A Learning-Based Decision Tool towards Smart Energy Optimization in the Manufacturing Process
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Tempering Process of Automotive Glass Manufacturing
2. Literature Review
3. Background on Reinforcement Learning
3.1. Q-Learning
- Deep Q-Learning
3.2. Policy Gradients
- Proximal Policy Optimization (PPO)
3.3. Actor–Critic Methods
- Asynchronous Advantage Actor–Critic (A3C)
- Advantage Actor–Critic (A2C)
4. Problem Statement and Proposed Methods
4.1. Background Data Acquisition
4.2. Self-Prediction Model Development
4.3. RL Decision Model
- State space S
- Action space A
- Reward function R
5. Experiment Validation and Result
5.1. Offline Simulation and Prediction Model Training
5.2. Decision System
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Rabbani, M.; Mohammadi, S.; Mobini, M. Optimum design of a CCHP system based on Economical, energy and environmental considerations using GA and PSO. Int. J. Ind. Eng. Comput. 2018, 9, 99–122. [Google Scholar] [CrossRef]
- Thiede, S.; Herrmann, C. Simulation-based energy flow evaluation for sustainable manufacturing systems. In Proceedings of the 17th CIRP International Conference on Life Cycle Engineering, LCE 2010, Hefei, China, 19–21 May 2010; pp. 99–104. [Google Scholar]
- Seefeldt, F.; Marco, W.; Schlesinger, M. The Future Role of Coal in Europe; EUROCOAL: Berlin, Germany; Basel, Switzerland, 2007. [Google Scholar]
- Muhuri, P.K.; Shukla, A.K.; Abraham, A. Industry 4.0: A bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 2019, 78, 218–235. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X.; Wang, L. Smart manufacturing process and system automation-a critical review of the standards and envisioned scenarios. J. Manuf. Syst. 2020, 56, 312–325. [Google Scholar] [CrossRef]
- Zobeiry, N.; Humfeld, K.D. A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications. Eng. Appl. Artif. Intell. 2021, 101, 104232. [Google Scholar] [CrossRef]
- Chakraborty, S. Simulation free reliability analysis: A physics-informed deep learning based approach. arXiv 2020, arXiv:2005.01302. [Google Scholar]
- Kober, J.; Bagnell, J.; Andrew, P.J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [Google Scholar] [CrossRef] [Green Version]
- Szepesvári, C. Algorithms for reinforcement learning. Synth. Lect. Artif. Intell. Mach. Learn. 2010, 4, 1–103. [Google Scholar]
- Kaelbling, L.; Pack, L.M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Mcmaster, R.A. Fundamentals of tempered glass. Ceram. Eng. Sci. Proc. 1989, 10, 193–206. [Google Scholar]
- Zhang, X.; Hao, H.; Wang, Z. Experimental investigation of monolithic tempered glass fragment characteristics subjected to blast loads. Eng. Struct. 2014, 75, 259–275. [Google Scholar] [CrossRef]
- Gardon, R. Thermal tempering of glass. In Glass Science and Technology; Uhlmann, D.R., Kreidl, N.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Rantala, M. Heat Transfer Phenomena in Float Glass Heat Treatment Processes. Doctoral Thesis, Tampere University of Technology, Tampere, Finland, 2015. [Google Scholar]
- Mazgualdi, C.E.; Masrour, T.; Hassani, E.; Khdoudi, A. A Deep Reinforcement Learning (DRL) Decision Model for Heating Process Parameters Identification in Automotive Glass Manufacturing. In Proceedings of the International Conference on Artificial Intelligence & Industrial Applications, Meknes, Morocco, 19–20 March 2020; pp. 77–87. [Google Scholar]
- Moreira, L.C.; Li, W.D.; Lu, X.; Fitzpatrick, M.E. Energy-Efficient machining process analysis and optimisation based on BS EN24T alloy steel as case studies. Robot. Comput. Integr. Manuf. 2019, 58, 1–12. [Google Scholar] [CrossRef]
- Hajabdollahi, F.; Hajabdollahi, Z.; Hajabdollahi, H. Soft computing based multi-objective optimization of steam cycle power plant using NSGA-II and ANN. Appl. Soft Comput. 2012, 12, 3648–3655. [Google Scholar] [CrossRef]
- Seo, K.T.F.; Edgar, M.B. Optimal demand response operation of electric boosting glass furnaces. Appl. Energy 2020, 269, 115077. [Google Scholar] [CrossRef]
- Geng, Z. Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature. Energy 2020, 194, 116851. [Google Scholar] [CrossRef]
- Su, Y. Multi-objective optimization of cutting parameters in turning AISI 304 austenitic stainless steel. Metals 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Sangwan, K.; Singh, N.S. Multi-objective optimization for energy efficient machining with high productivity and quality for a turning process. Procedia CIRP 2019, 80, 67–72. [Google Scholar] [CrossRef]
- Wang, W. Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. J. Clean. Prod. 2020, 245, 118714. [Google Scholar] [CrossRef]
- Luan, X. Trade-off analysis of tool wear, machining quality and energy efficiency of alloy cast iron milling process. Procedia Manuf. 2018, 26, 383–393. [Google Scholar] [CrossRef]
- Han, Y. Energy management and optimization modeling based on a novel fuzzy extreme learning machine: Case study of complex petrochemical industries. Energy Convers. Manag. 2018, 165, 163–171. [Google Scholar] [CrossRef]
- Golkarnarenji, G. Support vector regression modelling and optimization of energy consumption in carbon fiber production line. Comput. Chem. Eng. 2018, 109, 276–288. [Google Scholar] [CrossRef]
- Bian, S.; Li, C.; Fu, Y. Machine learning-based real-time monitoring system for smart connected worker to improve energy efficiency. J. Manuf. Syst. 2021, 61, 66–76. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Syst. Appl. 2020, 141, 112963. [Google Scholar] [CrossRef]
- Pane, Y.P.; Nageshrao, S.P.; Kober, J. Reinforcement learning based compensation methods for robot manipulators. Eng. Appl. Artif. Intell. 2019, 78, 236–247. [Google Scholar] [CrossRef]
- Xuan, H.; Zhao, X.; Fan, J.; Xue, Y.; Zhu, F.; Li, Y. Vnf service chain deployment algorithm in 5g communication based on reinforcement learning. IAENG Int. J. Comput. Sci. 2020, 48, 1–7. [Google Scholar]
- Rhazzaf, M.; Masrour, T. Smart Autonomous Vehicles in High Dimensional Warehouses Using Deep Reinforcement Learning Approach. Eng. Lett. 2021, 29, 1–9. [Google Scholar]
- Otterlo, M.; Wiering, M. Reinforcement learning and Markov decision processes. In Reinforcement Learning: State-Of-The-Art; Wiering, M., Otterlo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–42. [Google Scholar]
- White III, C.C.; White, D.J. Markov decision processes. Eur. J. Operational Res. 1989, 39, 1–16. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Werner, H.; Ehn, G. Reinforcement Learning for Planning of a Simulated Production Line. Master’s Theses, Lund Central Station, Lund, Sweden, 2018. [Google Scholar]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Khdoudi, A.; Masrour, T.; Mazgualdi, C. Using Machine Learning Algorithms for the Prediction of Industrial Process Parameters Based on Product Design. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development, Marrakech, Morocco, 8–11 July 2019; pp. 728–749. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Sutton, R.; Mcallester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approximation. Adv. Neural Inf. Process. Syst. 1999, 12, 1057–1063. [Google Scholar]
- Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1889–1897. [Google Scholar]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Li, Y.; Chen, Y. Enhancing A Stock Timing Strategy by Reinforcement Learning. IAENG Int. J. Comput. Sci. 2021, 48, 1–10. [Google Scholar]
- Grondman, I.; Busoniu, L.; Lopes, G.A.; Babuska, R. A survey of actor–critic reinforcement learning: Standard and natural policy gradients. IEEE Trans. Syst. Man Cybern. Part C 2012, 42, 1291–1307. [Google Scholar] [CrossRef] [Green Version]
- Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1928–1937. [Google Scholar]
- Lee, H.H. Finite Element Simulations with ANSYS Workbench 18; SDC Publications: Kansas, MO, USA, 2018. [Google Scholar]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P. Introduction to Heat Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Dhir, V.K. Boiling heat transfer. Annu. Rev. Fluid Mech. 1998, 30, 365. [Google Scholar] [CrossRef]
- Mills, A.F. Heat Transfer; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Ali, J. Random forests and decision trees. Int. J. Comput. Sci. Issues 2012, 9, 272. [Google Scholar]
- Mazgualdi, C.E.; Masrour, T.; Hassani, I.E.; Khdoudi, A. Machine learning for KPIs prediction: A case study of the overall equipment effectiveness within the automotive industry. Soft Comput. 2021, 25, 2891–2909. [Google Scholar] [CrossRef]
- Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert, M.; Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; Zhokhov, P. Openai Baselines: High-Quality Implementations of Reinforcement Learning Algorithms. Available online: https://github.com/openai/baselines (accessed on 5 September 2022).
- Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016, arXiv:1606.01540. [Google Scholar]
Characteristic | Value | Unit |
---|---|---|
Isotropic thermal conductivity | 1.4 | W m−1 K−1 |
Specific heat | 750 | J kg−1 K−1 |
Mesh size | 1 division following X and Y | — |
33 divisions following Z | — | |
Emissivity | 0.9 | — |
Zone | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Temperature (C) | 637 | 652 | 664 | 666 | 670 | 678 | 685 | 685 | 695 |
Glass Speed (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mazgualdi, C.; Masrour, T.; Barka, N.; El Hassani, I. A Learning-Based Decision Tool towards Smart Energy Optimization in the Manufacturing Process. Systems 2022, 10, 180. https://doi.org/10.3390/systems10050180
El Mazgualdi C, Masrour T, Barka N, El Hassani I. A Learning-Based Decision Tool towards Smart Energy Optimization in the Manufacturing Process. Systems. 2022; 10(5):180. https://doi.org/10.3390/systems10050180
Chicago/Turabian StyleEl Mazgualdi, Choumicha, Tawfik Masrour, Noureddine Barka, and Ibtissam El Hassani. 2022. "A Learning-Based Decision Tool towards Smart Energy Optimization in the Manufacturing Process" Systems 10, no. 5: 180. https://doi.org/10.3390/systems10050180
APA StyleEl Mazgualdi, C., Masrour, T., Barka, N., & El Hassani, I. (2022). A Learning-Based Decision Tool towards Smart Energy Optimization in the Manufacturing Process. Systems, 10(5), 180. https://doi.org/10.3390/systems10050180