Does Internet Use Affect Citizens’ Perception of Social Safety? A Cross-Sectional Survey in China
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypothesis
3. Method
3.1. Data Sources
3.2. Variable Selection
3.3. Control Variables
3.4. Analytical Model
4. Results
4.1. Descriptive Analysis
4.2. Benchmark Regression
4.2.1. The Impact of Internet use and Internet use Frequency on Perception of Social Safety
4.2.2. The Impact of Control Variables on Perception of Social Safety
4.3. Robustness Check
4.4. Endogenous Issues
4.5. Heterogeneous Effects of Internet use on Social Safety Perception
5. Discussion
6. Conclusions
6.1. Major Findings
6.2. Policy Implications
6.3. Limitations and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Social safety perception | 1 | ||||||||||||||
Internet use | −0.144 *** | 1 | |||||||||||||
Internet use frequency | −0.143 *** | 0.945 *** | 1 | ||||||||||||
Gender | 0.062 *** | 0.022 | 0.018 | 1 | |||||||||||
Age | 0.159 *** | −0.560 *** | −0.058 *** | 0.051 *** | 1 | ||||||||||
Household registration | 0.064 *** | −0.241 *** | −0.256 *** | 0.002 | 0.031 *** | 1 | |||||||||
Educational level | −0.126 *** | 0.561 *** | 0.592 *** | 0.131 *** | −0.483 *** | −0.418 *** | 1 | ||||||||
Marital status | 0.025 | −0.194 *** | −0.236 *** | −0.067 *** | 0.299 *** | 0.057 *** | −0.221 *** | 1 | |||||||
Police trust | 0.239 *** | −0.165 *** | −0.152 *** | −0.067 *** | 0.166 *** | 0.082 *** | −0.169 *** | 0.006 | 1 | ||||||
Neighbor trust | 0.205 *** | −0.144 *** | −0.147 *** | 0.049 *** | 0.182 *** | 0.096 *** | −0.155 *** | 0.071 *** | 0.314 *** | 1 | |||||
Party trust | 0.259 *** | −0.115 *** | −0.103 *** | −0.030 *** | 0.132 *** | 0.029 *** | −0.088 *** | −0.004 | 0.562 *** | 0.311 *** | 1 | ||||
Socioeconomic status | 0.023 | 0.178 *** | 0.190 *** | −0.030 *** | −0.073 *** | −0.158 *** | 0.213 *** | 0.008 | 0.021 | 0.001 | 0.070 *** | 1 | |||
Life satisfaction | 0.168 *** | 0.079 *** | 0.102 *** | 0.015 | −0.037 *** | −0.074 *** | 0.124 *** | −0.039 *** | 0.182 *** | 0.128 *** | 0.210 *** | 0.318 *** | 1 | ||
Awareness of public safety issues | −0.031 *** | −0.021 | −0.017 | −0.012 | 0.016 | 0.008 | −0.013 | −0.010 | −0.027 | −0.020 | −0.002 | 0.024 | 0.008 | 1 | |
Social safety maintenance satisfaction | 0.151 *** | −0.007 | −0.005 | 0.007 | 0.048 *** | −0.035 *** | 0.021 | 0.013 | 0.191 *** | 0.077 *** | 0.204 *** | 0.036 *** | 0.123 *** | −0.065 *** | 1 |
References
- 2022 Special Report on Human Security Human Development Reports. Available online: https://hdr.undp.org/content/2022-special-report-human-security (accessed on 5 October 2022).
- Valente, R.; Valera Pertegas, S.; Guàrdia Olmos, J. Feeling Unsafe in Italy’s Biggest Cities. Eur. J. Criminol. 2022, 19, 849–867. [Google Scholar] [CrossRef]
- Williams, S.; Schneider, M.; Wornell, C.; Langhinrichsen-Rohling, J. Student’s Perceptions of School Safety: It Is Not Just About Being Bullied. J. Sch. Nurs. 2018, 34, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Valente, R.; Valera Pertegas, S. Ontological Insecurity and Subjective Feelings of Unsafety: Analysing Socially Constructed Fears in Italy. Soc. Sci. Res. 2018, 71, 160–170. [Google Scholar] [CrossRef]
- Arafat, S.M.Y.; Kar, S.K.; Marthoenis, M.; Sharma, P.; Hoque Apu, E.; Kabir, R. Psychological Underpinning of Panic Buying during Pandemic (COVID-19). Psychiatry Res. 2020, 289, 113061. [Google Scholar] [CrossRef] [PubMed]
- Corbacho, A.; Philipp, J.; Ruiz-Vega, M. Crime and Erosion of Trust: Evidence for Latin America. World Dev. 2015, 70, 400–415. [Google Scholar] [CrossRef] [Green Version]
- Weijs-Perrée, M.; Dane, G.; van den Berg, P. Analyzing the Relationships between Citizens’ Emotions and Their Momentary Satisfaction in Urban Public Spaces. Sustainability 2020, 12, 7921. [Google Scholar] [CrossRef]
- Warr, M. Fear of Crime in the United States: Avenues for Research and Policy. Crim. Justice 2000, 40, 451–489. [Google Scholar]
- Castellacci, F.; Tveito, V. Internet Use and Well-Being: A Survey and a Theoretical Framework. Res. Policy 2018, 47, 308–325. [Google Scholar] [CrossRef]
- CNNIC (China Internet Network Information Center). The 50th Statistical Report on China’s Internet Development. Available online: http://www.cnnic.net.cn/n4/2022/0914/c88-10226.html (accessed on 14 September 2022).
- Zhu, C.; Huang, S.; Evans, R.; Zhang, W. Cyberbullying Among Adolescents and Children: A Comprehensive Review of the Global Situation, Risk Factors, and Preventive Measures. Front. Public Health 2021, 9, 634909. [Google Scholar] [CrossRef]
- Liu, P.; Han, C.; Teng, M. The Influence of Internet Use on Pro-Environmental Behaviors: An Integrated Theoretical Framework. Resour. Conserv. Recycl. 2021, 164, 105162. [Google Scholar] [CrossRef]
- Silva, P.; Delerue Matos, A.; Martinez-Pecino, R. Confidant Network and Quality of Life of Individuals Aged 50+: The Positive Role of Internet Use. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 694–702. [Google Scholar] [CrossRef]
- Chung, I.J. Social Amplification of Risk in the Internet Environment: Social Amplification of Risk in the Internet Environment. Risk Anal. 2011, 31, 1883–1896. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.; Choy, M. The Social Amplification of Haze-Related Risks on the Internet. Health Commun. 2018, 33, 14–21. [Google Scholar] [CrossRef]
- Nakayama, C.; Sato, O.; Sugita, M.; Nakayama, T.; Kuroda, Y.; Orui, M.; Iwasa, H.; Yasumura, S.; Rudd, R.E. Lingering Health-Related Anxiety about Radiation among Fukushima Residents as Correlated with Media Information Following the Accident at Fukushima Daiichi Nuclear Power Plant. PLoS ONE 2019, 14, e0217285. [Google Scholar] [CrossRef]
- Qian, B.; Huang, M.; Xu, M.; Hong, Y. Internet Use and Quality of Life: The Multiple Mediating Effects of Risk Perception and Internet Addiction. Int. J. Environ. Res. Public Health 2022, 19, 1795. [Google Scholar] [CrossRef] [PubMed]
- Soiné, H.; Kriegel, L.; Dollmann, J. The Impact of the COVID-19 Pandemic on Risk Perceptions: Differences between Ethnic Groups in Germany. Eur. Soc. 2021, 23, S289–S306. [Google Scholar] [CrossRef]
- Ferraro, K.F.; Grange, R.L. The Measurement of Fear of Crime. Sociol. Inq. 1987, 57, 70–97. [Google Scholar] [CrossRef]
- Reid, I.D.; Appleby-Arnold, S.; Brockdorff, N.; Jakovljev, I.; Zdravković, S. Developing a Model of Perceptions of Security and Insecurity in the Context of Crime. Psychiatry Psychol. Law 2020, 27, 620–636. [Google Scholar] [CrossRef]
- Johansson-Nogués, E. The EU’s Ontological (in)Security: Stabilising the ENP Area … and the EU-Self? Coop. Confl. 2018, 53, 528–544. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Liu, Y. Does Information Pattern Affect Risk Perception of Food Safety? A National Survey in China. Int. J. Environ. Res. Public Health 2018, 15, 1935. [Google Scholar] [CrossRef] [Green Version]
- Ge, T.; He, G. A Decade of Insecurity Paradox in Contemporary China, 2008–2017. Chin. Sociol. Rev. 2021, 1–27. [Google Scholar] [CrossRef]
- Miao, R. China Social Mindset Research Report (2020); Epidemic Risk Perception and Sense of Security in 2020: The Moderating Role of Information Disclosure and Its Temporal Differences; Social Sciences Academic Press: Beijing, China, 2021; pp. 35–47. [Google Scholar]
- Gkeredakis, M.; Lifshitz-Assaf, H.; Barrett, M. Crisis as Opportunity, Disruption and Exposure: Exploring Emergent Responses to Crisis through Digital Technology. Inf. Organ. 2021, 31, 100344. [Google Scholar] [CrossRef]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The Social Amplification of Risk: A Conceptual Framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Rossmann, C.; Meyer, L.; Schulz, P.J. The Mediated Amplification of a Crisis: Communicating the A/H1N1 Pandemic in Press Releases and Press Coverage in Europe: The Mediated Amplification of a Crisis. Risk Anal. 2018, 38, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Y. Online Amplification of Air Pollution Risk Perception: The Moderating Role of Affect in Information. Inf. Commun. Soc. 2018, 21, 80–93. [Google Scholar] [CrossRef]
- Ng, Y.J.; Yang, Z.J.; Vishwanath, A. To Fear or Not to Fear? Applying the Social Amplification of Risk Framework on Two Environmental Health Risks in Singapore. J. Risk Res. 2018, 21, 1487–1501. [Google Scholar] [CrossRef]
- Mou, Y.; Lin, C.A. Communicating Food Safety via the Social Media: The Role of Knowledge and Emotions on Risk Perception and Prevention. Sci. Commun. 2014, 36, 593–616. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhang, W.; Evans, R.; Zhu, C. Concerns Expressed by Chinese Social Media Users During the COVID-19 Pandemic: Content Analysis of Sina Weibo Microblogging Data. J. Med. Internet Res. 2020, 22, e22152. [Google Scholar] [CrossRef]
- Hopfer, S.; Fields, E.J.; Lu, Y.; Ramakrishnan, G.; Grover, T.; Bai, Q.; Huang, Y.; Li, C.; Mark, G. The Social Amplification and Attenuation of COVID-19 Risk Perception Shaping Mask Wearing Behavior: A Longitudinal Twitter Analysis. PLoS ONE 2021, 16, e0257428. [Google Scholar] [CrossRef]
- Lee, J.; Choi, J.; Britt, R.K. Social Media as Risk-Attenuation and Misinformation-Amplification Station: How Social Media Interaction Affects Misperceptions about COVID-19. Health Commun. 2021, 1–11. [Google Scholar] [CrossRef]
- Rubinelli, S.; Fiordelli, M.; Zanini, C.; Diviani, N. It Is Time for Health Institutions to Invest in Persuasive Communication to Combat Low Quality Information: A Lesson Learned from the COVID-19 Infodemic. Front. Commun. 2022, 7, 1006302. [Google Scholar] [CrossRef]
- Scardigno, R.; Mininni, G. The Rhetoric Side of Fake News: A New Weapon for Anti-Politics? World Futur. 2019, 76, 81–101. [Google Scholar] [CrossRef]
- Wheaton, M.G.; Prikhidko, A.; Messner, G.R. Is Fear of COVID-19 Contagious? The Effects of Emotion Contagion and Social Media Use on Anxiety in Response to the Coronavirus Pandemic. Front. Psychol. 2021, 11, 567379. [Google Scholar] [CrossRef] [PubMed]
- Gudi, S.K.; George, S.M.; Jose, J. Influence of Social Media on the Public Perspectives of the Safety of COVID-19 Vaccines. Expert Rev. Vaccines 2022, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Yang, G.; Wang, X.; Dou, W.; Lu, X.; Mao, J. Understanding Risk Perception from Floods: A Case Study from China. Nat. Hazards 2021, 105, 3119–3140. [Google Scholar] [CrossRef]
- Eslami, S.P.; Ghasemaghaei, M.; Hassanein, K. Which Online Reviews Do Consumers Find Most Helpful? A Multi-Method Investigation. Decis. Support Syst. 2018, 113, 32–42. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, Z.; Cheng, M.; Zhang, H.; Zhang, H.; Zhu, Z. Association of Internet Use with Attitudes Toward Food Safety in China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 4162. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Wei, J.; Shu, X.; Feng, Z. Negativity Bias for Sad Faces in Depression: An Event-Related Potential Study. Clin. Neurophysiol. 2016, 127, 3552–3560. [Google Scholar] [CrossRef]
- Rozin, P.; Royzman, E.B. Negativity Bias, Negativity Dominance, and Contagion. Pers. Soc. Psychol. Rev. 2001, 5, 296–320. [Google Scholar] [CrossRef]
- Hong, S. A Behavioral Model of Public Organizations: Bounded Rationality, Performance Feedback, and Negativity Bias. J. Public Adm. Res. Theory 2019, 29, 1–17. [Google Scholar] [CrossRef]
- Primack, B.A.; Karim, S.A.; Shensa, A.; Bowman, N.; Knight, J.; Sidani, J.E. Positive and Negative Experiences on Social Media and Perceived Social Isolation. Am. J. Health Promot. 2019, 33, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, E.; Simas, C.; Larson, H.J. An Epidemic of Uncertainty: Rumors, Conspiracy Theories and Vaccine Hesitancy. Nat. Med. 2022, 28, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Sikder, O.; Smith, R.E.; Vivo, P.; Livan, G. A Minimalistic Model of Bias, Polarization and Misinformation in Social Networks. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ghani, A.S.A.; Wahab, H.A.; Ghazali, A.S.; Azam, S.B.M. Contextual and Multifactorial Influence on Perception of Safety from Crime among Selected Malaysians. Int. J. Res. Bus. Soc. Sci. (2147–4478) 2021, 10, 284–297. [Google Scholar] [CrossRef]
- Yano, V.A.N.; Frick, L.T.; Stelko-Pereira, A.C.; Zechi, J.A.M.; Amaral, E.L.; da Cunha, J.M.; Cortez, P.A. Validity Evidence for the Multidimensional Scale of Perceived Social Support at University and Safety Perception at Campus Questionnaire. Int. J. Educ. Res. 2021, 107, 101756. [Google Scholar] [CrossRef]
- van den Berg, P.; Waygood, E.O.D.; van de Craats, I.; Kemperman, A. Factors Affecting Parental Safety Perception, Satisfaction with School Travel and Mood in Primary School Children in the Netherlands. J. Transp. Health 2020, 16, 100837. [Google Scholar] [CrossRef]
- Ma, L.; Zheng, Y. National E-Government Performance and Citizen Satisfaction: A Multilevel Analysis across European Countries. Int. Rev. Adm. Sci. 2019, 85, 506–526. [Google Scholar] [CrossRef]
- Varela, J.J.; Alfaro, J.; Melipillán, R.; Gómez, D.O.; González-Carrasco, M. Perceptions of Safety, Satisfaction with Neighborhood and Life Satisfaction Among Chilean Adolescents. Child Indic. Res. 2020, 13, 1489–1502. [Google Scholar] [CrossRef]
- Babicki, M.; Malchrzak, W.; Hans-Wytrychowska, A.; Mastalerz-Migas, A. Impact of Vaccination on the Sense of Security, the Anxiety of COVID-19 and Quality of Life among Polish. A Nationwide Online Survey in Poland. Vaccines 2021, 9, 1444. [Google Scholar] [CrossRef]
- Wilson, D.K.; Kirtland, K.A.; Ainsworth, B.E.; Addy, C.L. Socioeconomic Status and Perceptions of Access and Safety for Physical Activity. Ann. Behav. Med. 2004, 28, 20–28. [Google Scholar] [CrossRef]
- Makinde, O.O. The Correlates of Residents’ Perception of Safety in Gated Communities in Nigeria. Soc. Sci. Humanit. Open 2020, 2, 100018. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, M.; Mei, R.; Wang, F. Internet Use and Individuals’ Environmental Quality Evaluation: Evidence from China. Sci. Total. Environ. 2020, 710, 136290. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. To Use or Not to Use Propensity Score Matching? Pharm. Stat. 2021, 20, 15–24. [Google Scholar] [CrossRef]
- Zhao, N.; Zhou, G. Social Media Use and Mental Health during the COVID-19 Pandemic: Moderator Role of Disaster Stressor and Mediator Role of Negative Affect. Appl. Psychol. Health Well-Being 2020, 12, 1019–1038. [Google Scholar] [CrossRef] [PubMed]
- Pulido, C.M.; Villarejo-Carballido, B.; Redondo-Sama, G.; Gómez, A. COVID-19 Infodemic: More Retweets for Science-Based Information on Coronavirus than for False Information. Int. Sociol. 2020, 35, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Mheidly, N.; Fares, J. Leveraging Media and Health Communication Strategies to Overcome the COVID-19 Infodemic. J. Public Health Policy 2020, 41, 410–420. [Google Scholar] [CrossRef]
- Carducci, A.; Fiore, M.; Azara, A.; Bonaccorsi, G.; Bortoletto, M.; Caggiano, G.; Calamusa, A.; De Donno, A.; De Giglio, O.; Dettori, M.; et al. Environment and Health: Risk Perception and Its Determinants among Italian University Students. Sci. Total Environ. 2019, 691, 1162–1172. [Google Scholar] [CrossRef] [Green Version]
- Lyu, S.; Sun, J. Internet Use and Self-rated Health among Chinese Older Adults: The Mediating Role of Social Capital. Geriatr. Gerontol. Int. 2021, 21, 34–38. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Ran, Q.; Irfan, M.; Ren, S.; Yang, X.; Wu, H.; Ahmad, M. Analysis of the Mechanism of the Impact of Internet Development on Green Economic Growth: Evidence from 269 Prefecture Cities in China. Environ. Sci. Pollut. Res. 2022, 29, 9990–10004. [Google Scholar] [CrossRef]
- Himawan, K.K.; Underwood, M.; Bambling, M.; Edirippulige, S. Being Single When Marriage Is the Norm: Internet Use and the Well-Being of Never-Married Adults in Indonesia. Curr. Psychol. 2021, 1–12. [Google Scholar] [CrossRef]
- Hunsaker, A.; Hargittai, E. A Review of Internet Use among Older Adults. New Media Soc. 2018, 20, 3937–3954. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, W.; Sousa-Poza, A.; Leng, C. The Effect of Internet Usage on Perceptions of Social Fairness: Evidence from Rural China. China Econ. Rev. 2020, 62, 101508. [Google Scholar] [CrossRef]
- Yu, D.; Fiebig, D.G. Internet Use and Cognition among Middle-Aged and Older Adults in China: A Cross-Lagged Panel Analysis. J. Econ. Ageing 2020, 17, 100262. [Google Scholar] [CrossRef]
- Ortigueira-Sánchez, L.C. Influencing Factors on Citizen Safety Perception: Systems and Broken Windows Theories. Int. Rev. Public Nonprofit Mark. 2017, 14, 95–111. [Google Scholar] [CrossRef]
- Cho, W.; Ho, A.T. Does Neighborhood Crime Matter? A Multi-Year Survey Study on Perceptions of Race, Victimization, and Public Safety. Int. J. Law Crime Justice 2018, 55, 13–26. [Google Scholar] [CrossRef]
- Salimi, A.; ElHawary, H.; Diab, N.; Smith, L. The North American Layman’s Understanding of COVID-19: Are We Doing Enough? Front. Public Health 2020, 8, 358. [Google Scholar] [CrossRef]
- Mowen, T.J.; Freng, A. Is More Necessarily Better? School Security and Perceptions of Safety among Students and Parents in the United States. Am. J. Crim. Justice 2019, 44, 376–394. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, H.; Zhu, C.; Chen, Q.; Evans, R. Does Citizen Engagement with Government Social Media Accounts Differ During the Different Stages of Public Health Crises? An Empirical Examination of the COVID-19 Pandemic. Front. Public Health 2022, 10, 807459. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, X.; Zhang, H.; Chen, Q. Online Participation Chaos: A Case Study of Chinese Government-Initiated E-Polity Square. Int. J. Public Adm. 2016, 39, 1195–1202. [Google Scholar] [CrossRef]
- Chen, Q.; Min, C.; Zhang, W.; Wang, G.; Ma, X.; Evans, R. Unpacking the Black Box: How to Promote Citizen Engagement through Government Social Media during the COVID-19 Crisis. Comput. Hum. Behav. 2020, 110, 106380. [Google Scholar] [CrossRef]
- Zhu, C.; Harris, K.; Zhang, W.; Tsyganova, K.; Li, M.; Zeng, R. The Blue Whale Challenge from Urban Legend to Real Harm: Case Study Analyses of Chinese Suicide Attempters. Curr. Psychol. 2022, 1–12. [Google Scholar] [CrossRef]
Variable | Coding Scheme for the Response | Mean | SD |
---|---|---|---|
Perception of social safety | Fourth categories: 1 = very unsafe and 4 = very safe | 2.949 | 0.579 |
Internet use | Uses the Internet = 1, otherwise = 0 | NA | NA |
Internet use frequency | Never = 0, Several times a year = 1, At least once a month = 2, At least once a week = 3, Many times a week = 4, Almost every day = 5 | 1.200 | 1.641 |
Gender | Male = 1, female = 0 | NA | NA |
Age | Age in 2017 | 46.654 | 14.223 |
Household registration | Rural = 1, urban =0 | NA | NA |
Educational level | Not attending school = 1, primary school = 2, junior high school = 3, high school/technical secondary school/vocational high school = 4, college and above = 5 | 3.024 | 1.205 |
Marital status | Unmarried/Divorce or widowed = 0, Married/Cohabiting = 1 | NA | NA |
Police trust | Self-reported police trust by an individual citizen (from 1 = totally distrusted to 4 = very trusting) | 3.014 | 0.825 |
Neighbor trust | Self-reported neighbor trust by an individual citizen (from 1 = totally distrusted to 4 = very trusting) | 3.004 | 0.681 |
Party and government Officials trust | Self-reported party and government officials trust by an individual citizen (from 1 = totally distrusted to 4 = very trusting) | 2.753 | 0.869 |
Socioeconomic status | Self-reported socioeconomic status by an individual citizen (from 1 = lower to 5 = upper) | 2.021 | 0.895 |
Life satisfaction | Self-reported life satisfaction by an individual citizen (from 1 = strongly unsatisfied to 10 = strongly satisfied) | 6.718 | 2.1990 |
Awareness of public safety issues | Yes = 1, no = 0 | NA | NA |
Social safety maintenance satisfaction | High satisfaction = 1, low satisfaction = 0 | NA | NA |
IV—communication expenditure a | Log of communication expenditures in 2016 | 7.061 | 1.427 |
Variables | OLS | Ordered Probit | ||
---|---|---|---|---|
(1) | (2) | (1) | (2) | |
Internet use | −0.051 *** (0.016) | −0.023 *** (0.007) | ||
Internet use frequency | −0.015 *** (0.005) | −0.007 *** (0.002) | ||
Gender | 0.069 *** (0.013) | 0.069 *** (0.013) | 0.030 *** (0.006) | 0.029 *** (0.006) |
Age | 0.003 *** (0.001) | 0.003 *** (0.001) | 0.001 *** (0.000) | 0.001 *** (0.000) |
Household registration | 0.025 * (0.014) | 0.025 * (0.014) | 0.011 * (0.006) | 0.011 * (0.006) |
Educational level | ||||
Primary school | −0.037 (0.027) | −0.038 (0.027) | −0.018 (0.013) | −0.019 (0.013) |
Junior high school | −0.029 (0.027) | −0.031 (0.027) | −0.018 (0.013) | −0.019 (0.013) |
High school/technical secondary school/vocational high school | −0.064 ** (0.030) | −0.067 ** (0.030) | −0.033 ** (0.013) | −0.034 ** (0.013) |
College and above | −0.088 *** (0.033) | −0.086 ** (0.034) | −0.042 *** (0.014) | −0.041 *** (0.014) |
Marital status | −0.033 ** (0.017) | −0.035 ** (0.017) | −0.013 * (0.007) | −0.014 * (0.007) |
Police trust | 0.049 *** (0.010) | 0.048 *** (0.010) | 0.020 *** (0.004) | 0.020 *** (0.004) |
Neighbor trust | 0.071*** (0.011) | 0.071 *** (0.011) | 0.029 *** (0.005) | 0.029 *** (0.005) |
Party and government officials trust | 0.048 *** (0.010) | 0.090 *** (0.010) | 0.037 *** (0.004) | 0.037 *** (0.004) |
Socioeconomic status | −0.001 (0.008) | −0.001 (0.008) | −0.001 (0.003) | −0.001 (0.003) |
Life satisfaction | 0.034 *** (0.003) | 0.034 *** (0.003) | 0.014 *** (0.001) | 0.014 *** (0.001) |
Awareness of public safety issues | −0.069 ** (0.032) | −0.069 ** (0.032) | −0.030 ** (0.013) | −0.030 ** (0.013) |
Social safety maintenance satisfaction | 0.122 *** (0.016) | 0.123 *** (0.016) | 0.045 *** (0.006) | 0.046 *** (0.006) |
Province | YES | YES | YES | YES |
Constant | 1.882 *** (0.089) | 1.881 *** (0.089) | — | — |
R-squared/Pseudo R2 | 0.1304 | 0.1304 | 0.0835 | 0.0836 |
Observations | 8246 | 8224 | 8246 | 8224 |
Variables | Change the Variable Encoding Method | Change the Model Setting Form | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Internet use | −0.092 ** (0.047) | −0.023 *** (0.007) | ||
Internet use frequency | −0.027 * (0.015) | −0.007 *** (0.002) | ||
Gender | 0.221 *** (0.041) | 0.220 *** (0.041) | 0.031 *** (0.006) | 0.031 *** (0.006) |
Age | 0.009 *** (0.002) | 0.009 *** (0.002) | 0.001 *** (0.000) | 0.001 *** (0.000) |
Household registration | 0.002 (0.043) | 0.002 (0.043) | 0.012** (0.006) | 0.012 ** (0.006) |
Educational level | ||||
Primary school | 0.019 (0.070) | 0.016 (0.070) | −0.023 * (0.013) | −0.024 * (0.013) |
Junior high school | 0.103 (0.072) | 0.100 (0.071) | −0.025 * (0.013) | −0.026 ** (0.013) |
High school/technical secondary school/vocational high school | 0.092 (0.081) | 0.088 (0.081) | −0.040 *** (0.014) | −0.041 *** (0.014) |
College and above | 0.029 (0.091) | 0.036 (0.092) | −0.049 *** (0.014) | −0.047 *** (0.015) |
Marital status | −0.137 *** (0.050) | −0.140 *** (0.050) | −0.015 ** (0.007) | −0.016 ** (0.007) |
Police trust | 0.045 * (0.026) | 0.045 * (0.026) | 0.021 *** (0.004) | 0.021 *** (0.004) |
Neighbor trust | 0.110 *** (0.028) | 0.107 *** (0.028) | 0.031 *** (0.005) | 0.031 *** (0.005) |
Party and government officials trust | 0.186 *** (0.026) | 0.187 *** (0.026) | 0.039 *** (0.004) | 0.039 *** (0.004) |
Socioeconomic status | 0.037 * (0.022) | 0.037 * (0.022) | −0.001 (0.003) | −0.001 (0.003) |
Life satisfaction | 0.070 *** (0.009) | 0.070 *** (0.009) | 0.001 *** (0.000) | 0.014 *** (0.001) |
Awareness of public safety issues | −0.153 * (0.087) | −0.156 * (0.088) | −0.029 ** (0.013) | −0.029 ** (0.013) |
Social safety maintenance satisfaction | 0.380 *** (0.039) | 0.381 *** (0.039) | 0.048 *** (0.007) | 0.049 *** (0.007) |
Province | YES | YES | YES | YES |
Constant | −1.245 *** (0.265) | −1.243 *** (0.265) | — | — |
R-squared/Pseudo R2 | 0.0900 | 0.0899 | 0.0878 | 0.0879 |
Observations | 8246 | 8224 | 8246 | 8246 |
Variable | U/M | Mean | Bias (%) | Reduce Bias (%) | t-Test | ||
---|---|---|---|---|---|---|---|
Treated | Control | t | p | ||||
Gender | U | 0.4759 | 0.4535 | 4.5 | 1.7 | 2.03 | 0.043 |
M | 0.4753 | 0.4973 | −4.4 | −1.45 | 0.164 | ||
Age | U | 36.567 | 52.815 | −136.8 | 97.6 | −62.17 | 0.000 |
M | 36.606 | 36.213 | 3.3 | 1.30 | 0.194 | ||
Household registration | U | 0.5519 | 0.7787 | −49.5 | 99.1 | −22.63 | 0.000 |
M | 0.5532 | 0.5553 | −0.5 | −0.18 | 0.857 | ||
Educational level | U | 3.8726 | 2.5064 | 136.9 | 97.5 | 61.82 | 0.000 |
M | 3.8700 | 3.8365 | 3.4 | 1.43 | 0.154 | ||
Marital status | U | 0.7182 | 0.8732 | −39.2 | 94.0 | −18.07 | 0.000 |
M | 0.7200 | 0.7106 | 2.3 | 0.86 | 0.391 | ||
Police trust | U | 2.8715 | 3.1160 | −30.1 | 94.8 | −13.46 | 0.000 |
M | 2.8720 | 2.8848 | −1.6 | −0.67 | 0.506 | ||
Neighbor trust | U | 2.8976 | 3.0756 | −26.7 | 80.2 | −11.92 | 0.000 |
M | 2.8987 | 2.9340 | −5.3 | −1.61 | 0.107 | ||
Party and government officials trust | U | 2.6530 | 2.8314 | −21.1 | 65.3 | −9.41 | 0.000 |
M | 2.6539 | 2.7157 | −7.3 | 1.47 | 0.142 | ||
Socioeconomic status | U | 2.2256 | 1.9088 | 36.2 | 93.0 | 16.28 | 0.000 |
M | 2.2224 | 2.2445 | −2.5 | −1.06 | 0.290 | ||
Life satisfaction | U | 6.9554 | 6.5944 | 16.8 | 74.1 | 7.48 | 0.000 |
M | 6.9531 | 7.0465 | −4.3 | −1.61 | 0.107 | ||
Awareness of public safety issues | U | 0.0332 | 0.0402 | −3.7 | 61.3 | −1.66 | 0.096 |
M | 0.0333 | 0.0360 | −1.4 | −0.62 | 0.536 | ||
Social safety maintenance satisfaction | U | 0.7761 | 0.7816 | −1.3 | −84.0 | −0.60 | 0.551 |
M | 0.7756 | 0.7655 | 2.4 | 1.01 | 0.314 |
Variables | Bioprobit | CMP | ||
---|---|---|---|---|
Phase 1 (1) | Phase 2 (2) | Phase 1 (3) | Phase 2 (4) | |
Internet use | −0.394 *** (0.168) | −0.257 *** (0.096) | ||
Communications expenditure | 0.338 *** (0.014) | 0.023 *** (0.003) | ||
athrho | 0.177 * (0.107) | |||
atanhrho_12 | 0.438 *** (0.166) | |||
Control variables | YES | YES | YES | YES |
Province | YES | YES | YES | YES |
Wald test | 1046.38 *** | 9733.00 *** | ||
Observations | 8074 | 8074 |
Variables | Region | Age | Household Registration | |||||
---|---|---|---|---|---|---|---|---|
Eastern | Central | Western | Young | Middle | Old | Rural | Urban | |
Internet use | −0.017 (0.010) | −0.022 ** (0.011) | −0.031 ** (0.013) | −0.018 *** (0.007) | −0.028 ** (0.011) | −0.037 (0.024) | −0.025 *** (0.010) | −0.015 * (0.009) |
Control variables | YES | YES | YES | YES | YES | YES | YES | YES |
Province | YES | YES | YES | YES | YES | YES | YES | YES |
Pseudo R2 | 0.0842 | 0.0681 | 0.0992 | 0.0795 | 0.0750 | 0.0791 | 0.0869 | 0.0802 |
Observations | 3373 | 2626 | 2247 | 3541 | 2903 | 1802 | 5634 | 2612 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, H.; Zhou, L.; Zhang, W.; Zhou, M. Does Internet Use Affect Citizens’ Perception of Social Safety? A Cross-Sectional Survey in China. Systems 2022, 10, 232. https://doi.org/10.3390/systems10060232
Wang Z, Liu H, Zhou L, Zhang W, Zhou M. Does Internet Use Affect Citizens’ Perception of Social Safety? A Cross-Sectional Survey in China. Systems. 2022; 10(6):232. https://doi.org/10.3390/systems10060232
Chicago/Turabian StyleWang, Zicheng, Huiting Liu, Lijuan Zhou, Wei Zhang, and Mingxing Zhou. 2022. "Does Internet Use Affect Citizens’ Perception of Social Safety? A Cross-Sectional Survey in China" Systems 10, no. 6: 232. https://doi.org/10.3390/systems10060232
APA StyleWang, Z., Liu, H., Zhou, L., Zhang, W., & Zhou, M. (2022). Does Internet Use Affect Citizens’ Perception of Social Safety? A Cross-Sectional Survey in China. Systems, 10(6), 232. https://doi.org/10.3390/systems10060232