “What does the framework of the DVST consist of to be implemented in practice?”
2. Systematic Literature Review
3. Objectives and Definition of the Digital Value Stream Twin
- maintaining the current value stream design (reactive improvement)
- continuous improvement towards the target state (proactive improvement)
4. Requirements Digital Value Stream Twin
5. Framework Digital Value Stream Twin
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adolph, S.; Tisch, M.; Metternich, J. Challenges and approaches to competency development for future production. J. Int. Sci. Publ. 2014, 12, 1001–1010. [Google Scholar]
- Winkler, H.; Lugert, A. Die Wertstrommethode im Zeitalter von Industrie 4.0. Studienreport; BTU Brandenburgische Technische Universität Cottbus-Senftenberg: Cottbus, Germany, 2017. [Google Scholar]
- Lugert, A.; Völker, K.; Winkler, H. Dynamization of Value Stream Management by technical and managerial approach. Procedia CIRP 2018, 72, 701–706. [Google Scholar] [CrossRef]
- Frick, N.; Urnauer, C.; Metternich, J. Echtzeitdaten für das Wertstrommanagement. Z. Wirtsch. Fabr. 2020, 115, 220–224. [Google Scholar] [CrossRef]
- Hämmerle, M.; Rally, P.; Spath, D. Wertschöpfung Steigern: Ergebnisse der Datenerhebung über die Verbreitung und Ausgestaltung von Methoden zur Prozessoptimierung in der Produktion mit Besonderem Fokus auf die Wertstrommethode; Fraunhofer Verlag: Stuttgart, Germany, 2010; ISBN 9783839601198. [Google Scholar]
- Rother, M.; Shook, J. Learning to See: Value Stream Mapping to Add Value and Eliminate Muda; Lean Enterprise Institute: Brookline, MA, USA, 1999. [Google Scholar]
- Erlach, K. Wertstromdesign; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-662-58906-9. [Google Scholar]
- DIN Deutsches Institut für Normung, e.V. Value Stream Management (VSM) 22468; Beuth-Verlag: Berlin, Germany, 2020. [Google Scholar]
- Spieckermann, S.; Schubert, V.; Penner, D. Der digitale Wertstromzwilling. Z. Wirtsch. Fabr. 2022, 117, 75–78. [Google Scholar] [CrossRef]
- Forno, A.; Pereira, F.; Forcellini, F.; Kipper, L. Value Stream Mapping: A study about the problems and challenges found in the literature from the past 15 years about application of Lean tools. Int. J. Adv. Manuf. Technol. 2014, 72, 779–790. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Langlotz, P.; Aurich, J. Causal and temporal relationships within the combination of Lean Production Systems and Industry 4.0. Procedia CIRP 2021, 96, 236–241. [Google Scholar] [CrossRef]
- Stark, R.; Damerau, T. Digital Twin. In CIRP Encyclopedia of Production Engineering; Chatti, S., Tolio, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–8. ISBN 978-3-642-35950-7. [Google Scholar]
- Tao, F.; Zhang, M.; Nee, A. Applications of Digital Twin. In Digital Twin Driven Smart Manufacturing; Tao, F., Zhang, M., Nee, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 29–62. ISBN 9780128176306. [Google Scholar]
- Erlach, K.; Böhm, M.; Gessert, S.; Hartleif, S.; Teriete, T.; Ungern-Sternberg, R. Die zwei Wege der Wertstrommethode zur Digitalisierung. Datenwertstrom und WertstromDigital als Stoßrichtungen der Forschung für die digitalisierte Produktion. Z. Wirtsch. Fabr. 2021, 116, 940–944. [Google Scholar] [CrossRef]
- Mayr, A.; Weigelt, M.; Kühl, A.; Grimm, S.; Erll, A.; Potzel, M.; Franke, J. Lean 4.0-A conceptual conjunction of lean management and Industry 4.0. Procedia CIRP 2018, 72, 622–628. [Google Scholar] [CrossRef]
- Fink, A. Conducting Research Literature Reviews; Sage: Thousand Oaks, CA, USA, 2010; ISBN 9781412971898. [Google Scholar]
- Klevers, T. Wertstrom-Mapping und Wertstrom-Design: Verschwendung Erkennen-Wertschöpfung Steigern; Mi-Fachverlag: Landsberg am Lech, Germany, 2007; ISBN 3636030973. [Google Scholar]
- Lugert, A. Dynamisches Wertstrommanagement im Kontext von Industrie 4.0.; Logos Verlag Berlin GmbH: Berlin, Germany, 2019; ISBN 978-3-8325-4849-0. [Google Scholar]
- Onaji, I.; Tiwari, D.; Soulatiantork, P.; Song, B.; Tiwari, A. Digital twin in manufacturing: Conceptual framework and case studies. Int. J. Comput. Integr. Manuf. 2022, 1–28. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Yan, Q. Dynamic Resource Allocation Optimization for Digital Twin-driven Smart Shopfloor. In Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 27–29 March 2018; pp. 1–5, ISBN 978-1-5386-5053-0. [Google Scholar]
- Coronado, P.; Lynn, R.; Louhichi, W.; Parto, M.; Wescoat, E.; Kurfess, T. Part data integration in the Shop Floor Digital Twin: Mobile and cloud technologies to enable a manufacturing execution system. J. Manuf. Syst. 2018, 48, 25–33. [Google Scholar] [CrossRef]
- D’Amico, D.; Ekoyuncu, J.; Addepalli, S.; Smith, C.; Keedwell, E.; Sibson, J.; Penver, S. Conceptual framework of a digital twin to evaluate the degradation status of complex engineering systems. Procedia CIRP 2019, 86, 61–67. [Google Scholar] [CrossRef]
- Deuter, A.; Pethig, F. The Digital Twin Theory. Eine neue Sicht auf ein Modewort. Ind. 4.0 Manag. 2019, 35, 27–30. [Google Scholar] [CrossRef]
- Göckel, N.; Müller, P. Entwicklung und Betrieb Digitaler Zwillinge. Z. Wirtsch. Fabr. 2020, 115, 7–11. [Google Scholar] [CrossRef]
- Guo, H.; Chen, M.; Mohamed, K.; Qu, T.; Wang, S.; Li, J. A digital twin-based flexible cellular manufacturing for optimization of air conditioner line. J. Manuf. Syst. 2021, 58, 65–78. [Google Scholar] [CrossRef]
- ISO 23247-1:2021; Automation Systems and Integration-Digital Twin Framework for Manufacturing-Part 1: Overview and General Principles. International Organization for Standardization: Geneva, Switzerland, 2021.
- Jagusch, K.; Sender, J.; Flügge, W. Echtzeitfähiger Informationsfluss in der maritimen Ausrüstung. Ind. 4.0 Manag. 2019, 35, 9–12. [Google Scholar]
- Kunath, M.; Winkler, H. Integrating the Digital Twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP 2018, 72, 225–231. [Google Scholar] [CrossRef]
- Magnanini, M.; Melnychuk, O.; Yemane, A.; Strandberg, H.; Ricondo, I.; Borzi, G.; Colledani, M. A Digital Twin-based approach for multi-objective optimization of short-term production planning. IFAC-PapersOnLine 2021, 54, 140–145. [Google Scholar] [CrossRef]
- Malakuti, S. Emerging Technical Debt in Digital Twin Systems. In Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, 7–10 September 2021; pp. 1–4, ISBN 978-1-7281-2989-1. [Google Scholar]
- Pause, D.; Blum, M. Conceptual Design of a Digital Shadow for the Procurement of Stocked Products. In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0.; Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 288–295. ISBN 978-3-319-99706-3. [Google Scholar]
- Ricondo, I.; Porto, A.; Ugarte, M. A digital twin framework for the simulation and optimization of production systems. Procedia CIRP 2021, 104, 762–767. [Google Scholar] [CrossRef]
- Ruppert, T.; Abonyi, J. Integration of real-time locating systems into digital twins. J. Ind. Inf. Integr. 2020, 20, 100174. [Google Scholar] [CrossRef]
- Schleich, B.; Dittrich, M.-A.; Clausmeyer, T.; Damgrave, R.; Erkoyuncu, J.; Haefner, B.; de Lange, J.; Plakhotnik, D.; Scheidel, W.; Wuest, T. Shifting value stream patterns along the product lifecycle with digital twins. Procedia CIRP 2019, 86, 3–11. [Google Scholar] [CrossRef]
- Schmitt, J.; Richter, R.; Deuse, J.; Zarges, J.-C.; Heim, H.-P. Digitaler Zwilling in der Kunststofftechnik. Ind. 4.0 Manag. 2021, 37, 17–20. [Google Scholar]
- Uhlemann, T.; Schock, C.; Lehmann, C.; Freiberger, S.; Steinhilper, R. The Digital Twin: Demonstrating the potential of real time data acquisition in production systems. Procedia Manuf. 2017, 9, 113–120. [Google Scholar] [CrossRef]
- Uhlemann, T.; Lehmann, C.; Steinhilper, R. The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. Procedia CIRP 2017, 61, 335–340. [Google Scholar] [CrossRef]
- Winkler, S.; Schumann, M.; Apitzsch, R.; Klimant, F.; Klimant, P. Der Digitale Zwilling-Probleme und Lösungsansätze. Z. Wirtsch. Fabr. 2020, 115, 121–124. [Google Scholar] [CrossRef]
- Ramadan, M. RFID-Enabled Dynamic Value Stream Mapping for Smart Real-Time Lean-Based Manufacturing System; Universitätsbibliothek Duisburg-Essen: Duisburg, Germany, 2016. [Google Scholar]
- Sullivan, B.; Yazdi, P.; Suresh, A.; Thiede, S. Digital Value Stream Mapping: Application of UWB Real Time Location Systems. Procedia CIRP 2022, 107, 1186–1191. [Google Scholar] [CrossRef]
- Chen, K.-M.; Chen, J.; Cox, R. Real time facility performance monitoring system using RFID technology. Assem. Autom. 2012, 32, 185–196. [Google Scholar] [CrossRef]
- Ahmed, A.; Hasnan, K.; Aisham, B.; Bakhsh, Q. Integration of Value Stream Mapping with RFID, WSN and ZigBee Network. Appl. Mech. Mater. 2014, 465–466, 769–773. [Google Scholar] [CrossRef]
- Unbehauen, H. Regelungstechnik I. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme: Springer eBook Collection Computer Science & Engineering; Vieweg+Teubner: Wiesbaden, Germany, 2008; ISBN 9783834894915. [Google Scholar]
- Lunze, J. Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf Einschleifiger Regelungen: Lehrbuch; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783662607459. [Google Scholar]
Requirements | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical Layer | Virtual Layer | Connection Layer | Further Req. | |||||||||||||
Author (year) | Source | Type | Data Integration | Open and Standardized Communication Gateways | Visualization of the Actual State | Storage of Historical Data | Access to Different Data Sources | Modeling of the Value Stream | Central Data Model | Specific Sub Models for Each Application | Continuous Data Acquisition (Real Time Data) | Unique Identification/Standardization of Data | Information Feedback into the VS (Closed Loop) | Data Storage in a Central Cloud | Definition of Employee Roles for the Application | DT Architecture Compliant with AAS |
Coronado et al. (2018) | [22] | A | • | • | • | • | • | • | ||||||||
D’Amico et al. (2019) | [23] | C | • | • | • | • | • | • | • | |||||||
Deuter et al. (2019) | [24] | C | • | • | • | • | • | |||||||||
Göckel und Müller (2020) | [25] | A | • | • | • | • | • | • | • | • | ||||||
Guo et al. (2021) | [26] | A | • | • | • | • | • | • | • | • | • | • | ||||
International Organization for Standardization (2021) | [27] | N | • | • | • | • | • | • | • | • | • | |||||
Jagusch et al. (2019) | [28] | C | • | • | • | • | • | |||||||||
Kunath und Winkler (2018) | [29] | C | • | • | • | • | • | • | • | • | • | • | • | |||
Lugert (2019) | [19] | C | • | • | • | • | • | • | • | • | • | • | • | |||
Lugert et al. (2018) | [3] | C | • | • | • | • | • | • | • | • | • | |||||
Magnanini et al. (2021) | [30] | A | • | • | • | • | ||||||||||
Malakuti (2021) | [31] | C | • | • | • | • | • | • | • | • | ||||||
Onaji et al. (2022) | [20] | A | • | • | • | • | • | • | • | • | • | |||||
Pause und Blum (2018) | [32] | C | • | • | • | • | • | • | ||||||||
Ricondo et al. (2021) | [33] | A | • | • | • | • | • | • | • | • | ||||||
Ruppert und Abonyi (2020) | [34] | C | • | • | • | • | • | |||||||||
Schleich et al. (2019) | [35] | L | • | • | • | • | • | • | ||||||||
Schmitt et al. (2021) | [36] | C | • | • | • | • | ||||||||||
Tao et al. (2019) | [14] | L | • | • | • | • | • | • | ||||||||
Uhlemann et al. (2017) | [37] | C | • | • | • | • | ||||||||||
Uhlemann et al. (2017) | [38] | C | • | • | • | • | • | • | ||||||||
Winkler et al. (2020) | [39] | C | • | • | • | • | • | • | • |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frick, N.; Metternich, J. The Digital Value Stream Twin. Systems 2022, 10, 102. https://doi.org/10.3390/systems10040102
Frick N, Metternich J. The Digital Value Stream Twin. Systems. 2022; 10(4):102. https://doi.org/10.3390/systems10040102
Chicago/Turabian StyleFrick, Nicholas, and Joachim Metternich. 2022. "The Digital Value Stream Twin" Systems 10, no. 4: 102. https://doi.org/10.3390/systems10040102
APA StyleFrick, N., & Metternich, J. (2022). The Digital Value Stream Twin. Systems, 10(4), 102. https://doi.org/10.3390/systems10040102